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1. Introduction

A phylogenetic tree or phylogeny is an unrooted tree T whose leaves are in one-to-one correspondence with a set of labels
(taxa) L(T).1If L(T) = X, we say that T is a phylogenetic tree for X, or a phylogenetic X-tree [1]. A phylogenetic tree represents
the evolutionary history of a set of species, which are the labels of the tree.

Suppose T is a phylogenetic tree. Given a subset Y C £(T), the subtree of T induced by Y,denoted T|Y, is the tree obtained
by forming the minimal subgraph of T connecting the leaves with labels in Y and then suppressing vertices of degree two.
Let T” be some other phylogenetic tree such that £(T") € £(T). We say that T displays T’ if T’ can be obtained by contracting
edges in the subtree of T induced by £(T").

Aprofileisatuple # = (T4, T, . . ., Ty), where each T; is a phylogenetic tree for some set of labels .£(T;). The T;s are called
input trees, and we may have £(T;) N L(Tj) # ¥ for i # j. A supertree for & is a phylogeny T with £(T) = Ufle L(T;). Profile
&P is compatible if there exists a supertree T for & that displays T;, for eachi € {1, ..., k}. The phylogenetic tree compatibility
problem asks, given a profile &, whether or not & is compatible. This question arises when trying to assemble a collection
of phylogenies for different sets of species into a single phylogeny (a supertree) for all the species [2]. The phylogenetic tree
compatibility problem asks whether or not it is possible to do so via a supertree that displays each of the input trees.

Phylogenetic tree compatibility is NP-complete [3] (but the problem is polynomially solvable for rooted trees [4]).
Nevertheless, Bryant and Lagergren have shown that the problem is fixed-parameter tractable for fixed k [5]. Their argument
relies on a partial characterization of compatibility in terms of tree decompositions and tree-width of a structure that they
call the “display graph” of a profile (this graph is defined in Section 3). Here we build on their argument to produce a
complete characterization of compatibility in terms of the existence of a special kind of triangulation of the display graph.
These legal triangulations (defined in Section 3) only allow certain kinds of edges to be added. Our result is a counterpart to
the well-known characterization of character compatibility in terms of triangulations of a class of intersection graphs [6],
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Fig. 1. (i) First input tree. (ii) Second input tree. (iii) The display graph of the input tress with two fill-in edges, indicated by dashed lines. Edge 1 cannot
appear in a legal triangulation, since the result would violate (LT1). Edge 2 is not allowed, because it would result in a violation of (LT2). (iv) The display
graph with a legal triangulation, indicated by dashed lines.

which has algorithmic consequences [7,8]. Our characterization of tree compatibility may have analogous implications. A
different characterization of the phylogenetic tree compatibility problem in terms of a structure called the “quartet graph”
is given in [9].

2. Preliminaries

Let G be a graph. We write V(G) and E(G) to denote the vertex set and edge set of G, respectively. Suppose C is a cycle in
G. A chord in C is any edge of G whose endpoints are two nodes that are not adjacent in C. G is said to be chordal if and only if
every cycle of length at least four has a chord. A graph G’ is a chordal fill-in or triangulation of Gif V(G") = V(G), E(G) 2 E(G),
and G is chordal. The set E(G') \ E(G) is called a fill-in for G and the edges in it are called fill-in edges.

A tree decomposition for a graph G is a pair (T, B), where T is a tree and B is a mapping from V(T) to subsets of V(G) that
satisfies the following three properties.

(TD1) (Vertex Coverage) For every v € V(G) thereis anx € V(T) such that v € B(x).
(TD2) (Edge Coverage) For every edge {u, v} € E(G) there exists an x € V(T) such that {u, v} C B(x).
(TD3) (Coherence) For every u € V(G) the set of vertices {x € V(T) : u € B(x)} forms a subtree of T.

It is well known that if G is chordal, G has a tree decomposition (T, B) where (i) there is a one-to-one mapping C from the
vertices of T to the maximal cliques of G and (ii) for each vertex x in T, B(x) consists precisely of the vertices in the clique
C(x) [10]. This sort of tree decomposition is called a clique tree for G. Conversely, let (T, B) be a tree decomposition of a graph
G and let F be the set of all {u, v} & E(G) such that {u, v} € B(x) for some x € V(T). Then, F is a chordal fill-in for G [10].
We shall refer to this set F as the chordal fill-in of G associated with tree decomposition (T, B) and to the graph G’ obtained by
adding the edges of F to G as the triangulation of G associated with (T, B).

