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B2-microglobulin modified with advanced glycation end products mod-
ulates collagen synthesis by human fibroblasts. S2-microglobulin amy-
loidosis (AB,m) is a serious complication for patients undergoing long-
term dialysis. B2-microglobulin modified with advanced glycation end
products (B,m-AGE) is a major component of the amyloid in AB,m. It is
not completely understood whether 8,m-AGE plays an active role in the
pathogenesis of AB,m, or if its presence is a secondary event of the
disease. B2-microglobulin amyloid is mainly located in tendon and osteo-
articular structures that are rich in collagen, and local fibroblasts consti-
tute the principal cell population in the synthesis and metabolism of
collagen. Recent identification of AGE binding proteins on human
fibroblasts lead to the hypothesis that the fibroblast may be a target for the
biological action of B8,m-AGE. The present study demonstrated that two
human fibroblast cell lines exhibited a decrease in procollagen type I
mRNA and type I collagen synthesis after exposure to 8,m-AGE for 72
hours. Similar results were observed using AGE-modified albumin. Anti-
body against the RAGE, the receptor for AGE, attenuated this decrease
in synthesis, indicating that the response was partially mediated by RAGE.
In addition, antibody against epidermal growth factor (EGF) attenuated
the decrease in type I procollagen mRNA and type I collagen induced by
B-m-AGE, suggesting that EGF acts as an intermediate factor. These
findings support the hypothesis that B,m-AGE actively participates in
connective tissue and bone remodeling via a pathway involving fibroblast
RAGE, and at least one interposed mediator, the growth factor EGF.

B2-microglobulin amyloidosis (AB,m) is a progressive and
incapacitating comorbid condition affecting patients with chronic
renal failure [1-3]. Amyloid deposits are predominantly found in
tendons, synovium, and bone, resulting in shoulder periarthritis,
hand flexor tenosynovitis, carpal tunnel syndrome, destructive
spondyloarthropathy, and cystic bone lesions [1-3]. Recent bio-
chemical and immunochemical studies have demonstrated that
B2-microglobulin modified with advanced glycation end products
(B,m-AGE) is a major component of the amyloid fibrils in AB,m
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[4]. However, it is not completely understood whether B,m-AGE
actively contributes to osteo-articular destruction or are innocent
bystanders accumulating during the course of the disease [5].
Supporting the hypothesis that 8,m-AGE is an indirect provoca-
teur is the observation that it stimulates production of interleukin
(IL)-1B, tumor necrosis factor (TNF)-c«, and IL-6 by macrophages
[6, 7]. Indeed, recent studies have suggested that enhanced
interaction of B,m-AGE with macrophage AGE receptor
(RAGE) results in increased macrophage migration and activa-
tion, as measured by increased production of TNF-o mRNA and
protein [8-10].

Tendon and osteo-articular tissues, the preferential sites of S,m
amyloid deposition, are rich in collagen. In normal life processes
and during inflammation, fibroblasts and related mesenchymal
cells are the principal site for collagen synthesis and metabolism.
Previous identification of AGE binding proteins on human fibro-
blasts [11] lead us to postulate that fibroblasts may be a direct
target for the agonist actions of B,m-AGE. Pursuant to this
hypothesis, we evaluated the capacity of B,m-AGE to affect
collagen synthesis by human skin fibroblasts. Reported herein is
that B,m-AGE decreased synthesis of type I collagen in a dose-
and time-dependent manner. The inhibition of this effect by
antibody against RAGE suggested a receptor-mediated effect.
These findings support a novel agonist role for 3,m-AGE that
may adversely influence repair and remodeling of connective
tissues in AB,m.

