
Journal of Multivariate Analysis 97 (2006) 1894–1912
www.elsevier.com/locate/jmva

A unified approach to testing for and against a set of
linear inequality constraints in the product

multinomial setting

Hammou El Barmi∗, Matthew Johnson
Department of Statistics and Computer Information Systems, Baruch College, City University of New York,

Box 11-220, One Boruch Way, NY 10010, USA

Received 20 December 2004
Available online 8 August 2005

Abstract

A problem that is frequently encountered in statistics concerns testing for equality of multiple
probability vectors corresponding to independent multinomials against an alternative they are not
equal. In applications where an assumption of some type of stochastic ordering is reasonable, it is
desirable to test for equality against this more restrictive alternative. Similar problems have been
considered heretofore using the likelihood ratio approach. This paper aims to generalize the existing
results and provide a unified technique for testing for and against a set of linear inequality constraints
placed upon on any r (r �1) probability vectors corresponding to r independent multinomials. The
paper shows how to compute the maximum likelihood estimates under all hypotheses of interest and
obtains the limiting distributions of the likelihood ratio test statistics. These limiting distributions are
of chi bar square type and the expression of the weighting values is given. To illustrate our theoretical
results, we use a real life data set to test against second-order stochastic ordering.
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1. Introduction

A commonly occurring problem in statistics is that of testing for equality of two
probability vectors corresponding to independent multinomials against an alternative that
they are not equal. Sometimes it is reasonable to assume that these vectors satisfy some
type of a stochastic ordering and it might be of interest to test for equality against such
an assumption. For example, Robertson and Wright [16] consider testing for equality of
two probability vectors against the alternative that they are stochastically ordered. They
obtain the maximum likelihood estimates and show that the likelihood ratio test statistic
has, asymptotically, a chi bar square distribution and give the expression of the weighting
values. Wang [23] extends their work to more than two probability vectors.

In this paper, we present a unified approach to testing for or against a set of linear
inequality constraints placed upon r �1 probability vectors corresponding to r independent
multinomial distributions (if r �2). The results here extend those in [6] and the approach
is based on the results in [22].

Specifically, let pi = (pi1, pi2, . . . , pik)
T denote the probability vector corresponding

to the ith distribution, 1� i�r , and consider testing H0 against H1 − H0 and H1 against
H2 − H1, where

H0 :
r∑

i=1

k∑
j=1

x
(s)
ij pij = 0, s = 1, 2, . . . , c, (1.1)

H1 :
r∑

i=1

k∑
j=1

x
(s)
ij pij �0, s = 1, 2, . . . , c. (1.2)

H2 imposes no constraints on the probability vectors. Here c�r(k − 1) and the x
(s)
ij s are

fixed and known constants.
Throughout the paper we also use Hi to denote the set of all the probability vectors

that satisfy the constraints in Hi and assume that Hi �= ∅. It is well known [20] that the
likelihood ratio test statistic for testing H0 against H2 − H0 has, asymptotically, a chi-
square distribution with c degrees of freedom. This paper extends the existing results and
obtains the test statistics for testing H0 against H1 −H0 and H1 against H2 −H1 as well as
their limiting distributions, which are shown to be of a chi bar square type. To illustrate our
theoretical results, we consider the problem of the testing against second-order stochastic
ordering. This type of ordering of distributions is weaker that the regular stochastic ordering.
A random variable X with distribution function F is second-order stochastically smaller that
a random variable Y with distribution function G if∫ ∞

x

(1 − F(u)) du�
∫ ∞

x

(1 − G(u)) du for all x.

This ordering plays a prominent role in the general framework of analyzing choice under
uncertainty by considering the maximization of the expected utilities [14]. More specifically,
a risk averter prefers an investment portfolio B with random return Y over an investment
A with random return X if and only if E(U(Y ))�E(U(X)) for all nondecreasing and
concave utility functions U. It turns out that this condition is equivalent to Y being second-
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order stochastically larger than X [19]. Liu and Wang [15] consider testing for and against
this type of ordering when r = 2 using grouped data and our results extend their work to
r > 2.

The rest of the paper is organized as follows. In Section 2, we show how to compute
the maximum likelihood estimators under all the hypotheses of interest. Section 3 derives
the limiting distributions of the test statistics and Section 4 gives examples to illustrate our
theoretical results. In Section 5, we give some concluding remarks and the proofs are given
in the appendix in Section 6.

2. Estimation

Consider independent multinomial random vectors (Xi1, Xi2, . . . , Xik)
T , i = 1, 2, . . .,

r . Assume that the ith vector summarizes the results of observing the outcome of ni inde-
pendent random experiments, each of which can result in any one of k mutually exclusive
outcomes, 1, 2, . . . , k, with positive probabilities pi1, pi2, . . . , pik, respectively. Let pi =
(pi1, pi2, . . . , pik)

T and p = (pT
1 , pT

2 , . . . , pT
k )T .

