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The aim of the present research was to analyze the pathways for phosphatidic acid metabolism in
purified nuclei from liver. Lipid phosphate phosphatase, diacylglycerol lipase, monoacylglycerol
lipase and PA-phospholipase type A activities were detected. The presence of lysophosphatidic acid
significantly reduced DAG production while sphingosine 1-phoshate and ceramide 1-phosphate
reduced MAG formation from PA. Using different enzymatic modulators (detergents and ions) an
increase in the PA metabolism by phospholipase type A was observed. Our findings evidence an
active PA metabolism in purified liver nuclei which generates important lipid second messengers,
and which could thus be involved in nuclear processes such as gene transcription.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction Several nuclear enzymes involved in phospholipid metabolism
Many evidences suggest that phospholipids as well as their
polyunsaturated fatty acids are involved in several events inside
the nucleus [1]. The nuclear envelope has been identified as the
primary place of nuclear lipids although a few early studies have
also suggested the presence of phospholipids as a component of
chromatin [2]. In eukaryotic cells, PA is a key precursor for the syn-
thesis of major glycerophospholipids and neutral lipids as well as a
major signaling lipid [3–5]. PA can be dephosphorylated by the ac-
tion of phosphatidate phosphatase 1 (PAP1) which is also known as
lipin [6,7]. A second type of PA phosphatase that controls the sig-
naling pools of PA and DAG is known as either phosphatidate phos-
phohydrolase 2 (PAP2) or lipid phosphate phosphatase (LPP) [4].
have been described and characterized, and there is evidence that
some might have direct regulatory roles in various aspects of nu-
clear function [8]. Taking into account the multitude of functions
of PA and DAG in biosynthetic and signaling pathways and because
little is known on PA metabolism in hepatocyte nuclei, our study
aims at studying the enzymatic mechanisms through which PA-re-
moval operates in liver nuclei.

2. Materials and methods

2.1. Materials

[2-3H]glycerol (200 mCi/mmol) and Omnifluor were obtained
from New England Nuclear-Dupont (Boston, MA, USA). DAPI,
sphingosine 1-phosphate, ceramide 1-phosphate from bovine
brain, oleoyl-L-a-lysophosphatidic acid, D-sphingosine, and non-
hydroxy fatty acid ceramide from bovine brain were obtained from
Sigma–Aldrich (St. Louis, MO, USA). Antibodies anti Calnexin (sc-
11397) and anti LAP2 (611000) were from Santa Cruz Biotechnol-
ogy, INC. and BD Transduction Laboratories, respectively. All the
other chemicals used were of the highest purity available.

2.2. Purified nuclear fraction preparation

Male Wistar-strain rats were kept under constant environmen-
tal conditions and fed on a standard pellet diet. Animal handling
was carried out in agreement with the standards stated in the
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Fig. 1. Purity and integrity of nuclear preparations from rat liver. Electron micrographs of isolated nuclei prepared as described in Section 2, (A) 5000 times (scale bar 3.3 lm);
(B) 600 times (scale bar 19 lm). (C) DAPI stained, isolated liver nuclei are in blue, 600 times (scale bar 19 lm), (D) merge, 600 times (scale bar 19 lm), (E) immunoblot
analysis of CNX and LAP2 in homogenate and purified liver nuclei. Proteins (50 lg) were boiled in Laemmli buffer, resolved in a 10% SDS–PAGE and transferred to a PDVF
membrane for further WB assays. Membranes were blocked and incubated with primary and secondary antibodies as detailed in Section 2. Immunoreactive bands were
detected by enhanced chemiluminescence. Numbers on the left indicate molecular weights.
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NIH Guide for the Care and Use of Laboratory Animals. Adult rats
(4-month-old) were killed by decapitation and liver was immedi-
ately dissected (2–4 min after decapitation). The essential proce-
dure for the isolation of nuclei was followed – with minor
modifications – as described elsewhere [9,10]. The purified nuclear
fraction was suspended in: (i) TKM to quantify proteins and DNA,
(ii) 100 mM Tris–HCl, pH 8.5 to determine 50 nucleotidase, (iii)
0.2 M Na-phosphate pH 7 to determine NADH cytochrome c reduc-
tase, (iv) the buffer adequate to the enzymatic assays, (v) cacodyl-
ate buffer for electron microscopy, (vi) paraformaldehyde (2%) and
Triton-X 100 (0.1%) in phosphate buffer saline (PBS) for DAPI
staining.

