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a b s t r a c t

We characterize the compatibility of a collection of unrooted phylogenetic trees as a
question of determining whether a graph derived from these trees — the display graph
— has a specific kind of triangulation, which we call legal. Our result is a counterpart to the
well-known triangulation-based characterization of the compatibility of undirectedmulti-
state characters.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A phylogenetic tree or phylogeny is an unrooted tree T whose leaves are in one-to-one correspondence with a set of labels
(taxa)L(T ). IfL(T ) = X , we say that T is a phylogenetic tree for X , or a phylogenetic X-tree [1]. A phylogenetic tree represents
the evolutionary history of a set of species, which are the labels of the tree.

Suppose T is a phylogenetic tree. Given a subset Y ⊆ L(T ), the subtree of T induced by Y , denoted T |Y , is the tree obtained
by forming the minimal subgraph of T connecting the leaves with labels in Y and then suppressing vertices of degree two.
Let T ′ be some other phylogenetic tree such thatL(T ′) ⊆ L(T ). We say that T displays T ′ if T ′ can be obtained by contracting
edges in the subtree of T induced by L(T ′).

A profile is a tupleP = (T1, T2, . . . , Tk), where each Ti is a phylogenetic tree for some set of labelsL(Ti). The Tis are called
input trees, and wemay have L(Ti)∩L(Tj) ≠ ∅ for i ≠ j. A supertree for P is a phylogeny T with L(T ) =

k
i=1 L(Ti). Profile

P is compatible if there exists a supertree T for P that displays Ti, for each i ∈ {1, . . . , k}. The phylogenetic tree compatibility
problem asks, given a profile P , whether or not P is compatible. This question arises when trying to assemble a collection
of phylogenies for different sets of species into a single phylogeny (a supertree) for all the species [2]. The phylogenetic tree
compatibility problem asks whether or not it is possible to do so via a supertree that displays each of the input trees.

Phylogenetic tree compatibility is NP-complete [3] (but the problem is polynomially solvable for rooted trees [4]).
Nevertheless, Bryant and Lagergren have shown that the problem is fixed-parameter tractable for fixed k [5]. Their argument
relies on a partial characterization of compatibility in terms of tree decompositions and tree-width of a structure that they
call the ‘‘display graph’’ of a profile (this graph is defined in Section 3). Here we build on their argument to produce a
complete characterization of compatibility in terms of the existence of a special kind of triangulation of the display graph.
These legal triangulations (defined in Section 3) only allow certain kinds of edges to be added. Our result is a counterpart to
the well-known characterization of character compatibility in terms of triangulations of a class of intersection graphs [6],
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Fig. 1. (i) First input tree. (ii) Second input tree. (iii) The display graph of the input tress with two fill-in edges, indicated by dashed lines. Edge 1 cannot
appear in a legal triangulation, since the result would violate (LT1). Edge 2 is not allowed, because it would result in a violation of (LT2). (iv) The display
graph with a legal triangulation, indicated by dashed lines.

which has algorithmic consequences [7,8]. Our characterization of tree compatibility may have analogous implications. A
different characterization of the phylogenetic tree compatibility problem in terms of a structure called the ‘‘quartet graph’’
is given in [9].

2. Preliminaries

Let G be a graph. We write V (G) and E(G) to denote the vertex set and edge set of G, respectively. Suppose C is a cycle in
G. A chord in C is any edge of Gwhose endpoints are two nodes that are not adjacent in C . G is said to be chordal if and only if
every cycle of length at least four has a chord. A graphG′ is a chordal fill-in or triangulation ofG if V (G′) = V (G), E(G′) ⊇ E(G),
and G′ is chordal. The set E(G′) \ E(G) is called a fill-in for G and the edges in it are called fill-in edges.

A tree decomposition for a graph G is a pair (T , B), where T is a tree and B is a mapping from V (T ) to subsets of V (G) that
satisfies the following three properties.
(TD1) (Vertex Coverage) For every v ∈ V (G) there is an x ∈ V (T ) such that v ∈ B(x).
(TD2) (Edge Coverage) For every edge {u, v} ∈ E(G) there exists an x ∈ V (T ) such that {u, v} ⊆ B(x).
(TD3) (Coherence) For every u ∈ V (G) the set of vertices {x ∈ V (T ) : u ∈ B(x)} forms a subtree of T .