The likelihood (except for a multiplicative constant) for any outcome {(ni1, ni2, . . .,
nik)

T , i = 1, 2, . . . , r} is given by

L(p) =
r∏

i=1

Li (pi ) ∝
r∏

i=1

k∏
j=1

p
nij

ij . (2.3)

The unrestricted maximum likelihood estimate of pij is given by p̂ij = nij /ni but in
general, under H0 and H1, the maximum likelihood estimates do not exist in a closed form.
El Barmi and Dykstra’s algorithm [6,7] can be utilized to compute the maximum likelihood
estimates under these two restricted hypotheses. Specifically, El Barmi and Dykstra [5–7]
show that, if, for s = c + 1, c + 2, . . . , c + r − 1 and j = 1, 2, . . . , k,

x
(s)
ij =

⎧⎨
⎩

1, s = c + i,

−1, s = c + i + 1,

0 otherwise

and p̃ij = nij /n, for all (i, j) where n =
∑r

i=1
ni , then the maximum likelihood estimate

p̂
(0)
ij of pij under H0 is given by

p̂
(0)
ij = rp̃ij

1 +∑c+r−1
s=1 �̂(0)

s x
(s)
ij

,

where the �̂(0)
s s solve

max
r∑

i=1

k∑
j=1

p̃ij ln

(
1 +

r+c−1∑
s=1

�sx
(s)
ij

)
. (2.4)
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They also show that the maximum likelihood estimate p̂
(1)
ij of pij under H1 is given by

p̂
(1)
ij = rp̃ij

1 +∑c+r−1
l=1 �̂(1)

s x
(s)
ij

,

where the �̂(1)
s s solve

max
r∑

i=1

k∑
j=1

p̃ij ln

(
1 +

c+r−1∑
s=1

�sx
(s)
ij

)
(2.5)

subject to �s �0, 1�s�c and �s ∈ R if s�c + 1.

El Barmi and Dykstra [6] provide the following iterative algorithm which is guaranteed
to converge to the true solution to find the �̂(0)

s s and the �̂(1)
s s, the maximizing values of

(2.4) and (2.5), respectively.

Algorithm.
Step 1: initialize �s = 0, s = 1, 2, . . . , s = c + r − 1, � = 1.

Step 2: Find the optimal value of �� over R with all the other �s held fixed. This value of
�� replaces its previous value.

• If � < c + r − 1 set � = � + 1, if � = c + r − 1, set � = 1.
• Go to step 2.

These steps are repeated for � = 1, 2, . . . until sufficient accuracy is attained. We note
that �̂(0)

1 , �̂(0)
2 , . . . , �(0)

c+r−1 are the Lagrange multipliers corresponding to maximizing the
likelihood function under H0 and subject to (pT

1 , pT
2 , . . . , pT

r )T ∈ Pr where P is the set of
the probability vectors in Rk.

To compute �̂(1)
1 , �̂(1)

2 , . . . , �̂(1)
c+r−1, Step 2 of the algorithm is replaced by Step 2′: Find

the optimal value of �� over R with all the other �s held fix. Whenever ��c and this value
of �� is non-negative, it replaces its previous value, otherwise we use 0.

3. Hypotheses testing

In this section, we consider testing H0 against H1 − H0 and H1 against H2 − H1. We
obtain the likelihood ratio test statistics and show that the limiting distributions are of chi
bar square type and provide the expression of the weighting values. Throughout the rest of
the paper, we assume that �i = lim

n→∞ ni/n > 0, for all i.

Let �ij denote the likelihood ratio test statistic for testing Hi against Hj − Hi , (i, j) =
(0, 1) or (1,2). The likelihood ratio approach rejects Hi in favor of Hj for large values of
Tij = −2 ln �ij .

Let B̃ = diag[ 1
�1

B1,
1
�2

B2, . . . ,
1
�r

Br ] where Bi = (pis(�st − pit )s,t �=k). For s =
1, 2, . . . , c, i = 1, 2, . . . , r and j = 1, 2, . . . , k − 1, let y

(s)
ij = x

(s)
ij − x

(s)
ik and let H



1898 H. El Barmi, M. Johnson / Journal of Multivariate Analysis 97 (2006) 1894–1912

be a matrix whose transpose is

HT =

⎡
⎢⎢⎢⎢⎣

y
(1)
11 . . . y

(1)
1,k−1 y

(1)
21 . . . y

(1)
2,k−1 . . . y

(1)
r1 . . . y

(1)
r,k−1

y
(2)
11 . . . y

(2)
1,k−1 y

(2)
21 . . . y

(2)
2,k−1 . . . y

(2)
r1 . . . y

(2)
r,k−1

...
...

...
...

...
...

...
...

...
...

y
(c)
11 . . . y

(c)
1,k−1 y

(c)
21 . . . y

(c)
2,k−1 . . . y

(c)
r1 . . . y

(c)
r,k−1

⎤
⎥⎥⎥⎥⎦

= [HT
1 | HT

2 | . . . | HT
k ],

where for 1� l�k

HT
l =

⎡
⎢⎢⎢⎢⎣

y
(1)
l1 . . . y

(1)
l,k−1

y
(2)
l1 . . . y

(2)
l,k−1

...
...