2.3. Evaluation of nuclear purity

The purity of nuclear preparations was assessed by transmis-
sion electron microscopy using a JEOL 100 CXII microscope oper-
ated at 80 kV, determining DNA content by diphenylamine assay
[11] and measuring the activities of the marker enzymes 50 nucle-
otidase [12] and NADH cytochrome c reductase [13]. Calnexin
(CNX), an unglycosylated resident ER transmembrane protein,
was also determined in purified nuclei [14]. Integrity was assessed
by nuclear staining with DAPI.

2.4. Preparation of radioactive 1,2-diacyl-sn-glycerol-3-phosphate

Radioactive PA was obtained from [2-3H]glycerol-PC ([3H]PC)
which was synthesized from bovine retinas incubated with
[2-3H]glycerol (200 mCi/mmol) as previously described [15].
[3H]PA (0.1 mM, 0.1–0.2 mCi/mmol) was prepared by sonicating in
buffer solution containing 5.56 mM EGTA and 5.56 mM EDTA [16].

2.5. Enzymatic assays

2.5.1. LPP assay
LPP activity was determined in an assay medium containing

50 mM Tris–maleate buffer, pH 6.5, 1 mM EDTA plus EGTA,
4.2 mM NEM, 40 lg of nuclear protein and 100 lM [3H]PA, in a vol-
ume of 100 ll. When LPP activity was analyzed in the presence of
LPA, S1P or C1P, the reaction was started by adding 100 lM [3H]PA
(prepared as was specified in Section 2.4.) simultaneously with
different concentrations of unlabelled LPA, S1P or C1P (previously
re-suspended in the assay buffer containing 1 mM Triton X-100)
[16,17]. Radiolabeled PA was dried and re-suspended in the buffer
assay and sonicated until clarity was reached.

2.5.2. PA-PLA assay
PA-PLA activity was determined as described previously [18].

Highly purified nuclei (40 lg of protein) were incubated in
100 mM Tris–HCl, pH 7.5, buffer containing 4 mM CaCl2, 0.1% cho-
lic acid and 0.2 mM of [2-3H]PA in a final volume of 100 ll, at 37 �C
for 1, 3, 5, 10, 15 and 30 min.

LPP and PA-PLA enzymatic assays were slowed by the addition
of chloroform:methanol (2:1, v/v). Blanks were prepared in the
same way as each enzyme assay except that the nuclear fraction
was inactivated by heating at 100 �C or by the addition of C:M
(2:1, v/v).

Lipids were extracted with chloroform:methanol (2:1, v/v) and
washed with 0.2 volume of CaCl2 (0.05%) [19]. LPA, PA, MAG and
DAG, lipids were chromatographed by TLC on silica gel G or H using
different developing solvents as was described previously [10,20].
Chromatograms were visualized by exposure to iodine vapors
and scraped off for counting by liquid scintillation. The aqueous
phase from Folch extraction containing radiolabel water soluble
products (WSP) was concentrated to dryness and counted by liquid
scintillation. Radiolabel samples were counted after the addition of
0.4 ml water and 10 ml 5% Omnifluor in toluene/Triton X-100 (4/1,
v/v).

2.6. SDS–PAGE and immunoblot

SDS–PAGE was carried out using 10% gels according to Laemmli
[21]. Resolved proteins were transferred to immobilon P mem-
branes using a Mini Trans-Blot cell electro blotter (BIO-RAD Life Sci-
ence Group, CA, USA) for 90 min. Membranes were blocked for 2 h
with Tris–buffered saline (20 mM Tris–HCl, 150 mM NaCl) pH 7.5,
containing 0.1% Tween 20 (TTBS) and 5% milk or crystalline grade
bovine serum albumin (BSA). Incubations with primary antibody
anti-calnexin (1:2000) were carried out at room temperature for
3 h and with anti-LAP2 (1:2000) at 4 �C overnight. Membranes were
washed with TTBS and subsequently exposed to the appropiate
HRP-conjugated secondary antibody (anti-rabbit or anti-mouse)



Fig. 2. Metabolism of [3H]-PA in isolated nuclei of rat liver. LPPs, DAGL and MAGL
activities were determined using 80 lM [3H]PA and 40 lg of nuclear protein in a
final volume of 100 ll, as was described in Section 2.5.1.. DAGL activity was
determined by monitoring the formation rate of monoacyl[2-3H]glycerol using, as
substrate, diacyl[2-3H]glycerol derived from LPP action on [3H]PA. MAGL activity
was determined by monitoring the formation rate of [2-3H]glycerol-WSP using
monoacyl[2-3H]glycerol derived from diacyl[2-3H]glycerol. The subsequent proce-
dure is specified in Section 2. In (A) and (B) results represent the mean ± S.D. of 11
individual samples.
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for 2 h. The membranes rewashed with TTBS and immunoreactive
bands were detected by enhanced chemiluminescence (ECL, Amer-
sham Biosciences) using standard X-ray film (Kodak X-Omat AR).

