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1. INTRODUCTION 

In [ 11, we considered the existence of minimal and maximal fixed point 
to discontinuous increasing operators. In this paper, we investigate the 
existence of coupled minimal and maximal fixed points for mixed 
monotone operators. Our results include several results concerning fixed 
point theorems of increasing operators. We also give some applications to 
differential equations with discontinuous right hand side. 

2. COUPLED MINIMAL AND MAXIMAL FIXED POINT 

In this section we always assume that E is a real Banach space and P a 
normal cone in E. The order “ <” is introduced by cone P, i.e., x, y E E, 
x < y if and only if y - x E P. Therefore E becomes a partially ordered real 
Banach space. For convenience some definitions are recalled. 

DEFINITION 1. Let D be a set of E. Operator A: D x D -+ E is said to be 
mixed monotone if A(x, y) is nondecreasing in x for each fixed y E D and 
nonincreasing in y for each fixed x E D. 

DEFINITION 2. Let D be a set of E and A: D x D + E an operator. 

(a) If x, y E D with x d y can be found such that 

xGA(x, Y) and A(x, Y) G<y 

then (x, y) is called a coupled lower and upper fixed point of A. 
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(b) If x, y E D with x < y can be found such that 

x=4x, Y) and A(4 Y) =Y 

then (x, y) is called a coupled fixed point of A. If a coupled fixed coupled 
point (x*, y*) can be found such that 

x*<x and y<y* 

for every coupled fixed point (x, y) of A, then (x*, y*) is called the mini- 
mal and maximal fixed point of A. 

(c) x* is a fixed point of A if A(x*, x*)=x*. 

The main theorem of this paper is 

THEOREM 1. Let u, VE E with u< v and D= [u, v]. Suppose that 
A: D x D + E is a mixed monotone operator and the following conditions 
hold: 

(i) (u, v) is a coupled lower and upper fixed point of A; 

(ii) A(D, D) is separable and weakly sequentially compact in E. 

Then A has the coupled minimal and maximal fixed point in D. 

ProoJ Let u1 = A(u, v) and v, = A(u, u). It follows from condition (i) 
that 

U6U, and Vl <?I. 

And therefore 

uI = A(u, v) 6 A(u,, u) < A(u,, u,) < A(v, u) = 01, (1) 

v,=A(u,u)~A(u,,u)>A(v,,u,); (2) 

and 

u,6A(x,v)<A(x, y)=x, (3) 

u,~A(Y,u)~A(Y,x)=Y, (4) 

whenever (x, y) E D x D is a coupled fixed point of A. 
LetCFix(A)={(x, y)~DxD:(x,y) is a coupled fixed point of A} and 

M={(x,y)~DxD:(x, y) is a coupled lower and upper fixed point of A 
with x, YE A(D, D) and CFix(A) c [x, y]}. From (l)-(4) it follows that M 
is not empty and we shall show that CFix(A) is not empty later. A partial 
order is defined in M as follows: for (x, , y,), (x,, yz) E M, 

(Xl? Y,)G(X,, Yz) ifandonlyif x,dxldy,<yz 
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We are going to show that M has a minimal element. In order to do this 
we first show that each totally ordered subset of M has a lower bound. In 
fact, let N be a totally ordered subset of M. Since N c A(D, D) x A(D, D) 
and A(D, D) is separable in E, sequence {(xi, ,P$)).,:=, can be chosen from 
N such that { (x;, yL)},T= , is dense in N. Set, for each n, 

(x,, ~,)=min{(x;, Y;), (4, ~2, . . . . (4, Y:~)}. 

It makes sense because {(XL, y;)},“, , is a totally ordered set. It follows 
from A(D, D) being weakly sequentially compact that a subsequence 
uxn,, Yn,)~,“,, of {(X,> YJ>,“, I and xb, J& of E can be found such that 

x,(w) -+ xb and Y,,(W) + Y; as i-++co. (5) 

Obviously, xb, &, are elements of D. We now show that (x,, y,) is an 
element of M, where x0 = A(xb, J&) and y, = A( J&, xb). In fact, we have for 
any positive integers ni and p 

xn,~xt7,+p~Y,,4p 6Y,; 

Let p go to infinity in (6), then 

(6) 

By virtue of the mixed monotone property of A and (x,,, y,,) being coupled 
lower and upper fixed point of A the following must hold: 

x,, G A(& Y,,) < A(&, yb) (7) 

Y, d A(yb, x,,) 2 (yb> -4). (8) 

Let i go to infinity in (7) and (8), then 

xb < A(&, yb) and A(yb, 4,) Gyb (9) 

and it is easy to show CFix(A) c [x&, y&] because of CFix(A) c [x,, y,] 
for each n. From (9) and the similar arguments to (l)-(4) it follows that 
(x0, y,) is in M. Since {b,, Y,)>?=, c N is dense in N, (x,, yO) is really 
lower bound of N. Hence M has a minimal element (x*, y*) E M by virtue 
of Zorn’s lemma. By the definition of M we know that (x*, y*) is a 
coupled lower and upper fixed point of A and CFix(A) c [x*, y*]. 