...

y
(c)
l1 . . . y

(c)
l,k−1

⎤
⎥⎥⎥⎥⎦ .

Assume that H has full rank and define the matrices P, Q and R by[
B̃−1 −H

−HT 0

]
=
[

P Q
QT R

]
. (3.6)

A direct computation of these matrices shows that

R = −[HT B̃H ]−1 = −
[

r∑
i=1

1

�i

HT
i BiHi

]−1

,

Q = −B̃H [HT B̃H ]−1 =

⎡
⎢⎢⎢⎣

1
�1

B1H1R
1
�2

B2H2R

· · ·
1
�r

BrHrR

⎤
⎥⎥⎥⎦

and P = B̃ − B̃H [HT B̃H ]−1HT B̃ = (Pij )1� i,j � r where

Pii = 1

�i

Bi + 1

�2
i

BiHiRHT
i Bi

and

Pij = P T
ji = 1

�i�j

BiHiRHT
j Bj .

Let pi = (pi1, pi2, . . . , pi,k−1)
T and p = (pT

1 , pT
2 , . . . , pT

k )T . For technical reasons
(namely, to avoid dealing with singular matrices), we express the likelihood in terms of pis,
that is, our likelihood function is

L(p) =
r∏

i=1

Li (pi ) ∝
r∏

i=1

⎡
⎣ k−1∏

j=1

p
nij

ij

⎛
⎝1 −

k−1∑
j=1

pij

⎞
⎠

nik
⎤
⎦ . (3.7)
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Define

D ln L(p) =
(
D ln L1(p1)

T , . . . ,D ln Lr (pr )
T
)T

,

where

D ln Li (pi ) =
(

�
�pij

ln Li (pi )

)
j �=k

.

If p0 = (p0T
1 , . . . , p0T

r )T ∈ H0 is the true value of p = (pT
1 , pT

2 , . . . , pT
r )T , similar

arguments used in [22] give as n → ∞,

√
n[p̂0T − p0T ] = 1√

n
P 0D ln L(p0) + op(1) (3.8)

and

1√
n
[�̂(0)

1 , . . . , �̂
(0)

c ]T = 1√
n
Q0T D ln L(p0) + op(1), (3.9)

where �̂
0 = (�̂

(0)

1 , . . . , �̂
(0)

c )T is the vector of Lagrange multipliers corresponding to
maximizing (3.7) under H0 and P 0 and Q0 denote the matrices P and Q under H0.

Combining (3.8) and (3.9) gives the following theorem which is a generalization of a
theorem provided by Silvey [22] for the one sample case.

Theorem 3.1. Under H0,

√
n[p̂(0)T − p(0)T ,

1

n
�̂

(0)T ]T d→ N(0, V ),

where

V =
[

P 0 0
0 −R0

]
.

Proof. The proof follows from combining Eqs. (3.8) and (3.9), the fact that
1√
n
D ln L(p0)

converges in distribution to N(0, [B̃0]−1) under H0 and the definition of P 0, Q0 and R0.
Here B̃0 is the value of B̃ under H0.

As a consequence of this theorem, −1

n
�̂

0T [R0]−1�̂
0

has asymptotically a �2
c and can be

used to test H0 against H2 − H0 as proposed in [2] for the one sample case.
In order to establish the distributions of the likelihood ratio test statistics for testing H0

against H1 − H0 and H1 against H2 − H1, we consider first testing H0 against H1:� − H0
where

H1:� :
r∑

i=1

k∑
j=1

x
(s)
ij pij = 0, s ∈ � (3.10)

and � ⊂ {1, 2, . . . , c}.
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Let p̂
(0)

(�) = (p̂
0T

1 (�), . . . , p̂
0T

r (�))T denote the maximum likelihood estimator of p

under H1:� and �̂
(0)

(�) denote the vector of the Lagrange multipliers corresponding to
maximizing (3.7) under H1:�. Then,

√
n[p̂(0)

(�) − p(0)] = 1√
n
P 0(�)D ln L(p0) + op(1) (3.11)

and

1√
n
�̂(�) = 1√

n
Q0T (�)D ln Ln(p0) + op(1), (3.12)

where P 0(�) and Q0(�) are the values of P 0 and Q0 in (3.6) when H is replaced by
H(�). �

The following result is well known [20] but we include it for the development of the main
theorem (Theorem 3.3).

Theorem 3.2. Under H0 and for any t, we have

lim
n→∞ P(T01:� � t) = P(�2

c−card(�) � t).