2.7. Other methods

Protein and lipid phosphorus were determined according to
Bradford [22] and Rouser et al. [23], respectively.

2.8. Statistical analysis

All data are given as means ± S.D. Statistical analyses were eval-
uated by the Student’s t-test or one-way analysis of variance (AN-
OVA) followed by Tukey’s post hoc test, and were performed using
GraphPad software (San Diego, CA, USA, www.graphpad.com). Sta-
tistical significance was set at P < 0.05.

3. Results

3.1. Nuclear purity

The purity of the nuclear fraction was analyzed by morpholog-
ical and biochemical studies. The electron microscopy analysis
from the isolated nuclei showed an intact nuclear envelope
(Fig. 1A and B) and absence of contamination by non-nuclear mem-
branes (Fig. 1A). Fig. 1C shows DAPI-stained nuclei, thus confirm-
ing nuclear integrity. The nuclear fraction could also be identified
by its DNA content, having a DNA/protein ratio of 302 lg DNA/
mg protein. Because LPP is originally located at the plasma mem-
brane, we analyzed 50 nucleotidase activity as a marker of this frac-
tion. Based on this activity, cross-contamination with plasma
membrane was observed to be lower than 1% (Ht = 457 lM Pi/mg
prot in homogenate and 4 lM Pi/mg protein in nuclei). The specific
activity of LPP in nuclei was found to be 30% with respect to that
determined in homogenate (10466 DPM (mg prot 20 min)�1). Fur-
thermore, NADH cytochrome c reductase activity, as a marker of
endoplasmic reticulum [24], was assayed in all steps of nuclear
purification. The activity of this enzyme in liver purified nuclei rep-
resents an 8% with respect to the total liver homogenate (363.4 and
29.3 nmol (min mg prot)�1 in homogenate and nuclei, respec-
tively). WB analysis, revealed the absence of CNX, an ER transmem-
brane protein, in purified liver nuclei. This fraction was verified by
the presence of the nuclear protein marker LAP2 (Fig. 1E). Although
the yield of nuclei (24%, based on DNA recovery; 1798 lg DNA/g
tissue in homogenate vs 437.9 lg DNA/g tissue in nuclei) was
low, the isolation procedure followed in this study was found to
be the most adequate of all the methods tested. Taking into ac-
count the above-mentioned morphological and biochemical stud-
ies, isolated nuclei were considered to be highly pure.

3.2. Metabolism of phosphatidic acid in isolated nuclei

When nuclei were incubated with [3H]PA, DAG, MAG and WSP
were detected. With 80 lM of [3H]PA, DAG and MAG formation
was similar and WSP represented 68% of DAG and MAG (Fig. 2A).
This is indicative of the presence of LPP, DAGL and MAGL in liver
nuclei (Fig. 2B).

Previous studies showed that PAP1/lipins have cytosolic locali-
zation and that they translocate onto membranes in order to
dephosphorylate PA [25,26]. Although has been confirmed the
presence of this protein at nuclear level in the hepatic tissue
[27], we were unable to detect lipin activity under the two typical
assay conditions used (Supplementary data).

3.3. PA metabolism as a function of PA concentration, protein, time
and pH

Under our assay conditions, DAG and MAG, and WSP production
could be observed at PA concentrations of 50 and 80 lM, respec-
tively (Fig. 3A). The rate of the product formation increased with
PA concentrations up to 150 lM (Fig. 3A). The production of
DAG, MAG and WSP was linear for 3 min (Fig. 3C) up to a protein
concentration of approximately 40 lg (Fig. 3B). Optimum pH was
around 6.5 (Fig. 3D). Subsequent experiments were carried out
using 80 lM of PA and 40 lg of proteins, in which only DAG,
MAG and WSP were formed from PA.