METHODS
Fibroblast culture

A normal human, non-fetal skin fibroblast cell line
(GM05757A) was obtained from NIGMS Human Genetic Mutant
Cell Repository (Camden, NJ, USA). The cells were grown to
confluence at 37°C in 95% air and 5% CO, in Dulbecco’s
modified Eagle medium; Nutrient Mixture F-12 (DMEM/F-12)
contains L-glutamine (GIBCO Life Technologies, Grand Island,
NY, USA) with 10% (vol/vol) fetal calf serum (FCS; GIBCO), 100
U/ml penicillin and 100 pg/ml streptomycin (Sigma, St. Louis,
MO, USA). Confluent cultures of fibroblasts were harvested by
incubation with 0.1% trypsin/0.02% EDTA (Sigma) and subcul-
tured at a 1:3 split ratio. Cells between passages 7 to 10 were
harvested for experiments by incubation with 0.1% trypsin/0.02%
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EDTA for three minutes at 37°C to 167°C, followed by extensive
washing in DMEM/F-12 and resuspension in DMEM/F-12 con-
taining 10% FCS at a concentration of 10° cells/ml. Since pheno-
typic modulation is a concern with cell passage, we compared the
response to B,m-AGE between two strains of human skin fibro-
blast (GMO05757A and GM03377C) and between different pas-
sages (passages 4, 8, and 12). Culture conditions and harvesting
procedures were as described earlier.

In vitro preparation of advanced glycation end product-modified
proteins in vitro

Advanced glycation end product-modified proteins were pre-
pared in vitro as previously described [12, 13]. Briefly, 1.75 mg/ml
of purified normal human B,m (Cortex Biochem, San Leandro,
CA, USA), normal human serum albumin (HSA; Sigma), or
bovine serum albumin (BSA; Sigma) were incubated at 37°C for
30 days with 100 mm D-glucose in 100 mm phosphate buffer
containing 200 U/ml penicillin, 70 pg/ml gentamicin, and 1.5 mm
PMSF (Sigma). Samples incubated in an identical manner in the
absence of glucose were used as controls. After incubation, all
samples were dialyzed against phosphate buffer (pH 7.4). AGE-
modified proteins were characterized by ELISA using anti-KLH-
AGE antibody at 1:2500 dilution (gift of Dr. John W. Baynes,
University of South Carolina, Columbia, SC, USA) and fluo-
rospectrometry as described [4, 13, 14]. The AGE content was
quantitated by fluorospectrometry. For B,m-AGE, it was 26.4
units/mg protein; for HSA-AGE 26.1 units/mg protein; for BSA-
AGE 26.0 units/mg protein; and for 8,m, HSA and BSA controls
0.9 units/mg protein. The endotoxin content in all samples was
measured by Limulus amoebocyte lysate assay (E-toxate, Sigma)
and found to be < 0.2 ng/ml.

Identification of fibroblast advanced glycation end produce
receptors

Immunoblot analysis. The presence of AGE receptors (RAGE)
on fibroblasts was assessed by immunoblot analysis as described
[15]. Briefly, 10® dispersed fibroblasts were solubilized in Tris-HCI
(20 mmMm, pH 7.4), NaCl (0.1 m), octyl-B-glucoside (1%), and PMSF
(1 mMm), and the lysate eluted through a 10 ml hydroxylapatite
column (IBF Biotechnics, Columbia, MD, USA). The column was
washed with Tris-buffered saline (Tris, 20 mm, pH 7.4; NaCl, 0.1
M) containing octyl-B-glucoside (0.1%), and the protein extract
eluted in the same buffer with the NaCl concentration increased
to 1.0 M. The membrane-enriched extract was subjected to
SDS-PAGE (10%) followed by Western blotting using the Blotto
procedure [16]. After incubation with 45 ug/ml of rabbit anti-
human RAGE IgG [8] or nonimmune rabbit IgG (Sigma) for 60
minutes at room temperature, sites of IgG binding were visualized
by chemiluminescence using peroxidase-conjugated secondary
antibody (Amersham Corp., Arlington Heights, IL, USA).

Immunofluorescent Analysis. Fibroblasts were allowed to adhere
to 12-mm coverslips for 24 hours at 37°C. The cells were washed
with PBS (pH 7.4) and fixed in 2% paraformaldehyde for 15
minutes at 4°C. The coverslips were incubated wtih rabbit anti-
human RAGE antibody (33.5 ug/ml) for 45 minutes at 37°C,
washed with PBS (pH 7.4), and incubated with FITC-conjugated
goat anti-rabbit IgG (Sigma) at 1:1000 dilution for 45 minutes at
37°C. Nonimmune rabbit IgG replaced anti-RAGE IgG at the
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same concentration as a negative control. The cells were observed
using phase contrast and fluorescence microscopy, then photo-
graphed (Nikon, Labophot-2, Japan).