Proof. See Appendix. �

Next we consider testing H0 against H1 − H0 and H1 against H2 − H1. Let F denote
the class of all subsets of {1, 2, . . . , c} and let T01 (T12) denote the log-likelihood ratio
test statistic for testing H0 (H1) against H1 − H0 (H2 − H1). For a proper subset � of
{1, 2, . . . , c}, with complement �̃, define

aj (p) =
∑

�,card(�)=j

P (N(0, �1(�))�0)P (N(0, �) > 0),

where

�1(�) = [HT (�)B̃0H(�)]−1

and

�(�) = HT (�̃)B̃0H(�̃) − HT (�̃)B̃0H(�̃)�1H
T (�̃)B̃0H(�̃).

Let

a0(p) = P(N(0, �0)�0)

and

ac(p) = P(N(0, �c)�0),

where �0 = �−1
c = HT B̃0H. These weights, which are sums of products of normal orthant

probabilities, do not exist in general in a closed form (see [13,18] for more discussion on
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this as well as related references). In the analysis in Section 4.2 we use the algorithm
suggested by Genz [10,11] to approximate the orthant probabilities aj (p) above, which
play an important role in the following theorem.

Theorem 3.3. Under H0 and for any t1 and t2, we have

lim
n→∞ P(T01 � t1, T12 > t2) =

c∑
j=0

aj (p(0))P (�2
c−j � t1)P (�2

j > t2),

where �2
0 ≡ 0.

As a consequence of this theorem, we have under H0

lim
n→∞ P(T01 � t) =

c∑
j=0

aj (p(0))P (�2
c−j � t)

and

lim
n→∞ P(T12 � t) =

c∑
j=0

aj (p(0))P (�2
j � t).

It is the case that

lim
n→∞ P(T01 � t1) = lim

n→∞

c∑
j=0

aj (p̂0)P (�2
c−j � t) (3.13)

almost surely if p̂0 is a consistent estimator of p under H0. A natural estimator for p is its
maximum likelihood estimator under H0. Empirical evidence suggests that critical points
and p-values obtained from

c∑
j=0

aj (p̂(0))P (�2
c−j � t) (3.14)

work well due to lack of sensitivity of the level probabilities to changes in the weights [17].

4. Examples

In this section we discuss two examples to illustrate our theoretical results. The hypotheses
in (1.1) and (1.2) can be utilized to test for and against different types of stochastic ordering.

4.1. Example 1

Here we assume that r = 2 and wish to test H0 : p1i = p2i , i = 1, 2, . . . , k − 1,

against H1 − H0 where H1 :
∑j

i=1
p1i �

∑j

i=1
p2i , j = 1, 2, . . . , k − 1. That is, p1 is
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stochastically larger than p2. In this case the matrix HT = [HT
1 |HT

2 ] where

HT
1 = −HT

2 =

⎡
⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
. . . . . . . . . . . . . . .

1 1 1 . . . 1

⎤
⎥⎥⎦ .

It is easy to see that under H0,

HT B̃0H =
[

1

�1
+ 1

�2

]
HT B0

1H.

A direct computation of the (i, j)th element of this symmetric matrix shows that

(HT B̃0H)ij ∝
(

i∑
l=1

p0
1l

)⎛
⎝1 −

j∑
l=1

p0
1l

⎞
⎠ , 1� i�j �k − 1

and its inverse is symmetric with its (i, j)th element given by

[(HT B̃0H)−1]ij ∝

⎧⎪⎪⎨
⎪⎪⎩

1
p0

1i

+ 1
p0

1,i+1
if i = j,

− 1
p0

1,i+1
if j = i + 1,

0 otherwise.

Let Y1, Y2, . . . , Yk be independent random variables with mean zero and variances 1/p0
11,

1/p0
12, . . . , 1/p0

1k , respectively. Let also Ui = Yi+1 − Yi, i = 1, 2, . . . , k − 1. Then
(U1, U2, . . . , Uk−1)

T has a multivariate normal distribution with zero mean vector and
covariance matrix proportional to [HT B̃0H ]−1. Therefore

ak−1(p0)
d= P(N(0, [HT B̃0H ]−1)�0)

= P(U1 �0, U2 �0, . . . , Uk−1 �0)

= P(k, k, p0),

where P(k, k, p0) is the probability that the least-squares projection of (Y1, Y2, . . . , Yk)
T

onto I = {x ∈ Rk, x1 �x2 � · · · �xk} with weights p0
1i , i = 1, 2, . . . , k, has exactly k

distinct levels [18]. It can also be shown that aj (p0) = P(j +1, k, p0), j = 0, 1, . . . , k−2.

Therefore, under H0,

lim
n→∞ P(T01 � t1, T12 > t2) =

k∑
l=1

P(l, k, p(0))P (�2
k−j � t1)P (�2

j > t2)

which gives the result in [16].