We are now in the position to show that (x*, y*) is the coupled minimal 
and maximal fixed point of A. In fact, it follows from (x*, y*) being a 
coupled lower and upper fixed point that 

x* d A(x*, y*) and A(y*, x*) <y*. 
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Therefore, if (x*, y*) is not a coupled fixed point of A we must have either 

x* < A(x*, y*) and ‘qy*, x*) <y* (10) 

or 

x* 6 A(x*, y*) and A(y*, x*) <y*. (11) 

Without loss of generality, we assume that (10) holds. Let U’ = A(x*, y*) 
and v’= A(y*, x*). By the similar arguments to (l)-(4) we obtain (u’, v’) 
is in M. This means that (x*, y*) is not the minimal element of M. We 
have arrived at a contradiction. Hence, (x*, y*) must be a coupled fixed 
point of A. On the other hand, we know that CFix(A) c [x*, y*], so 
(x*, y*) is really the coupled minimal and maximal fixed point of A in D. 

Remark 1. If A(x, y) is independent to y, i.e., A(x, y) = F(x), then 
F: D + D is increasing and the coupled fixed point of A is really the fixed 
point of F. Therefore, Theorem 1 includes many known results about fixed 
point theorems to increasing operators. 

From Remark 1 it follows that the problem mentioned at the beginning 
of this paper is solved as follows: 

THEOREM 2. Let u, v E E with u < v and D = [u, v]. Suppose that 
F: D + D is an increasing operator and the following conditions hold 

(i) u, v are lower and upper fixed points of F; 

(ii) F(D) is separable and weakly sequentially compact in E. 

Then F has minimal and maximal fixed point in D. 

Remark 2. If ,4(x, y) is independent to x, i.e., A(x, y) = G(y), then 
G: D + D is decreasing. Hence some results about decreasing operators can 
be derived from Theorem 1 immediately. 

Theorem 1 gives a positive answer to the existence of coupled fixed point 
of A( , ). But sometimes we should know if the coupled fixed point of A 
is really a fixed point of A. 

THEOREM 2. Let u, v E E with u d v and D = [u, v]. Suppose that A: 
D x D + E is an operator satisfying all assumptions in Theorem 1. Suppose 
further that 

(iii) For any fixed x E D 

IIA(u, x) - A(v, XIII G L llu - 4, Vu, VED; 
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(iv) For any ,fixed y E D, 

IIA(Y, u) - A(.~, u)ll d L IIU - UII, Vu, VE D, 

where 0 < L < 4. Then A has a unique fixed point u* in D and x* = u* = y*, 
where (x*, y*) is the coupled minimal and maximal fixed point of A in D. 

Proof: From Theorem 1 it follows that A has the coupled minimal and 
maximal fixed point (x*, y*) in D. We are going to show x* = y*. 

We assume the contrary, i.e., X* # y*. By virtue of conditions (iii) and 
(iv) we obtain 

/Ix* -y*Il = IlAb*, Y*) -A(y*, x*)11 

d lIA(x*, y*) - A(x*, x*)11 + IIA(x*, x*) - A(y*, x*)11 

<L Ilx*-y*ll +L Ilx*-y*li 

< lb* -Y*lI. 

It is impossible. So x* must be y* and u* =x* =y* is a fixed point of A. 
From CFix(A) c [x*, y*] it follows that U* is the unique fixed point of A 
in D. 

