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1. Introduction

The study of nonlinear oscillators is of great importance not only in all areas of physics but also in engineering and
other disciplines, since most phenomena in our world are nonlinear and are described by nonlinear equations. Recently,
considerable attention has been directed towards the analytical solutions for nonlinear oscillators, for example, variational
iteration method [1-7], parameter-expanding method [8-11], variational methods [12,13], and Exp-function method
[14,15]. Surveys of the literature with multitudinous references and useful bibliographies have been given in [16,17]. In
this paper, we will show how to solve nonlinear oscillators quickly by using the homotopy perturbation method [18-20].

2. Solution procedures

This paper considers the following two nonlinear oscillators.
Case 1: An important and interesting nonlinear differential equation is the following one

u” =0, u'(0) = A, u(0)=0. 1
e 0) 0) (1)
Re-write Eq. (1) in the form

” u ” 1-u ’

U+ ———==t'+——==0, V0)=4 u(0)=0, (2)

1 \?2 1 \?2
)

where p € [0, 1] and is an imbedding parameter. As in He’s homotopy perturbation method [ 18-20], it is obvious that when
p = 0, Eq. (2) becomes a linear equation; when p = 1, it becomes the original nonlinear one. Applying the perturbation
technique, the solution of Eq. (2) and the coefficient 1 can be expressed as a power series in p:

U=ty +pus +p’uy +plus + - -, (3)
1= w? + pw; + p*wy + pPPws + - -. (4)
Setting p = 1 leads to the approximate solution of the problem:

”app=;LIT}U=U0+U1+U2+U3+"'- (5)
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Substituting (3) and (4) into (2) and equating the coefficients of like powers of p, we expand H(Ei/uz)l into Taylor series
pl/u
1-u _ T-u _ 2, .24 36 2 2 3
7T 5 =u(1—pu’ +piu* —pu® + ) (0° + po1 + P*wr + PPws + -+ -). (6)
1+(p?u) —(—pu)
We can obtain series of inhomogeneous linear differential equations
P’ ug = —w’uy, up(0) =A,  ug(0) =0, ™)
p' U = —0uy + 0*ud — wiup, U} (0) =0, u; (0) =0 (8)
Thus, by solving the equations above, we obtain
Uug = Acos wt. 9)
If the first-order approximation is enough, then setting p = 1, we have
1=0w’+w. (10)
Substituting Eqgs. (9) and (10) into Eq. (8) yields
uf = —o’uy + o’ (Acoswt)’ — (1 — @*) (Acoswt) (11)
PR , 3A%? Aow?
u; +ou +Al1 - — 3 cos wt — 2 cos 3wt = 0. (12)
No secular terms requires
, 3A%0?
1—ow — =0. (13)
4
Thus, we obtain the relation between the frequency and amplitude, which reads
1
0= —— (14)
/ 34
1+ %
Solving the following equation
3,2
U + o*uy — cos 3wt = 0, (15)
we have
Alw?
Uy = —————  (cos 3wt — coswt) . 16
"= e 1) ) (16)
Consequently, the first-order approximate solution can be written as follows
Aw?
Uu=1uy+u =Acoswt — ——— (cos 3wt — coswt) . 17
o 4(9? — 1) ( ) (17)

Its periodic solution is generally expressed in the form

342\ ?
u(t) = Acos |:<1 + T) t:| ) (18)

Case 2: Mickens recently analyzed the nonlinear differential equation [21]

1
v+ o= 0, u'(0)=A, u(0) =o0. (19)
Re-writing Eq. (19), we have
uu” +1=0, (20)
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or
v +u (u”)2 =0. (21)

Then we establish the following homotopy
U+ u+p [u (u”)2 — wzu] =0, pelo,1]. (22)

It is obvious that when p = 0, Eq. (22) becomes a linear equation; when p = 1, it becomes the original nonlinear one.
By the homotopy perturbation method [18-20], we can obtain a series of linear equations, and we write only the first
two linear equations:

P’ iuf + 0’y =0, uy(0)=A, uy(0) =0, (23)

Pl 4 ouy +uo (uf)’ — @Pug =0, u;(0)=0, u(0)=0 (24)
From Eq. (23), we obtain

Up = Acos wt. (25)

Substituting Eq. (25) into Eq. (24) leads to

u} + o*u; + Acos wt [(—Aa)2 cos a)t)2 - a)z] =0, u;(0)=0, u;(0)=0, (26)
or
A 2 3 4
U + o?u; + % (4 — 3A%0%) cos wt — Y cos3wt = 0. (27)
Eliminating the secular term, we have
A 2
2 (a-3m%2) =0, (28)
4
From the above equation, we can easily find that
- (29)
w=—,
V3A

which reduces to that in Ref. [21]
According to Egs. (27) and (28), the solution reads

Aot

U = (cos 3wt — cos wt) . (30)

We, therefore, obtain the first-order approximation by setting p = 1

3,4
u=1ug+u; =Acoswt + = (cos 3wt — cos wt) . (31)
Its periodic solution is generally expressed in the form
t)=A ( 2 A”t) (32)
u(t) =Acos| — .
V3

3. Conclusion

The homotopy perturbation method is proved to be a useful mathematical tool to nonlinear oscillators and the present
short note can be used as a paradigm for many other applications in searching for period or frequency of nonlinear oscillators.
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