4.2. Example 2: Testing against second-order stochastic ordering

Data from [12] consists of the survival times and several covariates for 195 patients
suffering from carcinoma of the oropharynx; approximately 26% of the survival times are
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Table 1
Observed frequencies for the oropharynx carcinoma data set

Population Survival times

0–160 161–260 261–360 361–540 541–900 ni

di1 di2 di3 di4 di5

Population 0 3 5 5 9 6 28
Population 1 2 2 6 2 5 17
Population 2 2 5 4 5 4 20
Population 3 17 16 13 12 11 69

censored. One of the covariates is an ordinal categorical variable with four levels, which
indicates increasing levels of deterioration of lymph nodes in each patient, measured at time
of entry in the study. Because lymph node deterioration is an indication of the seriousness
of the carcinoma, it is reasonable to expect that the four survival time distributions would
be stochastically ordered by the severity of the lymph node deterioration.

Feltz and Dykstra [9], Dykstra and Feltz [3], and Dykstra et al. [4] examine the data
under the assumption of uniform stochastic ordering. Dykstra et al. [4] collapse the survival
times into seven classes as indicated in Table 1 of their paper, and find that the data provide
evidence against the null hypothesis of equal survival functions in favor of uniform stochastic
ordering.

Wang [23], in an effort to examine the hypothesis of stochastically ordered survival
functions, removes censored data and patients with the longest survival times (Group VII
in [4]) and merges Groups V and VI. The resulting data is presented in Table 1. The four
populations (0, 1, 2, 3) correspond to the four levels of lymph node deterioration and the
survival times correspond to the ranges defining each of the five groups of data. Wang [23]
goes on to show that there is no statistical evidence to reject the hypothesis that the first
three populations are the same. The paper then finds that there is some statistical evidence
(p-value = 0.091) to support the claim that Population 3 stochastically dominates the
pooled Population found by combining Populations 0,1 and 2.

Liu and Wang [15] test the hypothesis of equality of the survival functions versus an
alternative of second stochastic ordering for the same collapsed data set by collapsing cells
3, 4 and 5 and combining the populations 0, 1 and 2.

Here we use the full table to test for second-order stochastic ordering. In order to apply
our approach we assume that all the observations in a given interval are equal to the mid-
interval point, which are located at t1 = 80, t2 = 210, t3 = 310, t4 = 450, and t5 = 720.

Further, assume that

P(Xi = tj ) = pij , i = 0, 1, 2, 3, j = 1, 2, . . . , 5.

We wish to test H0 against H1 − H0 where

H0 : p0j = p1j = p2j = p3j , j = 1, 2, . . . , 5
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Table 2
Fitted values for the number of patients within each survival time class for the full data set under the assumption
of second stochastic ordering

Population Group

I II III IV V

Pop. 0 2.88 4.81 4.81 8.65 6.84
Pop. 1 2.14 2.14 6.42 2.14 4.16
Pop. 2 2.00 5.00 4.00 5.00 4.00
Pop. 3 17.00 16.00 13.00 12.00 11.00

H1 :
∫ ∞

x

(1 − F0(u)) du�
∫ ∞

x

(1 − F1(u)) du�
∫ ∞

x

(1 − F2(u)) du

�
∫ ∞

x

(1 − F3(u)) du

for all x�0. Under our assumption, H1 reduces to

pi4 � pi+1,4,

3∑
j=1

(t5 − t3)pij + pi4(t5 − t4) �
3∑

j=1

(t5 − t3)pi+1,j + pi+1,4(t5 − t4),

2∑
j=1

(t5 − t2)pij + pi3(t5 − t3) + pi4(t5 − t4) �
2∑

j=1

(t5 − t3)pi+1,j + pi+1,3(t5 − t3)

+pi+1,4(t5 − t4),

4∑
j=1

(t5 − tj )pij �
4∑

j=1

(t5 − tj )pi+1,j ,

i = 0, 1, 2.

The advantage of our general method over the works of Wang [23] and Liu and
Wang [15] is that it can handle the case of testing equality of several populations classified
into multiple groups versus an alternative of second stochastic ordering. To demonstrate
we fit the entire data set in Table 1, under the assumption of second stochastic ordering.
The fitted cell counts are reported in Table 2. The value of the test statistics for testing for
equality of the probability vectors versus second stochastic ordering is 10.43, which yields a
p-value of 0.316. This p-value is computed according to (3.13) with approximated weights.

Wang [23] finds no statistical evidence against the assumption of equality of the first
three populations (Pops 0–2) in Table 1, So, like Wang [23] we test for equality of the
first three populations. However, we test the hypothesis against an alternative of second
stochastic ordering. The fitted cell counts appear in Table 3. The test statistic for testing the
hypothesis of equality of the probability vectors versus an alternative of second stochastic
ordering is 4.35, which yields a p-value of 0.648 using (3.13) with approximated weights.
So, like Wang [23], we find no statistical evidence of differences between the probability
vectors.
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Table 3
Fitted values for the number of patients within each survival time class for the first three classes of patients under
the assumption of second stochastic ordering

Population Group

I II III IV V

Pop. 0 2.88 4.81 4.81 8.65 6.84
Pop. 1 2.14 2.14 6.42 2.14 4.16
Pop. 2 2.00 5.00 4.00 5.00 4.00

Table 4
Fitted values for the number of patients within each survival time class for the collapsed data set under the
assumption of second stochastic ordering

Population Group

I II III IV V

Pops 0–2 7 12 15 16 15
Pop. 3 17 16 13 12 11

Table 4 contains the fitted frequencies for the data set obtained after collapsing the first
three populations. The observed data satisfies the assumption of second stochastic ordering,
and therefore the observed frequencies are fit exactly. The test statistic for comparing the null
hypothesis of equal survivals against the alternative of second stochastic ordering is 6.08,
and the p-value = 0.173 using (3.13) with approximated weights; there is not significant
evidence against the assumption of equality in favor of second stochastic ordering.