Extraction and analysis of procollagen mRNA and type I
collagen

Fibroblasts were plated onto 75 cm? flasks in DMEM/F-12 with
10% FCS and grown to confluence. The monolayers were washed
three times with Hanks balanced salt solution without divalent
cations (HBSS™) to remove traces of serum. For analysis of
dose-dependence, the monolayers were cultured for 72 hours with
incremental concentrations of 8,m-AGE or unmodified 8,m in
serum-free DMEM/F-12 with 0.2% lactalbumin (DMEM-LH;
Gibco Life Technologies, Grand Island, NY, USA). To evaluate
the time-dependence of the response, cells were incubated with 50
pg/ml B,m-AGE or unmodified B,m for different durations.
Negative controls were incubated with DMEM-LH alone, and
plates incubated with 60 ng/ml of recombinant human IL-13
(Genzyme, Cambridge, MA, USA) served as positive controls. To
compare the effect of various AGE-modified proteins, fibroblasts
were incubated with 50 pg/ml of B,m-AGE, HSA-AGE, BSA-
AGE, or their unmodified forms for 72 hours. At the endpoints of
incubation, the supernatants were collected for quantitation of
type I collagen. The corresponding monolayers were washed and
trypsinized. The cells were counted, and Trypan blue dye exclu-
sion was performed to test cell viability. Greater than 98% of the
cells were Trypan blue excluding in all experiments. Then cells
were lysed in 1 ml TRI REAGENT (Molecular Research Center,
Inc., Cincinnati, OH, USA). The lysate was collected, and phase
separated by the addition of 0.2 ml of chloroform. The aqueous
phase was used for total RNA isolation, and the interphase and
organic phases were used for protein analysis as described [17].

For steady-state mRNA analysis, 5 to 10 ug of total RNA from
representative samples were electrophoresed on a 1.2% aga-
rose/6% formaldehyde gel and transferred onto a nylon mem-
brane [18]. For slot-blotting, 5 to 8 ug of total RNA was
denatured at 68°C for 15 minutes in 20% formaldehyde and 6X
SSC, serially diluted at the desired concentration, and slotted onto
a nylon membrane using the BIO-DOT SF apparatus (BIO-RAD,
Hercules, CA, USA). The filters were baked at 80°C and prehy-
bridized [6]. After the denatured [*?P] labeled probe for human
type I collagen a1 (10° cpm/ml; ATCC, Rockville, MD, USA) was
added directly to the prehybridization fluid, hybridization was
performed overnight at 42°C. The filters were washed and ex-
posed to Kodak X-Omat. The densitometric scanning of the
slot-blot autoradiograms was performed using a densitometer
(Molecular Dynamics, Sunnyvale, CA, USA). The results were
corrected by the amount of RNA loaded and expressed as density
unit/ug RNA.

Type I collagen in the cell supernatants and in the extracts of
the cell layer were quantitated by ELISA using the ELISA Starter
Kit (Pierce, Rockford, IL, USA). Ninety-six-well polystyrene
plates were coated with monoclonal anti-human type I collagen
antibody (ICN Biomedicals, Inc., Aurora, OH, USA) at 10 pg/ml
by incubation for 12 hours at 4°C. Each well was washed three
times with washing buffer, and nonspecific binding sites were
blocked with blocking buffer. Human type I collagen (Gibco Life
Technologies) at incremental concentrations, properly diluted
samples were added, and the plates were incubated for 60 minutes
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at room temperature. After washing the plates, a polyclonal rabbit
anti-human type I collagen antibody (ICN Biomedicals, Inc.) at
1:1000 dilution was incubated with the plates for one hour at room
temperature. The wells were then washed, incubated with a goat
anti-rabbit IgG-peroxidase antibody (Pierce) at 1:5000 dilution,
followed by addition of the substrate 2,2'-azino-di-3-ethylbenz-
thiazoline-6-sulfonic acid. The absorbance at 405 nm was mea-
sured on a micro-ELISA plate reader (Titertek Multiskan, Mcc/
340). For control studies, blocking buffer alone was used instead
of samples, and nonimmune rabbit IgG was substituted for rabbit
anti-human type I collagen. The amount of type I collagen
measured was corrected for the number of cells harvested.