3. INITIAL VALUE PROBLEMS 

In this section the following initial value problem will be considered 

u’ =f( t, u) a.e. J, 

40) = uo, 
(*) 

where J= [0, T] with T> 0, f = (fi, fi, . . . . fn), j; : J x R” + R such that 
fit6 ul(t), . ..> u,(t)) E L(J, R) for any u,(t) E C(J) (j = 1,2, . . . . n). In order to 
use Theorem 1 easily some definitions and concepts are introduced here. 
Suppose that pi and q, are two nonnegative integers with pi + qi = n - 1, so 
vector u can be rewritten as u= (ui, [u]~,, [u],,) and problem (*) can be 
rewritten as 

4 =fA4 u,, Gulp,, Cul,,) a.e. J (i= 1, 2, . . . . n) 

u(0) = uo. 
(*I’ 

Let AC(J, R”) be the space of absolutely continuous vector functions on 
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J. Then (u, w) E AC(J, R”) x AC(J, R”) with u 6 w is called a coupled lower 
and upper solution to (*)’ if 

a.e. J, 
(*)I’ 

and 

wl2fi(t, wi, CWIP,? bl,,) 

w(0) 2 uo. 

a.e. J, 

And (a, w) E AC(J, R”) x AC(J, R”) with u 6 w is called a coupled solution 
to (*)’ if 

ui =.Lfi(t7 ui, C”lp,3 Cwlq,) 
40) = uo, 

a.e. J, 

and 

4 =fi(t, w;, c4p,, Culq,) 
w(0) = 240. 

a.e. J, 

Specially, if (u*, w*)EAC(J, R”) x AC(J, R”) is a coupled solution to (*)’ 
such that u* <u Q w < w* for every coupled solution (u, w) to (*)‘, then 
cu*, w*) is called the coupled minimal and maximal solution to (* )‘. 

Function f: J x R” + R” is said to be mixed monotone if f,(r, ui, [u]~,, 
[u],,) is increasing in [u],, and decreasing in [ uly, for each i = 1, 2, . . . . n. 

In the sequel, L(J, R”) denotes the space of Lebesgue integrable vector 
functions on J. 

THEOREM 3. Let function f: Jx R” --t R” be mixed monotone and 
f: C(J, R”) + L(J, R”). Suppose that a coupled lower and upper solution 
(u, w) to (*)’ can be found and f satisfies further 

.Ltt, ui3 C”lp,9 C”lq,) -fifi(t, ii, [U],, [U]q,) 20, i = 1, 2, . . . . n, (i) 

where u < u < w, ui < iii d ui < wi. Then, for u(O) < u. d w(O), there exists the 
coupled minimal and maximal solution (u*, w*) E [u, w] x [u, w] to problem 
(*)‘, and u* <u< w* holds for each solution u to problems (*)’ in [u, w]. 

Proof Let real Banach space E be C(J, R”), P = {x E E : x,(t) 2 0, t E J, 
i = 1,2, . . . . n). Then P is a normal cone in E. From v, w E E and the 

49/156:1-17 
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assumptions about ,f it follows that ,f’ is an operator from [u, w] into 
L(J, R”). This indicates that 

makes sense for any u d x, y < W. Therefore we can define an operator 
A( , ) as follows: for any u d X, y d W, 

A@? Y)(f) = (‘4(x, y)(t), ..., A(& y)(t)), t E J, 

where, for i= 1, 2, . . . . n, 

s, Xi(S), C-wlp,, bwq,) 4 t E J. 

From the properties of Lebesgue integral it follows that A(x, y) E 
AC(J, R”) for any x, y E [u, w]. Hence, by the knowledge of differential 
equations we know that finding the solutions to problem (*)’ is equivalent 
to finding the fixed points of A and finding the coupled solutions to 
problem (*)’ is equivalent to finding the coupled fixed points of A. 

Since (u, W) is a coupled lower and upper solutions to problem (*)’ we 
obtain for each i = 1,2, . . . . n, 

A,(% W)(t)=Uo,+j~-fi( St Ui(J), [14S)lP,> CWI,,) A 

Zo;(O)+ j~V:(s)ds=ui(t), t E J; 

and 

Ai(“‘~ u)(t)=uO,+ j:.fi( A wi(s), Cw@)lp,, C4s)l,,) ds 

< ~~(0) + j’ w;(s) ds = w,(t), t E J. 
0 

This indicates 

A(u, w) 2 u and A(w, u)< w. 

On the other hand, A( , ) is a mixed monotone operator from [u, w] into 
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[v, w]. In fact, by virtue of (i) we obtain for any xl, x2, YE [a, w] with 
Xl 6x2, 

A,@,> Y)(f) -AI(xZ> y)(t) 

= l ; (fJ.5 XI,(S)? CX,(41P,> C.JQ)l,,) 

-L(s,x2,(sh Cx2(s)lp,> CA41,,)) ds 

6 s ; Lfi( s, XI,(J)? C-a)lp,, CYb)l,,) 

-fits> x2,(s)> Cx2(dlp,, M41,H ds GO, 

t E J, i = 1 , 2, . . . . n. 