4.3. Example 3

The data is this example is the result of a clinical trial regarding the outcome for patients
who experienced trauma due to subarachnoid hemorrhage are given in Table [21,1]. In
this case there are four treatments (Placebo=1, Low Dose=2, Medium Dose=3 and High
Dose=4) and five possible outcomes (Death=1, Vegetative State=2, Major Disability=3,
Minor Disbaility=4 and Good Recovery =5). For i = 1, 2, . . . , 4 and j = 1, . . . , 5, let

pij = P(Outcome = j | Treatment = i).

Consider testing the null hypothesis of no treatment effect against the alternative of higher
dose being more effective. Specifically, we want to test H0 against H1 − H0 where

H0 : p1j = p2j = p3j = p4j , j = 1, . . . , 5,
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Table 5
The results of a clinical trial comparing the effectiveness of varying levels of a treatment on patients who lead
suffered from a subarachnoid hemorrhage

Treatment Death Vegitative state Major disability Minor disability Good recovery

Placebo 59 25 46 48 32
Low dose 48 21 44 47 30
Medium dose 41 14 54 64 31
High dose 41 4 49 58 41

Table 6
The fitted values of the clinical trial data under the null hypothesis, which states that there is no difference between
dosages

Treatment Death Vegitative state Major disability Minor disability Good recovery

Placebo 50.20 16.82 50.73 57.03 35.22
Low dose 45.42 15.22 45.89 51.60 31.86
Medium dose 48.77 16.34 49.28 55.40 34.21
High dose 46.61 15.62 47.10 52.96 32.70

Table 7
The fitted values of the clinical trial data under the alternative hypothesis, which states that the outcome distribution
is stochastically ordered by the level of the dosage

Treatment Death Vegitative state Major disability Minor disability Good recovery

Placebo 59.00 25.00 46.00 48.00 32.00
Low dose 48.23 21.10 44.21 47.23 29.22
Medium dose 42.85 13.76 53.09 62.92 31.38
High dose 40.96 4.05 49.66 58.78 41.55

and

H1 :
j∑

l=1

p4l �
j∑

l=1

p3l �
j∑

l=1

p2l �
j∑

j=1

p1l , j = 1, . . . , 4.

The fitted values under H0 and H1 are given, respectively, in Tables 6 and 7 The values
of the test statistic for testing H0 against H1 − H0 is 28.43 and the p-value based on (3.14)
is 0.00028.

5. Concluding remarks

In this paper we have shown how to test for or against a set of linear inequality constraints
placed upon the probability vectors of independent multinomials using the likelihood ap-
proach. Examples of this include testing for or against second-order stochastic ordering.
Our result extend, in particular, those of Robertson and Wright [16], El Barmi and Dykstra
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[7], Wang [23] and Liu and Wang [15]. We have also provided examples to illustrate our
theoretical results.

Acknowledgements

The authors would like to thank the editor and a referee for helpful comments and sug-
gestions that led to a much improved paper. The authors are especially grateful to the referee
for his painstaking scrutiny that found several errors and many typos.

Appendix

In this section we give the proof of the main results. The following identities which follow
from the definition of P 0(P 0(�)), Q0(Q0(�)) and R0(R0(�)) will be used in the proofs
that follow.

(a) [B̃0]−1P 0 − HQ0 = I, (b) − HT P = 0,

(d) [B̃0]−1Q0 − HR0 = 0, (e) − HT Q0 = I,

(f) [B̃0]−1P 0(�) − HQ0(�) = I, (g) − HT (�)P (�) = 0,

(h) [B̃0]−1Q0(�) − H(�)R0(�) = 0, (e) − HT (�)Q0(�) = I.

The following lemmas will be used in the proof of Theorem 3.2.

Lemma 6.1. The following identities hold

[B̃0]−1/2(P 0(�) − P 0)[B̃0]−1Q0(�)R0(�)Q0T (�)[B̃0]−1/2 = 0,

[B̃0]−1/2(P 0(�) − P 0)[B̃0]−1Q0(�) = 0,

[B̃0]−1/2(P 0(�) − P 0)[B̃0]−1P 0(�)H(�̃) = [B̃0]−1/2P 0(�)H(�̃),

[B̃0]−1/2Q0(�)R0(�)Q0T (�)[B̃0]−1Q0(�) = [B̃0]−1/2Q0(�),

[B̃0]−1/2Q0(�)R0(�)Q0T (�)[B̃0]−1P 0(�)H(�̃) = 0.

