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The different combinatorial types of triangulations of the 3-sphere with up 
to 8 vertices are determined. Using similar methods we show that one cannot 
always preassign the shape of a facet of a 4-polytope. 

1. INTRODUCTION 

The problem of enumerating the different combinatorial types of 
d-polytopes with a given number of vertices (or facets) seems to be extrem- 
ely difficult. Even for d = 3 the problem is unsolved for polytopes with 
more than 8 vertices. For simplicial 4-polytopes an enumeration of the 
combinatorial types with at most 8 vertices was made by Grtinbaum and 
Sreedharan [5]. This corrected and completed work done by Brtickner 
in 1909 [4]. Brtickner enumerated 3-dimensional structures which he 
assumed could be realized by projections of 4-polytopes into one of their 
facets. All that can be said is that they were isomorphic to duals of 
triangulations of the 3-sphere. 

The work of Grtinbaum and Sreedharan lead to the discovery of a 
triangulation of the 3-sphere with 8 vertices that is not isomorphic to the 
boundary of any 4-polytope. This leads to the question: What are the 
different combinatorial types of triangulations of the 3-sphere with up to 
8 vertices? In this paper we shall answer the question by constructing a11 
of the duals of these triangulations. 

2. DEFINITIONS 

A d-cell complex is a collection V of k-cells, 0 < k < d, such that 

(i) each d-cell 9 is associated with a convex d-polytope P(s) and 
with a homeomorphism h(s) between 9 and P(F); 
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(ii) each face of a d-cell in G?? is a member of g, where a face of a 
d-cell 9 is the inverse image of a face of P(9) under /z(F); 

(iii) the non-empty intersection of any two members of %’ is a face 
of both members (we shall say that two faces meet properly if their inter- 
section is a face of both). 

Two members of %T are incident if one contains the other. Two cell com- 
plexes VI and VZ are isomorphic if there is a l-l, dimension preserving, 
incidence preserving correspondence between the members (hereafter 
called faces) of VI and V, . Two d-cell complexes +YI and VZ are dual if 
there is a I-1 incidence reversing correspondence taking faces of dimen- 
sion k onto faces of dimension d - k - 1. 

A combinatorial d-sphere is a d-cell complex whose body (i.e. the union 
of its members) is homeomorphic to P. A triangulation of Sa is a combina- 
torial d-sphere all of whose cells are simplices. 

A theorem of Steinitz [7] says that a graph without loops or multiple 
edges is the graphs of a 3-polytope provided it is planar and 3-connected. 
This implies that any combinatorial 2-sphere is isomorphic to the boundary 
of some 3-polytopes. This guarantees that when we take the dual of a 
triangulation of the 3-sphere, condition (i) will be satisfied. Since condi- 
tions (ii) and (iii) are easily seen to be satisfied we have that the dual of a 
triangulation of the 3-sphere is a 3-cell complex. The duals of the triangula- 
tion of S3 will be called simple combinatorial 3-spheres, which we shall 
abbreviate SC3S. 

A facet of a 3-cell complex GF is a 3-dimensional face of g, a subfacet 
is a 2-dimensional face of V, an edge is a l-dimensional face of V and a 
vertex is a O-dimensional face of G9. 

We shall use a process called removing subfacets, which we now describe. 
Let 9; and gZ be two facets of an SC3S 5“ that meet on a subfacet LY. 
Let V = {Fi” u Fjk 1 FCk and Fjk are k-faces of Y such that Fik n Fik IT cy 
is a k - 1 face of Y, 1 < k < 3) u {Ftik 1 Fik is a k-face of 9’ and 
Fik n 01 = a}. If V? forms a cell complex we say that LX is removable and 
that 9? is obtained from 9’ by removing a. Note that this new cell complex 
is also a SC3S. It can be seen that the inverse operation to removing sub- 
facets is facet splitting which consists of taking a simple closed curve r 
on the boundary of a facet F of an SC3S, where r misses every vertex, 
intersects an edge at most once, and crosses a subfacet at most once, and 
then spanning r by a 2-cell whose relative interior is in the relative 
interior of F. 