Effect of antibodies to RAGE, EGF or IL-1f on type I collagen
synthesis

To determine the effect of anti-RAGE IgG on type I collagen
synthesis, fibroblasts were plated in six-well plates, grown to
confluence, and preincubated with serum-free DMEM-LH con-
taining 50 pg/ml of rabbit anti-human RAGE or nonimmune
rabbit IgG for two hours at 37°C. This concentration was based on
preliminary experiments demonstrating a plateau in activity at
concentrations = 50 ug/ml (data not shown). The monolayers
were washed three times with DMEM-LH and then incubated
with B,m-AGE (50 pg/ml). After 72 hours incubation, the super-
natants were collected, and the total RNA and protein were
extracted for analysis.

To determine the effect of anti-EGF IgG, confluent fibroblasts
in six-well plates were incubated with serum-free DMEM-LH
containing 50 ug/ml of B,m-AGE and 50 ug/ml of goat neutral-
izing antibody for human epidermal growth factor (EGF; R&D
System, Minneapolis, MN, USA) or 50 pg/ml of 8,m-AGE plus
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Fig. 1. Immunoblotting of detergent extracts of
human fibroblasts with anti-human RAGE IgG.
Lane 1. Detergent extract of fibroblasts was
subjected to 10% SDS-PAGE and
electroblotting. The blots were reacted with
anti-human RAGE IgG (45 pg/ml). Sites of
primary antibody binding were visualized with
an peroxidase-conjugated secondary antibody.
Lane 2. The same experiment was performed
using detergent extract of fibroblasts, but
nonimmune rabbit IgG (45 pg/ml) was used as
the primary antibody. The experiment was
repeated two times with identical findings.

50 pg/ml of nonimmune goat IgG (Sigma). After 72 hours of
incubation, the supernatants were collected and the total RNA
and protein were extracted. In separate experiments, fibroblasts
were preincubated with goat anti-human EGF neutralizing anti-
body (50 ug/ml) or nonimmune goat IgG (50 mg/ml) for two
hours. The cells were washed with DMEM-LH and incubated for
72 hours with B,m-AGE (50 ug/ml). The supernatants were
collected, and the total RNA and protein were extracted.

To quantitate IL-1B8 synthesis from fibroblasts, washed mono-
layers were incubated with B,m-AGE or HSA-AGE (50 pg/ml)
for 12 to 72 hours at 37°C. At the endpoint of incubation, the
supernatant was collected, and IL-183 was quantitated by using the
Predicta Human IL-1B8 ELISA Kit (Genzyme) with detection
limits of 3.0 pg/ml. To determine the effect of anti-IL-1p, fibro-
blasts were simultaneously incubated with serum-free DMEM-LH
containing 50 ug/ml of B,m-AGE and 25 to 250 pg/ml of rabbit
neutralizing antibody for human IL-18 (Genzyme) for 72 hours.
Type I procollagen mRNA and type I collagen were analyzed as
described above.

Statistical analysis

All experiments were performed in triplicate. Continuous vari-
ables, expressed as mean = sp, were compared using analysis of
variance (ANOVA). Multiplicative terms were included to eval-
uate for interaction among explanatory variables. The Student-
Newman-Keuls procedure was used to evaluate pairwise compar-
isons. Two-tailed P values < 0.05 were considered statistically
significant. Statistical analyses were conducted with SAS (The
SAS Institute, Cary, NC, USA).
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Fig. 2. Detection of RAGE on human fibroblasts by indirect immunofluorescence. Fibroblasts were stained with rabbit anti-RAGE IgG (lane A) or
nonimmune rabbit IgG (lane B) as described in the text. Panels 1: Immunofluorescence. Panels 2: Phase contrast. The experiment was repeated two

times with identical findings (bar = 10 um).

RESULTS
Demonstration of RAGE on fibroblasts

To ascertain the presence of RAGE on human fibroblasts,
membrane-enriched fractions were generated from human fibro-
blasts and were analyzed for immunoreactive material using
polyclonal anti-human RAGE IgG. Two bands were visible by
immunoblot analysis, corresponding to relative molecular masses
of 32 and 50 kDa (Fig. 1, lane 1). Irrelevant antibody was without
immunoreactivity (Fig. 1, lane 2). The presence of two different
size immunoreactive RAGE polypeptides in the membrane frac-
tion probably reflects post-translational processing/cleavage, in
that multiple molecular mass forms of RAGE are observed in
cells transfected with full-length RAGE cDNA [10]. Immunofiu-
orescence studies demonstrated a cell surface pattern of staining
for RAGE. Fibroblasts incubated with anti-human RAGE IgG
showed a diffuse pattern of membrane staining (Fig. 2A) as
compared with nonimmune rabbit IgG control (Fig. 2B).