3. Legal triangulations and compatibility

The display graph of a profile = (T4, ..., Ty) is the graph G = G(&) formed from the disjoint graph union of Ty, . .., Ty
by identifying the leaves with common labels. An example of display graph is given in Fig. 1 (see also Fig. 1 of [5]). An edge e
of Gis internal if, in the input tree where it originated, both endpoints of e were internal vertices; otherwise, e is non-internal.
A vertex v of G is called a leaf if it was obtained by identifying input tree leaf nodes with the same label £. The label of v is
£. A non-leaf vertex of G is said to be internal.

A triangulation G’ of the display graph G is legal if it satisfies the following conditions.

(LT1) Suppose a clique in G’ contains an internal edge. Then, this clique can contain no other edge from G (internal or non-
internal).
(LT2) Fill-in edges can only have internal vertices as their endpoints.

Note that the above conditions rule out a chord between vertices of the same tree. Also, in any legal triangulation of G,
any clique that contains a non-internal edge cannot contain an internal edge from any tree. See Fig. 1.
The importance of legal triangulations derives from the next results, which are proved in the next section.
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Lemma 1. Suppose a profile P = (T, ..., T) of unrooted phylogenetic trees is compatible. Then the display graph of & has a
legal triangulation.

Lemma 2. Suppose the display graph of a profile # = (Ti, ..., T,) of unrooted trees has a legal triangulation. Then & is
compatible.

The preceding lemmas immediately imply our main result.

Theorem 1. A profile # = (Ty, ..., Ty) of unrooted trees is compatible if and only if the display graph of # has a legal
triangulation.

4. Proofs

The proofs of Lemmas 1 and 2 rely on a new concept. Suppose T, and T, are phylogenetic trees such that £(T,) C £(Ty).
An embedding function from Ty to T, is a surjective map ¢ from a subgraph of T to T, satisfying the following properties.

(EF1) Forevery ¢ € L£(T;), ¢ maps the leaf labeled ¢ in T; to the leaf labeled £ in T5.
(EF2) For every vertex v of T, the set ¢~ (v) is a connected subgraph of T;.
(EF3) For every edge {u, v} of T, there is a unique edge {u’, v’} in T; such that ¢(u’) = uand ¢(v') = v.

The next result extends Lemma 1 of [5].

Lemma 3. Let T, and T, be phylogenetic trees and L(T,) C L(Ty). Tree Ty displays tree T, if and only if there exists an embedding
function ¢ from T to Ty.

Proof. The “only if’ part was already observed by Bryant and Lagergren (see Lemma 1 of [5]). We now prove the other
direction.

To prove that T; displays T,, we argue that T, can be obtained from T, |.£(T;) by a series of edge contractions, which are
determined by the embedding function ¢ from T; to T,. Let T; be the graph obtained from T,|.£(T;) by considering each
vertex v of T, and identifying all vertices of ¢~!(v) in T;|£(T,) to obtain a single vertex u’ with ¢(u’) = v. Property (EF2)
ensures that, each such operation is well defined and yields a tree. By properties (EF1)-(EF3), each vertex v of T{|L£(T>) is in
the domain of ¢. Thus, function ¢ is now a bijection between T, and T; that satisfies (EF1)-(EF3). We now prove that T; is
isomorphic to T. It then follows from property (EF1) that T; displays T>.

We claim that for any two vertices u, v € V(T,), there is an edge {u, v} € E(T) if and only if there is an edge
07 Tw), 7' ()} € E(T;). The “only if” part follows from property (EF3). For the other direction, assume by way of
contradiction that {x,y} ¢ E(T), but that {¢p~'(x), ¢~ (y)} € E(Tj). Let P be the path between vertices x and y in To.
By property (EF3), there is a path between nodes ¢ ' (x), ¢~ '(y) in tree T; that does not include the edge {¢ ' (x), o' (¥)}.
This path along with the edge {¢~'(x), $~'(y)} forms a cycle in T/, which gives the desired contradiction. Thus, the bijection
¢ between T, and T is an isomorphism between the two trees. O

The preceding lemma immediately implies the following characterization of compatibility.