Proof. Follows immediately from the identities above. �

The proof of the following lemma can be found in [8].

Lemma 6.2. Suppose X has a multivariate normal distribution with zero mean vector and
covariance matrix I, P is an idempotent symmetric matrix of rank r and d1, d2, . . . , dk are
k vectors satisfying either P di = 0 or P di = di for all i. Then the conditional distribution
of XT P X given dT X�0, i = 1, 2, . . . , k, is that of a chi-squared random variable with r
degrees of freedom.

Proof of Theorem 3.2. We show that the likelihood ratio test statistic in this case has,
asymptotically, a chi-square distribution with c-card(�) degrees of freedom. Without loss
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of generality, assume that card(�) = c1 and that H(�), the sub-matrix of H that corresponds
to the constraints in H1:�, is made of the first c1 columns of H. Let P(�) and Q(�) be the
values P and Q in (3.8) for matrix H(�) (instead of H).

Let T01:� denote the likelihood ratio test statistic for testing H0 against H0 − H1(�).
Next, we show that its limiting distribution is a chi-square with c − c1 degrees of freedom.
Let p̂ denote the unrestricted maximum likelihood estimator of p. Since

√
n[p̂ − p(0)] = 1√

n
B̃0D ln L(p0) + op(1), (6.15)

(3.8) and (3.11) imply that

√
n[p̂

(0)

− p̂] = 1√
n
[P 0 − B̃0]D ln L(p0) + op(1) (6.16)

and

√
n[p̂(�) − p̂] = 1√

n
[P(�) − B̃0]D ln L(p0) + op(1). (6.17)

Applying a Taylor’s expansion of ln L(p̂
(0)

) and ln L(p̂
(0)

(�)) around p̂ under H0 we find
that

ln L(p̂
(0)

) = ln L(p̂) − 1

2
n(p̂

(0) − p̂)T [B̃0]−1(p̂
(0) − p̂) + op(1),

ln L(p̂(�)) = ln L(p̂) − 1

2
n(p̂(�) − p̂)T [B̃0]−1(p̂(�) − p̂) + op(1).

Therefore, we have

T01:� = −2
(
D ln L(p̂

(0)
) − D ln L(p̂(�))

)
= n(p̂(�) − p̂)T [B̃0]−1(p̂(�) − p̂) − n(p̂(�) − p̂)T [B̃0]−1(p̂(�) − p̂) + op(1)

= [n−1/2D ln L(p0)]T (P 0 − B̃0)[B̃0]−1(P 0 − B̃0)[n−1/2D ln L(p0)]
−[n−1/2D ln L(p0)]T (P 0(�) − B̃0)[B̃0]−1(P 0(�) − B̃0)

×[n−1/2D ln L(p0)] + op(1)

= [n−1/2D ln L(p0)]T (P 0(�) − P)[n−1/2D ln L(p0)] + op(1), (6.18)

where the last equality follows from the identities above.
Since n−1/2D ln L(p0) converges in distribution as n goes to infinity to N(0, [B̃0]−1)

and since

(P 0(�) − P 0)[B̃0]−1(P 0(�) − P 0)[B̃0]−1 = (P 0(�) − P 0)[B̃0]−1,

T01:� converges in distribution to a chi-square random variable with rank(P 0(�) − P 0)

degrees of freedom. But

rank(P 0(�) − P 0) = rank
(
(P 0(�) − P 0)[B̃0]−1

)
= trace

(
(P 0(�) − P 0)[B̃0]−1

)
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since (P 0(�) − P 0)[B̃0]−1 is idempotent. Since

trace
(
(P 0(�) − P 0)[B̃0]−1

)
= trace(P 0(�)[B̃0]−1) − trace(P 0[B̃0]−1) = c − c1,

we have the desired conclusion. �

Proof of Theorem 3.3. For any observed data set, p̂(1) equals p̂(�) for exactly one �.
Moreover p̂(1) = p̂(�) if and only if

r∑
i=1

k∑
j=1

x
(s)
ij p̂ij (�) < 0 ∀s ∈ �̃, (6.19)

�̂s(�) > 0 ∀s ∈ �. (6.20)

Let T12:� be the test likelihood ratio test statistic for testing H1:� against H2 −H1. It follows
from [22] that

T12:� = −1

n
[D ln L(p0)]T Q0(�)R0(�)Q0(�)D ln L(p0) + op(1). (6.21)

Using (3.11) and (3.12), (6.21) we have

P(T01 � t1, T12 � t2)

=
∑
�∈F

P(T01 � t1, T12 � t2, p̂(1) = p̂(�))