Effect of 5,m-AGE on type I procollagen mRNA expression and
synthesis of type I collagen

Type I procollagen mRNA was detectable in cells incubated
with medium alone (921 = 126 density units/ug RNA), and was
taken as 100% (the negative controls). After a 72 hour incubation
with B,m-AGE (50 pg/ml), type I procollagen mRNA levels
decreased to 66 = 9% (Fig. 3, lane 4) of that observed with cells
incubated in medium alone (the negative controls; Fig. 3, lane 1).
In contrast, cells incubated with 8,m showed no significant change

in level of mRNA coding for type I procollagen (104 + 8% of the
negative controls; Fig. 3, lane 3). B-actin mRNA levels were
comparable for fibroblasts incubated with medium alone, ,m,
and B,m-AGE (Fig. 3). Fibroblasts were incubated with IL-13 as
a positive control for down-regulation of collagen biosynthesis
(Fig. 3, lane 2).

The decrease in type I procollagen mRNA was dependent upon
the concentration of B,m-AGE contained in the medium (Fig.
4A). Steady-state mRNA levels were reduced by 25% upon
incubation with 0.5 pg/ml of B,m-AGE and 40% upon incubation
with 50 pg/ml. A decrement in steady-state mRNA for type I
procollagen was not detectable before 48 hours incubation with
B,m-AGE (Fig. 4B).

To determine whether the observed decrease in type I procol-
lagen mRNA was associated with a decrease in the synthesis of
collagen, type I collagen levels were quantitated both in the
supernatants and in the extracts of the cell layer. In fibroblasts
incubated with medium alone, the quantities of type I collagen in
the supernatants and in the extracts of the cell layer were 195 =
22 ng/10* cell and 181 = 16 ng/10* cell, respectively, and were
taken as 100% (Fig. 5). The decrease in type I collagen levels
corresponded to the decrement in steady-state mRNA. The
quantities of type I collagen in the supernatants and the extracts
of cell layer were reduced by 51% and 67% upon incubation with
50 wg/ml of B,m-AGE.

Although the magnitude of the absolute response to S,m-AGE
was somewhat variable in different lines and passages (cell line
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GMO05757A had decreased type I procollagen mRNA of 61.0 =
8.2%, 65.0 = 7.8%, and 67.1 = 6.2% at passages 4, 8 and 12; cell
line GM03377C had decreased type I procollagen mRNA of
52.8 £ 5.8%, 60.5 * 6.6%, and 61.2 £ 7.2% at passages 4, 8 and
12, N = 3), the decrease in type I procollagen mRNA expression
was a uniform phenomenon.

To test the specificity of the effect of B,m-AGE on type I
collagen synthesis, fibroblasts were incubated with other AGE-
modified proteins. No significant difference was seen in type I
procollagen mRNA or type I collagen levels between cells treated
with B,m-AGE, HSA-AGE and BSA-AGE (Fig. 6). Unmodified
HSA or BSA had no effect on type I collagen synthesis.

Effect of anti-RAGE, anti-EGF, and anti-IL-18 antibodies on
B,m-AGE induced decrease of type I collagen synthesis

Preincubation of the human fibroblast cultures with anti-human
RAGE IgG prior to addition of 3,m-AGE attenuated the B,m-
AGE-induced decrease of type I procollagen mRNA levels (Fig.
7, lanes 2 and 4, respectively, and Table 1). There was no change
in procollagen mRNA levels when fibroblasts were pretreated
with nonimmune rabbit IgG (Fig. 7, lane 3, and Table 1). Similar
effects were observed for type I collagen synthesis by the fibro-
blast cultures treated with anti-RAGE IgG or nonimmune rabbit
IgG, respectively (Table 1).