It is well known that if G is chordal, G has a tree decomposition (T , B)where (i) there is a one-to-onemapping C from the
vertices of T to the maximal cliques of G and (ii) for each vertex x in T , B(x) consists precisely of the vertices in the clique
C(x) [10]. This sort of tree decomposition is called a clique tree for G. Conversely, let (T , B) be a tree decomposition of a graph
G and let F be the set of all {u, v} ∉ E(G) such that {u, v} ⊆ B(x) for some x ∈ V (T ). Then, F is a chordal fill-in for G [10].
We shall refer to this set F as the chordal fill-in of G associated with tree decomposition (T , B) and to the graph G′ obtained by
adding the edges of F to G as the triangulation of G associated with (T , B).

3. Legal triangulations and compatibility

The display graph of a profile P = (T1, . . . , Tk) is the graph G = G(P ) formed from the disjoint graph union of T1, . . . , Tk
by identifying the leaves with common labels. An example of display graph is given in Fig. 1 (see also Fig. 1 of [5]). An edge e
of G is internal if, in the input treewhere it originated, both endpoints of ewere internal vertices; otherwise, e is non-internal.
A vertex v of G is called a leaf if it was obtained by identifying input tree leaf nodes with the same label ℓ. The label of v is
ℓ. A non-leaf vertex of G is said to be internal.

A triangulation G′ of the display graph G is legal if it satisfies the following conditions.
(LT1) Suppose a clique in G′ contains an internal edge. Then, this clique can contain no other edge from G (internal or non-

internal).
(LT2) Fill-in edges can only have internal vertices as their endpoints.

Note that the above conditions rule out a chord between vertices of the same tree. Also, in any legal triangulation of G,
any clique that contains a non-internal edge cannot contain an internal edge from any tree. See Fig. 1.

The importance of legal triangulations derives from the next results, which are proved in the next section.
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Lemma 1. Suppose a profile P = (T1, . . . , Tk) of unrooted phylogenetic trees is compatible. Then the display graph of P has a
legal triangulation.

Lemma 2. Suppose the display graph of a profile P = (T1, . . . , Tn) of unrooted trees has a legal triangulation. Then P is
compatible.

The preceding lemmas immediately imply our main result.

Theorem 1. A profile P = (T1, . . . , Tk) of unrooted trees is compatible if and only if the display graph of P has a legal
triangulation.

4. Proofs

The proofs of Lemmas 1 and 2 rely on a new concept. Suppose T1 and T2 are phylogenetic trees such that L(T2) ⊆ L(T1).
An embedding function from T1 to T2 is a surjective map φ from a subgraph of T1 to T2 satisfying the following properties.
(EF1) For every ℓ ∈ L(T2), φ maps the leaf labeled ℓ in T1 to the leaf labeled ℓ in T2.
(EF2) For every vertex v of T2 the set φ−1(v) is a connected subgraph of T1.
(EF3) For every edge {u, v} of T2 there is a unique edge {u′, v′

} in T1 such that φ(u′) = u and φ(v′) = v.

The next result extends Lemma 1 of [5].

Lemma 3. Let T1 and T2 be phylogenetic trees andL(T2) ⊆ L(T1). Tree T1 displays tree T2 if and only if there exists an embedding
function φ from T1 to T2.
Proof. The ‘‘only if’’ part was already observed by Bryant and Lagergren (see Lemma 1 of [5]). We now prove the other
direction.

To prove that T1 displays T2, we argue that T2 can be obtained from T1|L(T2) by a series of edge contractions, which are
determined by the embedding function φ from T1 to T2. Let T ′

1 be the graph obtained from T1|L(T2) by considering each
vertex v of T2 and identifying all vertices of φ−1(v) in T1|L(T2) to obtain a single vertex u′ with φ(u′) = v. Property (EF2)
ensures that, each such operation is well defined and yields a tree. By properties (EF1)–(EF3), each vertex v of T1|L(T2) is in
the domain of φ. Thus, function φ is now a bijection between T2 and T ′

1 that satisfies (EF1)–(EF3). We now prove that T ′

1 is
isomorphic to T2. It then follows from property (EF1) that T1 displays T2.

We claim that for any two vertices u, v ∈ V (T2), there is an edge {u, v} ∈ E(T2) if and only if there is an edge
{φ−1(u), φ−1(v)} ∈ E(T ′

1). The ‘‘only if’’ part follows from property (EF3). For the other direction, assume by way of
contradiction that {x, y} ∉ E(T2), but that {φ−1(x), φ−1(y)} ∈ E(T ′

1). Let P be the path between vertices x and y in T2.
By property (EF3), there is a path between nodes φ−1(x), φ−1(y) in tree T ′

1 that does not include the edge {φ−1(x), φ−1(y)}.
This path alongwith the edge {φ−1(x), φ−1(y)} forms a cycle in T ′

1, which gives the desired contradiction. Thus, the bijection
φ between T2 and T ′

1 is an isomorphism between the two trees. �

The preceding lemma immediately implies the following characterization of compatibility.