The main theorem of this paper is that the combinatorial types of 
SC3S’s with at most 8 facets can be generated from the boundary of the 
4 simplex, j3(T4), by facet splitting. That is, given any SC3S, .Y, with at 
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most 8 facets there is a sequence of SC3S’s p(T4) = Y1, YZ ,..., Ym such 
that Sp is obtained from 9’i”i-1 by facet splitting and 9, is isomorphic to Y. 
Clearly, proving this is equivalent to proving that any SC3S with at most 
8 facets has a removable subfacet. 

3. SUFFICIENT CONDITIONS FOR 01 TO BE REMOVABLE 

When discussing removable facets we shall always assume that our 
SC3S is not isomorphic to the boundary of the 4-simplex. 

LEMMA 1. If G is a graph without multiple edges embedded in a 2-sphere, 
breaking the sphere into cells, no two of which have a multiple connected 
union, then G is the graph of a 3-polytope. 

Proof. By Steinitz’s theorem, we need to show that G is 3-connected. 
Let V be a minimal set of vertices that disconnects G and let v E V. 
Consider the set of 2-cells that contain v. Since no two have a multiply 
connected union, the union of these 2-cells is again a 2-cell. The boundary 
of this 2-cell is a circuit r in G. By the minimality of V, each component 
of the separated graph will be joined to v by an edge, thus r has vertices 
in every component. Since r is a circuit, it requires at least two vertices 
to separate it, thus V has at least three vertices and G is 3-connected. 

LEMMA 2. A suficient condition for V to be a 3-cell complex is that 
every face of Y that meets Fl and ST2 meets 01. 

Proof. First we show that 9r u %?Z is isomorphic to a 3-polytope. 
Suppose F1 u FZ has a double edge. In this case F1 has a triangular 

2-face Fl meeting a triangular 2-face Fz of FZ . In g1 there will be two 
2-faces meeting Fl on edges of s1 and in FZ there will be two 2-faces 
meeting F, on edges of .ZZ . These four 2-faces will form two 2-faces, 
F3 and F4 of g1 v PZ , with a multiply connected union (unless F1 and 
RZ are both tetrahedra, in which case Y is a simplex). This implies that 
there will be facets s5 meeting F1 u FZ on F3 , and F6 meeting s1 u Pz 

on F4. The intersection of these two facets will be a 2-face meeting 
F1 and sZ but not 01, which is a contradiction. 

Suppose two-faces of g1 u P2 have a multiply connected union. In 
this case, as we have just seen, this gives us a 2-face of Y meeting F1 and 
92 but not a. 

Next we show that any other cell, FZ of %‘, meeting 01, is isomorphic to 
a 3-polytope. 

Suppose 9s has a double edge. We have already taken care of the case 
in which this double edge lies in F1 u PZ . The only other possibility is 
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that one edge e lies in fla but not s1 u F2 and the other edge lies in 
F1 u Pz . In this case e meets s1 u sz but not 01. 

Suppose two 2-cells of gz have a multiply connected union. If both 
2-cells lie in fll u sz then a previous argument applies. If one of the 
2-cells lies in ss but not s1 u ZJ$ then this 2-cell meets SC, u sz but not 01. 

Finally, we show that pairs of faces of V intersect properly. The only 
way a pair of faces G1 and G, can intersect improperly is if they intersect 
on a face G, of F1 and a face G, of Fz . We have already seen that if 
G, and G, belong to F1 u Fz then we reach a contradiction, so we shall 
examine the case in which G, does not lie on s1 u S2 . If G1 misses 01 we 
are done. If G1 meets 01, say at a vertex v, then v and G, belong to a face 
of s1 and G1 ; and v and G, lie on a face of sz and G1 . Thus G, and G, 
lie on a face G, of F1 u & and of G3. This means that G2 and G, are 
two faces of g1 u Fz that do not meet properly, which is a case we have 
already taken care of. 

3. THE MAIN THEOREM 

If Sp is an SC3S with at most 8 facets it follows that each facet of Y 
is isomorphic to a simple (i.e., 3-valent) 3-polytope with at most 7 facets. 
Figure 6 gives the Schlegel diagrams of the 9 combinatorial types of such 
polytopes. 