Lemma 4. Profile # = (Ty, ..., Ty) is compatible if and only if there exist a supertree T for & and functions ¢y, . . ., ¢, where,
fori=1,...,k, ¢;is an embedding function from T to T;.

Proof of Lemma 1. If & is compatible, there exists a supertree for & that displays T; fori = 1, ..., k. Let T be any such
supertree. By Lemma 4, fori = 1, ..., k, there exists an embedding function ¢; from T to T;. We will use T and the ¢;s to
build a tree decomposition (Tg, B) corresponding to a legal triangulation G’ of the display graph G of 4. The construction
closely follows that given by Bryant and Lagergren in their proof of Theorem 1 of [5]; thus, we only summarize the main
ideas.

Initially we set Tc = T and, for every v € V(T), B(v) = {¢i(v) : v in the domain of ¢;; 1 < i < k}. Now, (T, B) satisfies
the vertex coverage property and the coherence property, but not edge coverage [5]. To obtain a pair (T¢, B) that satisfies
all three properties, subdivide the edges of T¢ and extend B to the new vertices. Do the following for each edge {x, y} of T¢.

Let F = {{uq, v1}, ..., {um, vm}} be the set of edges of G such that u; € B(x) and v; € B(y). Observe that F contains at most
one edge from T;, fori = 1,..., k (thus, m < k). Replace edge {x, y} by a path x, zq, ..., zy, y, where zq, . .., z,, are new
vertices. Fori = 1,2, ..., m,let B(z;) = (B(x) N B(y)) U {vy, ..., v, Ui, ..., up}. The resulting pair (T¢, B) can be shown to

be a tree decomposition of G of width k (see [5]).
The preceding construction guarantees that (T, B) satisfies two additional properties:
(i) For any x € V(Ty), if B(x) contains both endpoints of an internal edge of T;, for some i, then B(x) cannot contain both
endpoints of any other edge, internal or not.
(ii) Letx € V(T;) be such that B(x) contains a labeled vertex v € V(G). Then, for every u € B(x) \ {v}, {v, u} € E(G).

Properties (i) and (ii) imply that the triangulation of G associated with (Tg, B) is legal. O

Next, we prove Lemma 2. For this, we need some definitions and auxiliary results. Assume that the display graph of
profile # has a legal triangulation G'. Let (T’, B) be a clique tree for G'. For each vertex v € V(G), let C(v) denote the set of
all nodes in the clique tree T’ that contain v. Observe that the coherence property implies that C(v) induces a subtree of T'.
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Lemma 5. Suppose vertex v is a leaf in tree T;, for somei € {1, ...,k}. Let U(v) = Uxec(v) B(x). Then, forany j € {1, ..., k},
at most one internal vertex u from input tree T; is present in U(v). Furthermore, for any such vertex u we must have that
{u, v} € E(G).

Proof. Follows from condition (LT2). O

Lemma 6. Suppose e = {u, v} is an internal edge from input tree T;, for some i € {1,...,k}. Let U(e) = UxeC(u)ﬁC(v) B(x).
Then,
(i) U(e) contains at most one vertex of T;, foranyj € {1, ..., k},j # i, and

(ii) V(T;)) nU(e) = {u, v}.
Proof. Part (ii) follows from condition (LT1). We now prove part (i).

Assume by way of contradiction that the claim is false. Then, there exists a j # i and an edge {x,y} € T’ such that
e € B(x), e C B(y), and there are vertices a, b € V(Tj), a # b, such thata € B(x) and b € B(y).

Deletion of edge {x, y} partitions V(T’) into two sets X and Y. Let P = {a € V(Tj) : a € B(z) forsomez € X} and
Q ={b e V(T)) : b € B(z) for some z € Y}. By the coherence property, (P, Q) is a partition of V (T;). There must be a vertex
pinset P and a vertex q in set Q such that {p, q} € E(T}). Since G’ is a legal triangulation, there must be a node z in T’ such
that p, g € B(z). Irrespective of whether z is in set X or Y, the coherence property is violated, a contradiction. O

A legal triangulation of the display graph of a profile is concise if

(C1) each internal edge is contained in exactly one maximal clique in the triangulation and
(C2) every vertex that is a leaf in some tree is contained in exactly one maximal clique of the triangulation.