The simultaneous addition of anti-EGF IgG to the incubation
solution blunted the B,m-AGE-induced decrease in both type I
procollagen mRNA and type I collagen levels (Table 1). In
contrast, addition of nonimmune goat IgG had no effect on
B>m-AGE-induced decrease in type I procollagen mRNA. In-
stead, if fibroblasts were pretreated with anti-EGF IgG, washed,
and followed by incubation with 8,m-AGE, no significant change
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Fig. 3. Effect of B,m-AGE on type I
procollagen mRNA level expressed by human
fibroblasts. Fibroblasts were incubated with
DMEM-LH alone (lane 1), 60 ng/ml IL-183
(lane 2), 50 pg/ml B,m (lane 3), and 50 pg/ml
B,m-AGE (lane 4) for 72 hours. Type I
procollagen mRNA levels were analyzed by
Northern blot (4) and slot-blot (B) using a
cDNA probe specific for human a1 chain of
type I collagen. The experiments were repeated
three times with the same findings.

could be seen in type I procollagen mRNA expression, or type I
collagen synthesis in comparison to cells exposed to B,m-AGE
without pretreatment (data not shown). Neither anti-human
RAGE IgG nor anti-human EGF IgG affected type I procollagen
mRNA levels or type I collagen synthesis in fibroblasts incubated
with medium alone or with 8,m (data not shown).

Using an ELISA with a limit of detection of 3.0 pg/ml, no IL-13
was detected in the supernatants of fibroblasts cultured for 12 to
72 hours with B,m-AGE (50 pg/ml) or HSA-AGE (50 pg/ml).
Furthermore, the addition of anti-IL-1B antibody did not alter the
B,m-AGE induced decrease in type I collagen synthesis (Table 1).

DISCUSSION

The amyloidosis of chronic renal failure is unique, consisting of
B,m and localizing mainly in bones and synovium [1-3]. Subchon-
dral bone resorption and growing bone cysts are hallmarks of the
clinical presentation of AB,m. Among maintenance dialysis pa-
tients, the signs of hyperparathyroidism decrease with time, but
the size and number of subchondral bone cysts increase. Biopsy of
these cysts yields B,m amyloid [19]. Controversy exists about
whether B,m deposition plays an active role in inducing bone
destruction or if it is only a secondary event of the disease [5]. In
favor of active participation is the observation that 8,m increases
collagenase synthesis by cultured rabbit synovial cells, suggesting
an autocrine function for B,m [20]. Similarly, other studies
demonstrate that human B,m stimulates DNA production, and
synthesis of collagen and non-collagen proteins in isolated osteo-
blast cultures [21, 22]. However, these observations are not
uniform [23, 24]. In the current analysis, unmodified 8,m did not
effect the synthesis of type I collagen by human skin fibroblasts.
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Fig. 4. Dose-related effect of B,m and 3,m-AGE on type I procollagen
mRNA level expressed by human fibroblasts (4). Confluent cultures of
fibroblasts were incubated with incremental concentrations of 8,m or
B.m-AGE for 72 hours. Total RNA was slotted and hybridized with a
cDNA probe specific for human «l chain of type I collagen. The scanned
results are expressed as the percentage of the control values without
agonists, taken as 100%. Data from three independent experiments are
shown as mean * sp. The error bars indicate the sp from the mean.
ANOVA, P < 0.0001; AGE modification, P < 0.0001; concentration of
B,m, P = NS; AGE X dose interaction, P = 0.02. (B) Time course of the
effect of B,m-AGE on type I procollagen mRNA level expressed by
human fibroblasts. Cells were incubated with 50 ug/ml B,m-AGE (M) or
unmodified 2M (&) for different durations. Type I procollagen mRNA
levels were analyzed by slot-blot. Data from three independent experi-
ments are represented as mean * sD. The error bars indicate the S from
the mean. ANOVA, P < 0.0001; AGE modification, P < 0.0001; duration
of incubation, P = 0.0006; AGE X duration interaction, P = 0.01.

AGE-modified B,m is a major component of AB,m [4]. Its
pathobiologic role is suggested by the finding that B,m-AGE
induces chemotaxis of human monocytes and stimulates produc-
tion of TNF-a and IL-13 by macrophages [6, 8]. In turn, both
cytokines have multiple effects on bone, including stimulation of
cell-mediated resorption and inhibition of bone formation [25,
26]. In addition, AGE-modified B,m stimulates the synthesis of
TNF-« and IL-1pB, cytokines that enhance collagenase mRNA
expression in cultured human synovial cells [6]. This may subse-
quently lead to collagen degradation and connective tissue break-
down. Thus, it is hypothesized that 8,m-AGE may be involved in
bone and joint destruction by a secondary effector mechanism in
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1), 50 pg/ml of HSA-AGE (lane 2), 50 ug/ml BSA-AGE (lane 3), 50 ug/ml
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(lane 7). Type I procollagen mRNA levels were analyzed by slot-blot and
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ELISA. Data from three independent experiments are shown as the
mean * sD. The error bars indicate the spD from the mean.