THEOREM 1. If an SC3S Sp is not isomorphic to the boundary of the 
simplex and if it has 8 or fewer facets then it has a removable subfacet. 

Proof. We shall examine several cases: 

Case I. Two triangular subfacets of Y meet on an edge. These two 
subfacets belong to a common facet which must be a tetrahedron. If the 
tetrahedron meets another tetrahedron on a subfacet then Y is the simplex. 
The reader may easily verify that if the tetrahedron does not meet any 
other tetrahedron on a subfacet then each subfacet on the tetrahedron is 
removable. 

In the following cases we shall assume that no two triangular subfacets 
meet on an edge. 

Case II. Some pair of facets F1 and T2, meet on a subfacet 01, and 
some subfacet /3 meets g1 and sz on an edge of F1 and an edge of Fz 
but does not meet 01; and every facet meeting F1 and Fz meets 01. Let 
A%~ and F4 be the two facets containing /3. The facets sa and 5$ will both 
meet s1 u F2 on a 2-cell of F1 u F2 . Since /3 does not meet 01, we have 
that (sl u 5Q n gs and (e v flz) n g4 form an annulus. Thus 
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FI u &Kz u 97, u 9$ is homeomorphic to a 3-dimensional hollow ball and 
it separates the remaining facets of Y into two sets, each homeomorphic 
to a 3-cell. 

Since Y has at most 8 facets, one of these two sets of facets must 
contain at most two facets. Each facet in such a set will meet at most 
5 other facets, thus each is either (isomorphic to) a tetrahedron or a 
triangular prism. Since no two triangular subfacets meet on an edge the 
only possibilities are that, they are both triangular prisms meeting as in 
Fig. 1. It is easily verified that in Fig. la the common subfacet is remov- 
able. 

FIGURE 1 

Suppose that in Fig. lb the common subfacet is not removable. Then 
some face F of Y meets both facets but not the common facet. But F will 
belong to a facet .& (i = 1,2, 3, or 4) that contains the remaining two 
triangular subfacets. This implies that the edges eI and e2 (see Fig. 1) lie 
on a common subfacet, and e3 and e4 also lie on a common subfacet. 
The intersection of these two subfacets will be an edge joining v1 and v2 . 
Similarly we see that the other pairs of vertices will be joined by edges. 
Now, however, we have an SC3S that can be obtained from the boundary 
of the 4-simplex by splitting a facet as in Fig. 2, which has a removable 
subfacet. 

FIGURE 2 

Case ZZZ. Some pair of facets gI and sz meet on a subfacet CL and some 
edge e meets *I and Pz but misses ol; and no facet meets *I and 9?s and 
misses 01. Every subfacet meeting FI and AK2 also meets 01. 
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Let Fs, FG, and FT be the three facets of Y that contain e. Let 
Fi = % r~ flI, Gi = e n flZ for i = 5, 6 or 7. For each i, F$ and Gi 
meet on an edge of 01. Since no subfacet meets 42; and FZ and misses 01, 
we see, as before, that no two 2-cells in sI u & have a multiply connected 
union, thus (Fi n Gi I i = 5, 6 or 7) is the set of all edges of 01. We also 
know that FS , Fe, and F7 meet at a common vertex of 9; , and G5 , G6 , 
and G, meet at a common vertex of 9?Z . This implies that the Fi’s, the 
Gi’s, and (Y are the only facets of PI and sZ . This, however, is a contra- 
diction because this means that sI and sZ are tetrahedra. 

Case IV. Every pair Z$ , sZ of facets that meet on a subfacet 01 also 
meet a facet 9s on both *I and X2 but not on 01. In this case the only 
possible combinatorial types of facets are c2 , d, , and d5 . 

First we observe that due to the restriction on the types of facets no 
triangular subfacet meets a 4-sided subfacet in V. This implies that no 
facet of type d, meets a facet of type d5 on a 5-sided subfacet, and two 
d5’s can meet in only one way as illustrated in Fig. 3 (the edges common 
to both facets are emphasized). 