Lemma 7. Let G be the display graph of a profile 2. If G has a legal triangulation, then G has a concise legal triangulation.

Proof. Let G’ be a legal triangulation of the display graph G of profile & that is not concise. Let (T’, B) be a clique tree for
G'. We will build a concise legal triangulation for G by repeatedly applying contraction operations on (T’, B). The contraction
of an edge e = {x, y} in T’ is the operation that consists of (i) replacing x and y by a single (new) node z, (ii) adding edges
from node z to every neighbor of x and y, and (iii) making B(z) = B(x) U B(y). Note that the resulting pair (T’, B) is a tree
decomposition for G (and G'); however, it is not guaranteed to be a clique tree for G'.

We proceed in two steps. First, for every leaf v of G such that |C(v)| > 1, contract each edge e = {x, y} in T’ such that
X,y € C(v). In the second step, we consider each edge e = {u, v} of G such that |C(u) N C(v)| > 1, contract each edge
{x,y}in T’ such that x,y € C(u) N C(v). Lemma 5 (respectively, Lemma 6) ensures that each contraction done in the first
(respectively, second) step leaves us with a new tree decomposition whose associated triangulation is legal. Furthermore,
the triangulation associated with the final tree decomposition is concise. O

Proof of Lemma 2. We will show that, given a legal triangulation G’ of the display graph G of profile 2, we can generate a
supertree T for & along with an embedding function ¢; from T to T;, fori = 1, .. ., k. By Lemma 4, this immediately implies
that & is compatible.

By Lemma 7, we can assume that G’ is concise. Let (T’, B) be a clique tree for G'. Initially, we make T = T’. Next, for each
node x of T, we consider three possibilities.

Case 1: B(x) contains a labeled vertex v of G. Then, v is a leaf in some input tree T;; further, by conciseness, x is the unique
node in T such that v € B(x), and, by the edge coverage property, if u is the neighbor of v in T;, u € B(x). Now, do
the following.

(i) Add a new node x, and a new edge {x, x,} to T.
(ii) Label x,, with ¢, where £ is the label of v.
(iii) Foreachi € {1, ..., k} such that v is a leaf in T;, make ¢;(x,) = v and ¢;(x) = u, where u is the neighbor of v
in Ti.

Case 2: B(x) contains both endpoints of an internal edge e = {u, v} of some input tree T;. By legality, B(x) does not contain
both endpoints of any other edge of any input tree, and, by conciseness, x is the only node of T that contains both
endpoints of e. Now, do the following.

(i) Replace node x with nodes x, and x,,, and add edge {x,, x, }.
(ii) Add an edge between node x, and every node neighbor y of x such that u € B(y).

(iii) Add an edge between node x, and every neighbor y of x such that v € B(y).

(iv) For each neighbor y of x such that u ¢ B(y) and v & B(y), add an edge from y to node x, or node x,, but not to

both (the choice of which edge to add is arbitrary).
(v) Foreveryj € {1,...,k}, (j # i) such that B(x) N V(T}) # ¥, make ¢;(x,) = ¢;(x,) = z where, z is the vertex of
T contained in B(x). Also, make ¢;(x,) = u and ¢;(x,) = v.

Case 3: B(x) contains at most one internal vertex from T; for i € {1, ..., k}. Then, for every i such that B(x) N V(T;) # # make

¢i(x) = v, where v is the vertex of T; contained in B(x).

By construction (Case 1) and the legality and conciseness of (T’, B), for every £ € Uf:] L(T;) there is exactly one leaf
x € V(T) that is labeled €. Thus, T is a supertree of profile $. Property (TD1) also ensures that the function ¢; is a surjective
map from a subgraph of T to T;. Furthermore, the handling of Case 1 guarantees that ¢; satisfies (EF1). The coherence of
(T, B) and the handling of all cases ensure that ¢; satisfies (EF2). The handling of Case 2 and conciseness ensure that ¢;
satisfies (EF3). Thus, ¢; is an embedding function, and, by Lemma 4, profile & is compatible. O
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