which monocytes/macrophages are attracted to the microenviro-
ment and activated to produce cytokines leading to local bone
destruction [5]. However, it is noteworthy that in the location of
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Table 1. Effect of anti-RAGE, anti-EGF, and anti-IL-13 on $,m-AGE
induced decrease of type I procollagen mRNA and type I collagen

synthesis®
Type I collagen
Type I ysl})/nthesis ‘%;
procollagen

mRNA % Medium Cell layer

Medium alone 100 100 100
B,m-AGE alone 65.0 7.8 48.6 4.7 38.0 =34
Rabbit «-RAGE + B,m-AGE" 80.2 6.4 72762 65.6 =44
Nonimmune rabbit IgG + B,m-AGE® 63.0 = 7.3 442 + 3.8 36.0 + 4.5
Goat a-EGF + B,m-AGE* 75762 66.5*=32 60.8 =3.4
Nonimmune goat IgG + B,m-AGE® 64.4 £ 6.4 46.0 = 4.8 40.0 =5.8
Rabbit a-1L-18 + B,m-AGE* 67272 49441 42242

Abbreviations are in the Appendix.

# Type I procollagen mRNA levels were analyzed by Northern blot and
slot-blot. Type I collagen in the supernatants and in the extracts of the cell
layer were quantified by ELISA. The results were expressed as percent-
ages of the control values (medium alone) that were taken as 100%. Data
from three separate experiments are shown as mean * sp. For cells in
medium alone, type I procollagen mRNA levels were 951 * 121 density
units/ug RNA; the quantity of type I collagen in the supernatants and in
the extracts of the cell layer were 198 = 19.1 ng/10* cell and 182 = 11.7
ng/10* cell, respectively. ANOVA, P < 0.0001; SNK: rabbit a-RAGE +
B.m-AGE and goat a-EGF + B,m-AGE are significantly different from
B.m-AGE alone and medium alone.

® Human fibroblasts were pretreated with 50 ug/ml of rabbit a-RAGE
or nonimmune rabbit IgG for 2 hours followed by incubation with 50
pg/ml of B,m-AGE for 72 hours.

¢ Human fibroblasts were exposed to 50 ug/ml of B,m-AGE plus 50
pg/ml of goat a-EGF or nonimmune goat IgG for 72 hours.

4 Human fibroblasts were incubated with 50 wg/ml of B,m-AGE plus
100 wg/ml of rabbit a-IL-1B for 72 hours.

AB,m deposits, the typical cellular inflammatory responses are
not as dense as in other inflammatory processes [2, 27, 28].

The current studies demonstrate a direct pathobiologic effect of
B-m-AGE on connective tissue. Human fibroblasts exposed to

1371

B-actin

2

3

Fig. 7. Effect of anti-human RAGE IgG on
B,m-AGE induced decrease of type I
procollagen mRNA. Human fibroblasts were
maintained in DMEM-LH alone for 72 hours
(lane 1), pretreated with 50 pg/ml of rabbit
anti-human RAGE IgG for two hours followed
by incubation with 50 ug/ml of B,m-AGE for
72 hours (lane 2), pretreated with 50 pg/ml of
nonimmune rabbit IgG for two hours followed
by incubation with 50 ug/ml of B,m-AGE for
72 hours (lane 3), or incubated with 50 ug/ml
of B,m-AGE for 72 hours (lane 4). Type I
procollagen mRNA level were analyzed by
Northern blot (4) and slot-blot (B). Data in A
and B are representative of three separate
experiments.

B,m-AGE exhibited a decrease in released and cell-associated
type 1 collagen level. The decrease in type I collagen was
associated with a parallel decrease in type I procollagen mRNA,
suggesting that the decrease in type I collagen was a consequence
of diminished synthesis, not enhanced degradation by collagenase.
The effect of B,m-AGE on type I collagen synthesis by fibroblasts
was not specific, since other AGE-modified proteins also de-
creased type I collagen synthesis. However, the major protein
component in amyloid fibrils in AB,m is B,m-AGE [4], suggesting
that the osteoarticular damage in AB,m is mediated by 8,m-AGE.
Because of phenotypic changes that may occur with cell passage,
we examined different cell lines and passages. A uniform decrease
in type I collagen was observed, suggesting the more general
applicability of these observations.