FIGURE 3 

A d5 must meet another ds as in Fig. 3. The subfacet /3 (see Fig. 3) 
belongs to another d5 and they meet in such a way that the triangular 
subfacet of that dS has e as an edge. But now some facet of V contains 
y, 6, and the triangular subfacet containing e, which is impossible because 
of the restrictions on the combinatorial types of facets. We may now 
conclude that 9’ contains no d5’s. 

Suppose two dz’s meet on a 5-sided subfacet. Since some facet gZ 
meets each of these two facets but not their common subfacet, .& must 
also be a d, . Now, however, the 4-sided subfacets of each of these facets 
belong to facets of type b, a contradiction. 
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We may now assume that all facets are of type c2. The reader may 
verify that in this case the SCSS must be isomorphic to the boundary of 
the 4-cube and thus has removable facets. 

4. GENERATING THE SC3S’s 

At this point we could attempt to generate all of the SC3S’s with eight 
facets; however, this would be a long, tedious job because, in general, 
there are many ways of splitting a facet of an SC3S. Instead we shall 
show that almost all of the SC3S’s created are polyhedral, that is, iso- 
morphic to the boundary complex of some 4-polytope, and since the 
simple 4-polytopes with at most eight facets have already been enumerated, 
these need not be considered. We shall show that most of the splittings 
applied to polyhedral 3-spheres can be accomplished by means of a 
geometric facet splitting, which we now define. 

Let P be a simple 4-dimensional polytope with a specified facet F, and 
let H be a 2-dimensional plane in the affine hull of F, which contains a 
relative interior point of F. Let H’ be a hyperplane (3-dimensional) which 
intersects F on H, and which is close enough to the affine hull of F so that 
all vertices of P that are not on F lie on one side of H’. Let S be the half- 
space determined by H’ that contains all vertices that are not on F and 
let P’ = S n P. It is easy to see that H separates F into two 3-polytopes, 
PI and P, , and that intersecting P with S destroys F and replaces it with 
two facets combinatorially equivalent to P, and P, . We shall say that 
P’ was obtained from P by geometric facet splitting, 

Some facet splittings can be accomplished geometrically regardless of 
the 4-polytopes or the shape of the facet. We shall consider these 
now. 

The length of a facet splitting is the number of edges on the subfacet 
created in the splitting. In order to show that a splitting can be done 
geometrically it is sufficient to show that one can find the plane H which 
intersects the relative interior of the facet. We shall examine the several 
cases. These cases are simplified by the fact that we do not have to split a 
facet of any type other than types a, b, cr , and cB . 

A. Splittings of length 3. These can be accomplished by taking a plane 
close enough to a vertex or triangular subfacet of the facet. 

B. Splittings of length 4. These can be accomplished by taking a plane 
close to an edge or 4-sided subfacet. 

C. Splittings of length 5: 
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Case Ifacets of type b. Combinatorially, there is only one such splitting, 
and it can be accomplished by first taking a plane close to a 4-sided sub- 
facet and rotating the plane until it passes one vertex of that subfacet 
(see Fig. 4). 

FIGURE 4 

Case II facets of type cr . Now, there are several ways of splitting the 
facet. We observe that, if we take the sequence of subfacets of the facet 
to be split as they appear along the new subfacet that is created, and look 
at the corresponding vertices in the dual of the facet, these vertices will 
form a circuit. Thus to enumerate the ways of splitting the facet we can 
enumerate the circuits of length five in the dual of the facet. These can be 
found by inspection, and are illustrated in the first four figures in column 1 
of Table 2. The geometric splittings will again be done by first taking a 
plane close to and parallel to a subfacet (column 2) and moving it past a 
vertex or an edge (column 3). 

Case IIIfacets of type c2 . There is only one type of splitting and the 
same type of construction as in Case II will work (see Table 2, line 4). 

D. Splittings of length 6: 

Case I facets of type c1 . There are two splittings that can always be 
realized geometrically (Table 2, lines 6 and 7). For the type in line 7 a 
different construction is used; we take the plane determined by the points 
p1 , pz , and p3 in the figure. There is one splitting that cannot always be 
done geometrically (see Fig. 8). 