3.4. DAG and MAG production as a function of LPA, S1P and C1P
concentrations

The data shown in Fig. 4 indicate the rate of DAG and MAG for-
mation in the presence of LPP alternative substrates. LPA signifi-
cantly decreased DAG production from [2-3H]PA (Fig. 4A). LPA
diminished DAG formation by 39% at concentrations ranging from
25 to 100 lM and MAG formation showed a 41% decrease at
100 lM (Fig. 4A). MAG formation was found to decrease by 33%
in the presence of 10 lM of S1P (Fig. 4B). An inhibitory tendency
was observed in DAG production in the presence of 50 and
100 lM of C1P (Fig. 4C). MAG formation was diminished by 33%
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Fig. 3. DAG, MAG and WSP production as a function of PA concentration, protein, time and pH in isolated nuclei of rat liver. DAG, MAG and WSP formation was measured as a
function of PA concentration (A), protein concentration (B), time (C) and pH (D). 40 lg of protein for 20 min; 80 lM [3H]PA for 20 min and 80 lM [3H]PA and 40 lg of protein,
were the assay conditions used in (A), (B) and (C), and (D), respectively. Results represent the mean ± S.D. of three individual samples.
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at 10 lM of C1P, its formation being recovered at 100 lM of C1P.
WSP formation underwent no changes with LPP alternative sub-
strates (data not shown).
3.5. Effects of detergents and ions on DAG, MAG and WSP

DAG and MAG production was analyzed by varying the molar
ratio of detergent (used in its critical micellar concentration)
with respect to PA, which was maintained at 80 lM. When Tri-
ton X-100 was used at a molar Triton X-100/PA ratio close to 2.5
(0.2 mM Triton X-100), DAG production remained unmodified
whereas MAG and WSP production increased by 67% (Fig. 5A).
At a non-ionic detergent/PA ratio close to 12.5 (1 mM Triton
X-100) only DAG formation was stimulated (50%) (Fig. 5A).
Ca2+ (1 mM) and Mg2+ (4 mM) ions stimulated MAG formation
by 54% and 69%, respectively (Fig. 5B). Ca2+ (10 mM) and Mg2+

(4 mM) ions stimulated WSP production by 115% and 62%,
respectively (Fig. 5B). DAG production was not affected by Ca2+

whereas Mg2+ (4 mM) ions inhibited DAG production by 31%
(Fig. 5B). NaF at 50 mM concentration diminished DAG and
MAG generation by 69% (Fig. 5B) whereas a 146% stimulus was
observed in WSP (Fig. 5B).
3.6. PA-PLA activity

Under our assay conditions at 1 min incubation time for the
determination of PA-PLA activity, LPA formation as well as MAG
and WSP formation were observed (Fig. 6). In addition, the forma-
tion pattern of products generated by PA-PLA activity revealed an
increase in WSP in parallel to a decrease in LPA and MAG as a func-
tion of time (Fig. 6).
4. Discussion

Different roles have been attributed to nuclear lipids in the
organelle functionality including DNA stabilization, stimulus of
RNA and DNA polymerases and initiation of apoptosis [2]. Enzy-
matic activities in nuclei are either related to lipid metabolism
and/or involved in nuclear signaling [2,28,29].

PA and its dephosphorylation product, DAG, are second messen-
gers in agonist-stimulated cell activation. They have been detected
in nuclei and have been found to increase during cell proliferation
[30]. LPA, the other product generated from PA, behaves as an ago-
nist [31] and its receptors localize at the cell nucleus [32].

LPPs which are integral membrane enzymes mainly located at
the plasma membrane, are relatively non-selective for their sub-
strate as they act on other phosphorylated lipids apart from PA
[33]. LPPs are involved in lipid signaling in mammalian cells as part
of phospholipase D and LPP pathway [4,33].

Our data revealed an active PA metabolism involving the pres-
ence of LPP, PLA, LPA phosphohydrolase, LPA phospholipase, DAGL
and MAGL activities in liver nuclei. PC has been reported to be the
principal source of DAG generated from entirely intact isolated nu-
clei [34]. The DAG signal turning off mechanism could be fulfilled
by DAGL [10] and DAGK [35].

On the other hand, rat liver nuclei have enough enzymes to free
fatty acids from phospholipids [36] as well as to incorporate exog-
enous saturated and unsaturated fatty acids into lipids [37]. In this
respect, our results showed that under PLA assay conditions LPA is
formed from PA and that it could be rapidly converted into MAG
and glycerol-3-phosphate by PLA or LPP and by LPA-phospholipase,
respectively. This also agrees with other observations [18] accord-
ing to which most of the PA generated by treatment with PLD in
cells expressing PA-PLA forms is converted into LPA. Some of the



Fig. 4. Metabolism of [3H]PA in the presence of LPA, S1P and C1P in isolated nuclei
of rat liver. The effects of LPA (A), S1P (B) and C1P (C) on PA hydrolysis were
evaluated using 80 lM [3H]PA in the presence of LPA, S1P or C1P at the indicated
concentrations. The subsequent procedure is specified in Section 2. Results
represent the mean ± S.D. of three individual samples. ⁄P < 0.05, ⁄⁄P < 0.005 with
respect to the absence of LPA, S1P or C1P.