An effect of AGE-modified B,m on human fibroblasts is
supported by the immunohistochemical demonstration of RAGE.
Several cell-surface AGE binding proteins, such as p60, p90 and
galectin-3, have been identified on a variety of cells including rat
and human fibroblasts [11, 29-31]. Recently, a 35 kDa member of
the immunoglobulin superfamily of receptors, named RAGE, was
isolated and characterized from extracts of bovine lung on the
basis of its ability to bind AGEs [32]. RAGE has been found to be
present on the surface of bovine endothelial cells, human periph-
eral mononuclear phagocytes and skeletal muscle cells [8, 10, 33].
Human B,m-AGE binds to the extracellular domain of RAGE
with a kDa =~53.5 nMm, and B,m-AGE induced chemotaxis by
human mononuclear phagocytes can be abrogated by anti-RAGE
IgG [8]. In the present study, B,m-AGE induced a decrease in
type I collagen synthesis that was attenuated by antibody against
RAGE, indicating that this decrease in type I collagen synthesis
was partially mediated by RAGE. The incomplete blockade by
anti-RAGE may be a consequence of receptor recycling, or the
involvement of other AGE binding proteins beside RAGE. Less
likely is that the B,m-AGE effect is mediated by a conformational
change in B,m, not related to its glycation.
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The requirement for = 48 hours incubation with 8,m-AGE to
down-regulate type I procollagen mRNA levels suggests an indi-
rect effect of B,m-AGE. Previous studies indicate that AGE-
modified bovine serum albumin induces the expression of EGF
and EGF-receptor mRNA in human FS4 fibroblast [11], and EGF
down-regulates type I collagen synthesis in cultured skin fibro-
blasts [34]. The observation that the B,m-AGE-induced decrease
in type I collagen synthesis is attenuated by an antibody to EGF,
suggests that this growth factor may participate as an intermediate
effector of collagen synthesis. Because EGF increases B-myb
mRNA in cultured bovine vascular smooth muscle cells, and
B-myb down-regulates the promoter activity of type I collagen
genes, it may be a critical mediator for 8,m-AGE’s actions [35].
Although fibroblasts may also participate in the synthesis of IL-1,
there was no detectable IL-18 in the supernatants of fibroblasts
cultured with B,m-AGE or HSA-AGE. Furthermore, addition of
neutralizing IL-1B antibody did not alter the 8,m-AGE-induced
decrease in type I collagen synthesis.

The ability of B,m-AGE to down-regulate the synthesis of type
I collagen may play a role in connective tissue and osteoarticular
damage in AB,m. Type I collagen is most abundant in skin,
tendon and bone matrix where it comprises between 80 to 99% of
the total collagen. Tissue fibroblasts and related mesenchymal
cells play a critical role in the synthesis and metabolism of
collagen [36]. Cutaneous B,m-AGE deposits have been found on
biopsy of patients who had undergone hemodialysis for > 10 years
[37]. Patients with cutaneous B,m amyloid deposits have dry, thin
skin [38], a finding that may be a consequence of local 8,m-AGE
deposition. B,m-AGE located in osteoarticular structures has the
same effect, so may contribute to the growth of bone cysts by
suppression of the local production of type I collagen for forma-
tion of bone matrix.

In conclusion, our study demonstrates the inhibitory effect of
B,m-AGE on collagen synthesis by human fibroblasts. This find-
ing suggests that B,m-AGE may play an active role in the
processes of connective tissue and bone remodeling in AB,m.
Furthermore, these findings suggest that the interaction of 8,m-
AGE with RAGE may present a novel target for intervention in
this disorder, as a means of restoring normal fibroblast reparative
responses.
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APPENDIX

Abbreviations used in this article are: AB,m, B,-microglobulin amyloid-
osis; Bom, B,-microglobulin; B,m-AGE, B,-microglobulin-advanced gly-
cation end products; BSA, bovine serum albumin; DMEM, Dulbecco’s
modified Eagle’s medium; EGF, epidermal growth factor; FCS, fetal calf
serum; HSA, human serum albumin; IL, interleukin; PBS, phosphate
buffered saline; RAGE, receptor for advanced glycation end products;
TNF-«, tumor necrosis factor-a.
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