Case IIfacets of type c2 . There is one splitting that can always be done 
geometrically (Table 2, line 8). In this splitting we choose a vertex ZI and 
points p and q on opposite edges as indicated in the table. There are 
three ways that the plane through v, p and q can intersect the cube, as 
illustrated in Fig. 5. In each case the plane that gives the splitting can be 
found by rotating the plane about the line through p and q. There is one 
splitting that cannot always be done geometrically (Fig. 8). 
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FIGURE 5 
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FIGURE 6 

4 

We shall not, at this point, prove that the splittings S, and Sz (Fig. 8) 
are not always geometrically realizable, as this is not necessary to get our 
results. 

Since any splitting applied to a facet with 5 or fewer subfacets can 
always be done geometrically we have 

THEOREM 2. All SC3S’s with 7 or fewer facets are polyhedral. 



46 BARNETTE 

f!?!!B 
,,I- - ---- I’ ,’ ,’ 

FIGURE 7 

Proof. They can be obtained by starting with the 4-simplex and 
applying geometric facet splittings. 

To obtain the SC3S’s with 8 facets we now will apply facet splittings 
to the simple 4-polytopes with 7 facets. The Schlegel diagrams of these 
polytopes are given in Fig. 7. A complete combinatorial description is 
given in Table 1 (see [5]). We shall consider only splittings S, and S, 
since we have seen that the other splittings can always be done geometric- 
ally and thus will yield polytopes. 

If we examine the proof of Theorem 1 we see that Cases I, 11, and III 
give us the existence of a removable facet with 4 or fewer edges. Thus if 
two facets %I and F2 meet on a subfacet cy we know that one of three 
things will be true: 

(a) a: is removable, 

(b) there is a removable subfacet with at most 4 edges, or 

cc> some facet Z$ meets *I and s2 and misses 01. 
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TABLE 1 