Lemma 4. Profile P = (T1, . . . , Tk) is compatible if and only if there exist a supertree T for P and functions φ1, . . . , φk, where,
for i = 1, . . . , k, φi is an embedding function from T to Ti.
Proof of Lemma 1. If P is compatible, there exists a supertree for P that displays Ti for i = 1, . . . , k. Let T be any such
supertree. By Lemma 4, for i = 1, . . . , k, there exists an embedding function φi from T to Ti. We will use T and the φis to
build a tree decomposition (TG, B) corresponding to a legal triangulation G′ of the display graph G of P . The construction
closely follows that given by Bryant and Lagergren in their proof of Theorem 1 of [5]; thus, we only summarize the main
ideas.

Initially we set TG = T and, for every v ∈ V (T ), B(v) = {φi(v) : v in the domain of φi; 1 ≤ i ≤ k}. Now, (TG, B) satisfies
the vertex coverage property and the coherence property, but not edge coverage [5]. To obtain a pair (TG, B) that satisfies
all three properties, subdivide the edges of TG and extend B to the new vertices. Do the following for each edge {x, y} of TG.
Let F = {{u1, v1}, . . . , {um, vm}} be the set of edges of G such that ui ∈ B(x) and vi ∈ B(y). Observe that F contains at most
one edge from Ti, for i = 1, . . . , k (thus, m ≤ k). Replace edge {x, y} by a path x, z1, . . . , zm, y, where z1, . . . , zm are new
vertices. For i = 1, 2, . . . ,m, let B(zi) = (B(x) ∩ B(y)) ∪ {v1, . . . , vi, ui, . . . , um}. The resulting pair (TG, B) can be shown to
be a tree decomposition of G of width k (see [5]).

The preceding construction guarantees that (TG, B) satisfies two additional properties:
(i) For any x ∈ V (TG), if B(x) contains both endpoints of an internal edge of Ti, for some i, then B(x) cannot contain both

endpoints of any other edge, internal or not.
(ii) Let x ∈ V (TG) be such that B(x) contains a labeled vertex v ∈ V (G). Then, for every u ∈ B(x) \ {v}, {v, u} ∈ E(G).

Properties (i) and (ii) imply that the triangulation of G associated with (TG, B) is legal. �

Next, we prove Lemma 2. For this, we need some definitions and auxiliary results. Assume that the display graph of
profile P has a legal triangulation G′. Let (T ′, B) be a clique tree for G′. For each vertex v ∈ V (G), let C(v) denote the set of
all nodes in the clique tree T ′ that contain v. Observe that the coherence property implies that C(v) induces a subtree of T ′.
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Lemma 5. Suppose vertex v is a leaf in tree Ti, for some i ∈ {1, . . . , k}. Let U(v) =


x∈C(v) B(x). Then, for any j ∈ {1, . . . , k},
at most one internal vertex u from input tree Tj is present in U(v). Furthermore, for any such vertex u we must have that
{u, v} ∈ E(G).
Proof. Follows from condition (LT2). �

Lemma 6. Suppose e = {u, v} is an internal edge from input tree Ti, for some i ∈ {1, . . . , k}. Let U(e) =


x∈C(u)∩C(v) B(x).
Then,
(i) U(e) contains at most one vertex of Tj, for any j ∈ {1, . . . , k}, j ≠ i, and
(ii) V (Ti) ∩ U(e) = {u, v}.
Proof. Part (ii) follows from condition (LT1). We now prove part (i).

Assume by way of contradiction that the claim is false. Then, there exists a j ≠ i and an edge {x, y} ∈ T ′ such that
e ⊆ B(x), e ⊆ B(y), and there are vertices a, b ∈ V (Tj), a ≠ b, such that a ∈ B(x) and b ∈ B(y).

Deletion of edge {x, y} partitions V (T ′) into two sets X and Y . Let P = {a ∈ V (Tj) : a ∈ B(z) for some z ∈ X} and
Q = {b ∈ V (Tj) : b ∈ B(z) for some z ∈ Y }. By the coherence property, (P,Q ) is a partition of V (Tj). There must be a vertex
p in set P and a vertex q in set Q such that {p, q} ∈ E(Tj). Since G′ is a legal triangulation, there must be a node z in T ′ such
that p, q ∈ B(z). Irrespective of whether z is in set X or Y , the coherence property is violated, a contradiction. �

A legal triangulation of the display graph of a profile is concise if
(C1) each internal edge is contained in exactly one maximal clique in the triangulation and
(C2) every vertex that is a leaf in some tree is contained in exactly one maximal clique of the triangulation.