=
∑
�∈F

P

⎛
⎝T01 � t1, T12 � t2,

r∑
i=1

k∑
j=1

x
(s)
ij p̂ij (�) < 0 ∀s ∈ �̃, �̂s(�) > 0 ∀s ∈ �

⎞
⎠

=
∑
�∈F

P

⎛
⎝T01:� � t1, T12:� � t2,

r∑
i=1

k∑
j=1

x
(s)
ij p̂ij (�) < 0 ∀s ∈ �̃, �̂s(�) > 0 ∀s ∈ �

⎞
⎠

=
∑
�∈F

P([n−1/2D ln L(p0)]T (P 0(�) − P 0)[n−1/2D ln L(p0)] + op(1)� t1,

−1

n
[D ln L(p0)]T Q0(�)R0(�)Q0T (�)D ln L(p0) + op(1)� t2

×
r∑

i=1

k∑
j=1

x
(s)
ij p̂ij (�) < 0 ∀s ∈ �̃, �̂s(�) > 0 ∀s ∈ �)

=
∑
�∈F

P([n−1/2D ln L(p0)]T (P 0(�) − P 0)[n−1/2D ln L(p0)] + op(1)� t1,

−1

n
[D ln L(p0)]T Q0(�)R0(�)Q0T (�)D ln L(p0) + op(1)� t2,

×n−1/2HT (�̃)P 0(�)D ln L(p0) + op(1) < 0,

×n−1/2Q0T (�)D ln L(p0) + op(1) > 0).
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Since n−1/2D ln L(p0) converges in distribution as n goes to infinity to N(0, [B̃0]−1),

lim
n→∞ P(T01 � t1, T12 � t2)

=
∑
�∈F

P(UT (P 0(�) − P 0)U� t1, UT Q0(�)R0(�)Q0T (�)U� t2,

HT (�̃)P 0(�)U < 0, Q0T (�)U�0),

where U has a multivariate normal distribution with zero mean vector and variance [B̃0]−1.
Let Z have a multivariate normal distribution with zero mean vector and variance equal to
the identity matrix I, then

lim
n→∞ P(T01 � t1, T12 � t2)

=
∑
�∈F

P(UT (P 0(�) − P 0)U� t1, UT Q0(�)R0(�)Q0T (�)U� t2,

HT (�̃)P 0(�)U < 0, Q0T (�)U�0)

=
∑
�∈F

P(ZT [B̃0]−1/2(P 0(�) − P 0)[B̃0]−1/2Z� t1,

ZT [B̃0]−1/2Q0(�)R0(�)Q0T (�)[B̃0]−1/2Z� t2,

HT (�̃)P 0(�)[B̃0]−1/2Z < 0, Q0T (�)[B̃0]−1/2Z�0).

Using Lemmas 6.1, 6.2 and Lemma D (Robertson et al. [18], page 71), we get∑
�∈F

P(ZT [B̃0]−1/2(P 0(�) − P 0)[B̃0]−1/2Z� t,

Q0T (�)[B̃0]−1/2Z�0, HT (�)P 0(�)[B̃0]−1/2Z < 0)

=
∑
�∈F

P(ZT [B̃0]−1/2(P 0(�) − P 0)[B̃0]−1/2Z� t1)

×P(ZT [B̃0]−1/2Q0(�)R0(�)Q0T (�)[B̃0]−1/2Z� t2)

×P(Q0T (�)[B̃0]−1/2Z�0)P (HT (�)P 0(�)[B̃0]−1/2Z < 0).

Note that by Theorem 3.2,

P(ZT [B̃0]−1/2(P 0(�) − P 0)[B̃0]−1/2Z� t1) = P(�2
c−card(�) � t1).

Since [B̃0]−1/2Q0(�)R0(�)Q0T (�)[B̃0]−1/2 is idempotent with rank equal to cardinal of
�, we have

P(ZT [B̃0]−1/2Q0(�)R0(�)Q0T (�)[B̃0]−1/2Z� t2) = P(�2
card(�) � t2).

Therefore

lim
n→∞ P(T01 � t1, T12 � t2) =

c∑
j=0

P(�2
c−j � t1)P (�2

j � t2)

×
∑

�∈F ,card(�)=j

P (Q0T (�)[B̃0]−1/2Z�0)

×P(HT (�)P 0(�)[B̃0]−1/2Z < 0).
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Since

Q0T (�)[B̃0]−1Q0(�) = −R0(�) = [HT (�)B̃0H(�)]−1

P(Q0T (�)[B̃0]−1/2Z > 0) = P(N(0, Q0T (�)[B̃0]−1Q0(�)�0)

= P(N(0, [HT (�)B̃0H(�)]−1)�0).

Also

P(HT (�̃)P 0(�)[B̃0]−1/2Z < 0) = P(N(0, HT (�̃)P 0(�)H(�̃) < 0)

so that ∑
�∈F ,card(�)=j

P (Q0T (�)[B̃0]−1/2Z�0)P (HT (�)P 0(�)[B̃0]−1/2Z < 0) = aj (p0).

Putting all this together gives the desired conclusion. �
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