Therefore, A(x, y) is increasing in x. By the same argument we know that 
A(x, y) is decreasing in y. From the mixed monotone property of A it 
follows that, for any x, YE [u, w], 

0 6 A(u, w) < A(x, w) < A(x, y) 

w>A(w,u)3A(x,u)>A(x, y). 

This means that A( , ) is an operator from [u, w] into [u, w]. Hence, it is 
necessary for us to show that A( [u, w], [u, w]) is a relatively compact 
subset of E in order to use Theorem 1 to prove Theorem 3. 

Obviously, [u, w] is a bounded subset of E because P is a normal cone 
of E, and hence A([u, w], [o, w]) is bounded. We now show that 
A( [u, w], [u, w] ) is an equi-continuous subset of E also. 

For any v d x, y d w and t, t’ E J, we obtain 

= “L(s, Xi(S), Cx(s)]p,, [y(s)]q,) ds 9 i= 1,2, . . . . n. (12) 

From u < A(x, y) < w it follows, without loss of generality we assume that 
t’> I, that 

i = 1, 2, . . . . n. 
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And hence, 

~l~~~i(s)ds~+l~~w(s)dsl, i=l,2,...,n. (13) 

Finally, from (12), (13) and the absolute continuity of Lebesgue integral it 
follows that A( [u, w], [u, w]) is an equi-continuous subset of E, so it is 
relatively compact. 

All conditions in Theorem 1 are satisfied by the operator A( , ), and 
hence A( , ) has the coupled minimal and maximal fixed point (v*, w*) in 
[o, w] and u* dud UJ* holds for every fixed point u of A( , ) in [II, w]. 
We finally know that Theorem 3 holds by the above statement. 

Remark 3. Function f in Theorem 3 need not be continuous, so it is a 
generalization of [2, Theorem 1.4.11 and it is also a generalization of 
[ 1, Theorem 31 

The following theorem is about the relation between coupled solutions 
and solutions to problem (*)‘. 

THEOREM 4. Let all assumptions in Theorem 3 hold here. Suppose further 
that for any x, y E R” and i = 1, 2, . . . . n we have 

where L is a positive constant. Then v* = w* and u* = v* = w* is the unique 
solution to problem (*)’ in [v, w] where (v*, w*) is the coupled minimal and 
maximal solution to problem (*)’ in [v, w]. 

Proof: We suppose that v* is not w*. Let 

m(t) = max 
O<Y<l 

{ i Iv,*(s) - w:(s)12}“2. 
,=I 

Then m(0) =O, and hence there exists a positive number c such that 
O<t,<t,+c< T, Lc<a and 

0 < t d to * m(t) = 0; to < t d to + c a m(t) > 0. 

Since, for tO<t<to+c and i=l,2,...,n: 
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-“l-h, V3S)> b*(41p,T cw*(41,,)1 A 
w 

i Iw:(s)-v~(s)~~} ds 
i=l 

we obtain 

m(t) < { i: (fi m(r))2}1’2 = m(t). 
i= 1 

It is a contradiction. Hence u* must be w*. From (v*, w*) being the 
coupled minimal and maximal solution to problem (*)’ in [v, w] it follows 
that U* = v* = w* is the unique solution to problem (*)’ in [v, w]. 

4. PERIODIC BOUNDARY VALUE PROBLEMS 

In this section we use the same signs and definitions as those in Sec- 
tion 3. Consider the following differention equation with periodic boundary 
value: 

u’ =f(t, u) a.e. J, 

u(0) = u(T). 
(**I 

Equation (**) can be rewritten as, by the same way as in Section 3, 

a.e. J, 
(**I’ 

where i = 1, 2, . . . . n. 
Let v, w E AC(J, R”). Then (v, w) with u 6 w is called a coupled periodic 

solution to (**)’ if, i = 1, 2, . . . . n, 

vi =“a6 v,, L-dp,, Cwl,,) a.e. J; v;(O) = ui(n 

WI =.L(G wi, CWIP,~ Cul,,) a.e. J; Wi(0) = Wli( T). 
(14) 

And (v, w) with v < w is called a coupled lower and upper periodic solution 
to (**)’ if, for i= 1, 2, . . . . n, 

a.e. J; 

a.e. J, 

Vi(O) d vi(n 

Wi(0) > Wi( T). 
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THEOREM 5. Let function fi C(J, R”) -+ L(J, R”) be mixed monotone. 
Suppose that (v,, wO) E AC(J, R”) x AC(J, R”) is a coupled lower and upper 
periodic solution to (*a)‘. Suppose ,fiather that 