Fig. 5. Effects of detergents and ions on DAG and MAG production in isolated nuclei
of rat liver. DAG and MAG production was determined in the presence of the non-
ionic detergent Triton X-100 (A) and in the presence of Ca2+, Mg2+ or NaF (B). All
assays were conducted under the same conditions as described in Fig. 2. Results are
indicated as a percentage of control values (controls represent 100%) and they
represent the mean ± S.D. of three individual samples. ⁄P < 0.05, ⁄⁄P < 0.005,
⁄⁄⁄P < 0.0005 with respect to control values.

Fig. 6. PA-PLA activity in isolated nuclei of rat liver. MAG, WSP and LPA were
determined incubating 40 lg of nuclear protein and 0.2 mM of [3H]PA as a substrate
in the corresponding assay buffer, as fuction of time. Results represent the
mean ± S.D. of three individual samples.
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PLA activities which hydrolyze either PC or PE have been identified
in nuclei but they do not hydrolyze PA [36,38]. Furthermore, PA-
PLA activities in liver nuclei seem to be key as they are likely to
generate long chain fatty acids, which are endogenous ligands with
high affinity for nuclear receptors [39,40]. This interaction initiates
the transcription of multiple genes involved in lipid and glucose
metabolism [41,42], activities inherent to the hepatic function.

On the other hand, LPP dephosphorylates not only PA but also
LPA, S1P and C1P. Each of these lipid phosphates competitively
inhibits the use of PA as substrate by phosphohydrolase. In the
present study, a marked competitive effect could be observed be-
tween PA and LPA. This seems to be indicative of the presence of
LPP1 and LPP2 in purified nuclei in agreement with observations
from Roberts et al. [43]. Thus, LPPs could be interpreted to have
an important role in attenuating LPA signal through its nuclear
receptor type 1 [32]. The C1P effect observed on MAG production
could be due to an inhibition on LPA phosphohydrolase in agree-
ment with results from Baker et al. [44].

MAG and WSP can be formed from PA by the action of (i) LPP/
DAGL/MAGL, (ii) PLA/LPP/MAGL, and (iii) PLA/LPA phosphohydro-
lase/MAGL. With the purpose of evaluating this metabolism, we
analyzed the production of DAG, MAG and WSP using different
modulators of these enzymatic pathways. Ca2+ and Mg2+ ions sig-
nificantly stimulate MAG and WSP production without affecting
DAG generation. This suggests that the contribution to MAG and
WSP formation occurs not only through LPP/DAGL/MAGL pathway



Fig. 7. Phosphatidic acid metabolism in rat liver nuclei. The enzyme name is in
italic script. LPP: lipid phosphate phosphatases; DAGL: diacylglycerol lipase; MAGL:
monoacylglycerol lipase; PLA: phospholipase A; LPAPase: lysophosphatidic acid
phosphohydrolase; LPAase: lysophosphatidic acid phospholipase.
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but also through (ii) and (iii) pathways in liver nuclei. Under our
assay conditions it was not possible to detect LPA, which indicates
that LPA formed by PLA could be rapidly metabolized by LPA lyso-
phospholipase [45] and LPA phosphohydrolase [44]. In the pres-
ence of NaF, DAG and MAG diminution suggest that LPP/DAGL is
the principal enzymatic pathway for MAG formation; while the in-
crease in WSP production could indicate a high PA availability for
PLA activity.

Triton X-100 produced a dual effect on PA metabolism. Triton
X-100 (0.2 mM), did not affect DAG generation by LPP, thus sug-
gesting that MAG and WSP production could be due to a stimulus
exerted on PLA/LPA phosphohydrolase/MAGL pathway. At 1 mM
Triton X-100, however, LPP activity was stimulated while MAG
and WSP production was not modified, thus indicating an inhibi-
tion on DAGL/MAGL and/or PLA/LPA phosphohydrolase/MAGL
activities.

The formation of DAG from PA by LPP coupled with a nuclear
PLD, a pathway different from PC-PLC, may be highly relevant in
nuclei. In this respect, it has been reported that PKC f may translo-
cate to the nucleus in response to mitogenic signals by a binding
mechanism through which PKC binds to DAG [46].

Summing up, our findings reinforce the hypothesis that liver
nuclei have the necessary enzymes to form a PA signaling system.
We therefore propose that PA metabolism occurs in liver nuclei as
shown in Fig. 7. The interaction among the enzymes controlling the
level of PA and the other molecules derived from it, the identifica-
tion of PA- and DAG-regulated proteins and the presence of recep-
tors that respond to signals derived from PA, all open interesting
avenues for further research on PA in nuclei and its pathophysio-
logical role in liver.
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