Lemma 7. Let G be the display graph of a profile P . If G has a legal triangulation, then G has a concise legal triangulation.
Proof. Let G′ be a legal triangulation of the display graph G of profile P that is not concise. Let (T ′, B) be a clique tree for
G′. We will build a concise legal triangulation for G by repeatedly applying contraction operations on (T ′, B). The contraction
of an edge e = {x, y} in T ′ is the operation that consists of (i) replacing x and y by a single (new) node z, (ii) adding edges
from node z to every neighbor of x and y, and (iii) making B(z) = B(x) ∪ B(y). Note that the resulting pair (T ′, B) is a tree
decomposition for G (and G′); however, it is not guaranteed to be a clique tree for G′.

We proceed in two steps. First, for every leaf v of G such that |C(v)| > 1, contract each edge e = {x, y} in T ′ such that
x, y ∈ C(v). In the second step, we consider each edge e = {u, v} of G such that |C(u) ∩ C(v)| > 1, contract each edge
{x, y} in T ′ such that x, y ∈ C(u) ∩ C(v). Lemma 5 (respectively, Lemma 6) ensures that each contraction done in the first
(respectively, second) step leaves us with a new tree decomposition whose associated triangulation is legal. Furthermore,
the triangulation associated with the final tree decomposition is concise. �

Proof of Lemma 2. We will show that, given a legal triangulation G′ of the display graph G of profile P , we can generate a
supertree T for P along with an embedding function φi from T to Ti, for i = 1, . . . , k. By Lemma 4, this immediately implies
that P is compatible.

By Lemma 7, we can assume that G′ is concise. Let (T ′, B) be a clique tree for G′. Initially, we make T = T ′. Next, for each
node x of T , we consider three possibilities.
Case 1: B(x) contains a labeled vertex v of G. Then, v is a leaf in some input tree Ti; further, by conciseness, x is the unique

node in T such that v ∈ B(x), and, by the edge coverage property, if u is the neighbor of v in Ti, u ∈ B(x). Now, do
the following.
(i) Add a new node xv and a new edge {x, xv} to T .
(ii) Label xv with ℓ, where ℓ is the label of v.
(iii) For each i ∈ {1, . . . , k} such that v is a leaf in Ti, make φi(xv) = v and φi(x) = u, where u is the neighbor of v

in Ti.
Case 2: B(x) contains both endpoints of an internal edge e = {u, v} of some input tree Ti. By legality, B(x) does not contain

both endpoints of any other edge of any input tree, and, by conciseness, x is the only node of T that contains both
endpoints of e. Now, do the following.
(i) Replace node xwith nodes xu and xv , and add edge {xu, xv}.
(ii) Add an edge between node xu and every node neighbor y of x such that u ∈ B(y).
(iii) Add an edge between node xv and every neighbor y of x such that v ∈ B(y).
(iv) For each neighbor y of x such that u ∉ B(y) and v ∉ B(y), add an edge from y to node xu or node xv , but not to

both (the choice of which edge to add is arbitrary).
(v) For every j ∈ {1, . . . , k}, (j ≠ i) such that B(x) ∩ V (Tj) ≠ ∅, make φj(xu) = φj(xv) = z where, z is the vertex of

Tj contained in B(x). Also, make φi(xu) = u and φi(xv) = v.
Case 3: B(x) contains at most one internal vertex from Ti for i ∈ {1, . . . , k}. Then, for every i such that B(x) ∩ V (Ti) ≠ ∅ make

φi(x) = v, where v is the vertex of Ti contained in B(x).

By construction (Case 1) and the legality and conciseness of (T ′, B), for every ℓ ∈
k

i=1 L(Ti) there is exactly one leaf
x ∈ V (T ) that is labeled ℓ. Thus, T is a supertree of profile P . Property (TD1) also ensures that the function φi is a surjective
map from a subgraph of T to Ti. Furthermore, the handling of Case 1 guarantees that φi satisfies (EF1). The coherence of
(T ′, B) and the handling of all cases ensure that φi satisfies (EF2). The handling of Case 2 and conciseness ensure that φi
satisfies (EF3). Thus, φi is an embedding function, and, by Lemma 4, profile P is compatible. �
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