Polytope 

Vertices and facets 

incident to them Facets 

Combinatorial 

type of facet 

Pl A: 1256 

B: 1245 

c: 1234 

D: 1237 

E: 1345 

F: 1356 

G: 1267 

A: 1245 

B: 1246 

C: 1256 

D: 1345 
E: 1346 

F: 1356 

G: 2345 

p, A: 1246 

B: 1256 

C: 1257 

D: 1247 

E: 1346 

R 1356 

G: 1357 

p4 A: 2467 
B: 2367 
C: 1367 

D: 1467 

E: 2456 
F: 2356 

G: 1356 

p5 A: 1234 

B: 1237 

C: 1267 

D: 1256 

E: 1245 

F: 1347 

G: 1457 

H: 1367 

J: 2367 

K: 2345 

L: 2356 

H: 2356 

J: 2347 

K. 2367 

L: 2467 

M: 3467 

H: 1347 

J: 2346 
K: 2356 
L: 2357 

M: 2347 

H: 1456 

J: 1247 

K: 1237 

L: 1345 

M: 2345 

N. 1234 

Hz 1567 

J: 2345 
K: 2356 

L: 2367 
M: 3467 
N: 3456 

0: 4567 

1: ABCDEFGH 
2: ABCDGJKL 
3 : CDEFHJKL 
4: BCEK 
5: ABEFKL 
6: AFGHJL 
7: DGHJ 

1: ABCDEF 
2: ABCGHJKL 
3 : DEFGHJKM 
4: ABDEGJLM 
5: ACDFGH 
6: BCEFHKLM 
7: JKLM 

1: ABCDFGH 
2: ABCDJKLM 
3 : EFGHJKLM 
4: ADEHJM 
5: BCFGKL 
6: ABEFJK 
7: CDGHLM 

1: CDGHJKLN 

2: ABEFJKMN 
3: BCFGKLMN 
4: ADEHJLMN 
5: EFGHLM 
6: ABCDEFGH 
7: ABCDJK 

1: ABCDEFGH 
2: ABCDEJKL 
3: ABFJKLMN 
4: AEFGJMNO 
5 : DEGHJKNO 
6: CDHKLMNO 
7: BCFGHLMO 



48 BARNETTE 

TABLE 2 
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TABLE 3 

Polytope Facet split 
Sequence of subfacets 

in splitting 
Combinatorial types 

of resulting facets 

CKE, KEFL 
CEFHD, HDJ 
FHLJ, CKLJD 

JKL, JGHK 
CBHKL, ABC 
ACGH, ABGLJ 

ABCD, ADEF 
ABEH, EFGH 
DCFG, BCGH 

ABCD, ADEF 
EFGH, ABEH 
BCGH, DCFG 

LMN, EHLM 
AEJMN, ADJ 
ADEH, DHJLN 

EFGH, DCHG 
ADEH, ABCD 
BCGF, ABEF 

CDH, DEGH 
ABCDE, ABF 
AEFG, BCFGH 

ABF, AEFG 
ABCDE, CDH 
DEGH, BCFGH 

From this we can conclude that, if any facet is of type a, b, or c, then 
there is a removable subfacet with 5 or fewer edges. With this in mind we 
examine the various splittings: 

Case I splittings applied to P, . By the symmetry of PI we need only 
split facet 3, and we need split in only one way. As we see in Table 3, 
the sphere produced contains a facet of type b and thus the sphere could 
be produced by a splitting of length at most 5. This implies that we could 
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have obtained this sphere by applying a gltometric facet splitting to a 
polytope and thus the new SC3S is polyhedral. 

Case II splittings applied to Pz . The same argument as in Case I applies. 

Case III splittings applied to P3 . By the symmetry of PS we need only 
split facet 2, but there are two different splittings that must be considered 
(see Table 3, lines 3 and 4). 

In both cases, we have facets of type c1 and thus the SC3S’s are poly- 
hedral. 

Case IV splittings applied to P4 . By the symmetry of P4 we need 
consider only one facet of type c1 . No matter how we split one, say facet 4, 
we get a facet of type c1 , thus we produce a polyhedral SC3S. 

We do not need to consider all splittings of facet 6 because in all but 
two cases we produce a facet of type cl, thus those SC3S’s could be 
obtained by geometric facet splittings. In the other two cases (and by 
symmetry we need only consider one, see Table 3, line 4) we get an SC3S 
that is not in the list of 4-polytopes with 8 facets. It is the dual of the 
triangulation J&’ of the 3-sphere discovered recently by the author [l]. 

Case V splittings applied to P5 . By symmetry we need consider only 
one facet, but there are two different ways of splitting the facet (Table 3, 
lines 7 and 8). 

The SC3S in line 7 is the dual of the polytope P& in [5]. The SC3S in 
line 8 does not appear in the list of 4-polytopes with 8 facets. It is the 
dual of the sphere J&’ first discovered by Grtinbaum and Sreedharan l-51. 

FIGURE 8 
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We now have 

THEOREM 3. The set of SC3S’s with eightfacets consists of the boundary 
complexes of 4polytopes with eight facets and the duals of the spheres 
.k’ and JI’. 

Now that we have the SC3S’s we have all the triangulations of S3 with 
8 vertices since they are just the duals of the SC3S’s. 

5. PREASSIGNING THE SHAPE OF A FACET 

We are now in a position to answer the following question (see [2]): 
Given a 4-polytope P and a facet Q is there a 4-polytope combinatorially 
equivalent to P for which the facet corresponding to Q has a certain 
prescribed shape and position? 

The answer is “no.” Consider the 4-polytope P4 (Fig. 7). We shall 
describe a shape that the facet ABCDEFGH cannot have. 

Let P be a cube obtained by truncating opposite edges of a tetrahedron 
(see Fig. 9). This 3-polytope will admit a geometric splitting of type S, 
(see Fig. 9). 

FIGURE 9 

If ABCDEFGH could be congruent to P with A t) A’, B t) B’ etc., 
(see Fig. 9) then we could split P, geometrically and obtain a 4-polytope 
combinatorially equivalent to the dual of A”, which is impossible. 
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REMARKS 

(i) The construction of &’ can be found in [l]. The construction 
&I’ can be found in [5] and [6]. Other results concerning the dual of k’ 
can be found in [3]. 

(ii) Conjecture: The combinatorial types of all SC3S’s can be 
generated by facet splitting. 

(iii) A complete list of all simplicial 4-polytopes with 8 vertices can 
be found in [5]. 

(iv) Theorem 2 has been generalized by Mani 171. He has shown that 
every triangulation of the d-sphere with at most d + 4 vertices is poly- 
hedral. 
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