,fitt, u,9 L”lp,, [Uly,)-.f;(f, ui3 lI”lpz, C”lq,) 
> -h,(t)(ui-u;), teJ and i-l,2 ,..., n, (15) 

where hiEL(J, R”) and j,Thi(s)ds>O (i= 1, 2, . . ..n). Then there exists a 
coupled minimal and maximal periodic solution (v*, w*) to problem (**)I in 
order section [v, w]. And v*(t) < u(t) 6 w*(t) (Vt E J) holds for every solu- 
tion u(t) to problem (**)’ in [v, w]. 

Proof: Let E be the real Banach space C(J, R”) and P = 
{xEE:x,(t)>O, tEJand i= 1, 2, . . . . n}. Then P is a normal cone in E. Set 

g,(t, Ui? blP,> Cul,,) 
=f,(t, ~~e-Jk~‘(‘)~~, [UepJbh(~r)ds]p,, [ue -j;h(‘)d”ly,) ej;h,(.J)dJ + h,(t)u,, 

tEJ MER”, and i=1,2 ,..., n, 

where ue -j;hW~ = (u,e-j;hW~, ,,., u e Pjbhn(s)dA). In the sequel we always 
denote U = ue-fhhc”‘d”(, E C(J, R”)) fo; any UE C(J, R”). 

Let u = u,,eSbh(s)d’ and w= w,efbhCs)“. Operator A( , ) from [v, w] into E 
is defined as follows: for any v 6 x, y < w, 

A@, y)(t) = (A ,(-x, y)(t), . . . . AAx, y)(t)), t E J, 

where for i= 1, 2, . . . . n 

Ai(x, y)(t)=(elbhl(~)'~-l)~'. 

I 

" ght x;(s), CWlp,, [~(dlq,) ds o 

sit s, xi(s), Cx(s)lp,, Cal,,) 4 t E J. 

From (u,, we) is a coupled lower and upper periodic solution to (w) it 
follows that, for each i= 1, 2, . . . . n, 

(eS~h~(s)dsvo,Y dg,(t, vi, [VI,,, Cwl,,), 

(eihh~(s)dswo,)’ 3gi(t, w,, [I+~]~,, [v]~,). 

Hence, for each i= 1, 2, . . . . n and 
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we obtain 

Ai(U, w)(t) > (eJM)ds - 1))’ . (vo,(T)&J+~ - uo,(0)) 
+ “(Jf)&ds)d - &JO) 2 vg,( t)e@“s’ds 

= o,(t) 

and, in the same way, 

Ai(W, U)(f) d W,(t). 

This implies that (u, w) E AC(J, R”) x AC(J, R”) with u 6 w is a coupled 
lower and upper fixed point of A( , ). By the same argument as in 
Theorem 3 we can show that A( , ): [v, w] + E is a mixed monotone 
operator from [u, w] into [u, w] and A([u, w], [u, w]) is also a relatively 
compact subset of E. Therefore, from Theorem 1 it follows that operator 
A( , ) has the coupled minimal and maximal fixed point (x*, JJ*) in [u, w] 
and, for every i= 1, 2, . . . . n, 

x*(T) =-4,(X*, Y*)(T) 

= (&h,W -l)-l.joT&( s, x?(s), Cx*b&,> b*(dl,,) ds 

+soTpi( s, K+(s), Cx*b)lp,, Cy*(~)l,,) ds 

= Ai(X*, y*)(o)er:hl(.- = x*(o)elrOh”“‘dJ, 
y,*(T) =y*(o) . ,G(.y 

Let 

u*(t)=x*(t)e- ibh(s)ds = (x,*(t)e-jbhWd.~, . . . . x;(t)e-l;Wdq, 

w*(t) =y*(t)e-Jbh(+‘~ = (y:(+~J”h~‘+‘“, ,,,, y,*(t)e-Sbhnc”‘d*), 

Then from the above statement, the definition of A, and simple calculation 
it follows that (II*, w*) E AC(J, I?“) x AC(J, I?“) is the coupled minimal and 
maximal periodic solution to (**)’ and Theorem 5 is true. 

We surely can discuss the relation between the solution and the coupled 
solution to (**)‘. But we do not state it here since the method is similar to 
that in Section 3. 
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