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a b s t r a c t

Stabilizing unstable periodic orbits of a deterministic chaotic system which is perturbed
by a stochastic process is studied in this paper. The stochastic chaos is modeled by exciting
a deterministic chaotic system with a white noise obtained from derivative of a Wiener
process which eventually generates an Ito differential equation. It is also assumed that the
chaotic system being studied has some model uncertainties which are not random. The
sliding mode controller with some modifications is used for stochastic chaos suppression.
It is shown that the system states converge to the desired orbit in such a way that the error
covariance converges to an arbitrarily small bound around zero. As some case studies, the
stabilization of 1-cycle and 2-cycle orbits of chaotic Duffing and Φ6 Van der Pol systems
is investigated by applying the proposed method to their corresponding stochastically
perturbed systems. Simulation results show the effectiveness of the method and the
accuracy of the statements proved in the paper.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Chaos control with the aim of stabilizing the unstable periodic orbits of a chaotic system has received a great deal of
interest in the last two decades. The first documented research in this field goes back to 1990s, when Ott, Grebgi and York
proposed a novel method for chaos control by linearization of Poicare map around the fixed points of a chaotic map [1–
3]. In 1992 another approach, based on delayed feedback control, was presented for stabilizing unstable periodic orbits of
continuous time chaotic systems, called Pyragas method [4]. In recent years, many nonlinear techniques for chaos control
were used, such as feedback linearization [5–7], sliding mode control [8–10], Lyapunov based control [11–13] and fuzzy
system based control [14–16]. In all of the mentionedmethods the chaotic system has a deterministic differential equation;
there is no random parameter or random excitation on the system governing equation. In many practical situations, the
chaotic systemmay be affected by random inputs due to systemuncertainties and environmental noise. Controlling chaos in
such systems needs to implement stochastic tools and concepts. For modeling stochastic chaos in continuous time systems,
an Ito stochastic differential form [17] is utilized by using the derivative of aWiener process which creates a white Gaussian
noise. This provides a standard stochastic differential equation. Any other stochastic chaotic system should be expressed by
this standard form.
There are some important articles on the stochastic chaos dynamics, the effects of noise on chaotic systems, and the

ergodic theory in stochastic chaotic systems [18,19]. Stochastic chaotic systems appear in many fields of science and
engineering such as mechanical engineering [20], biology [21–23], chemistry [24], physics and laser science [25] and
economics [26]. In most of these works, the stochastic chaos has been modeled by adding a bounded random process to
some systems parameters or by applying a bounded random excitation to the input signal. These models do not possess the
special properties of standard stochastic differential equations, because they have utilized bounded random processes [27].
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In [20] the stochastic chaos of a Duffing system is studied where a bounded random process is added to one of the system
parameters, and by the use of a non-feedback strategy the chaos has been quenched in the system. A general way to classify
stochastic chaos is presented and is applied to population dynamic models in [23]. In [24] the relative intensity noise in
a laser diode is considered as a result of the feedback-induced deterministic chaos and the intensity noise suppression is
treated from the view point of chaos control. Controlling the Van der Pol oscillator under the influence of white noise in the
regime below the Hopf bifurcation where the deterministic system has a stable fixed point and is not chaotic is investigated
in [28]. Stabilizing unstable periodic solutions of chaotic systems which have been perturbed by white Gaussian noise is
investigated in [29]. In [29] stochastic chaos has been modeled through Ito differential form and a control algorithm has
been proposed based on adaptive control.
In the present work, the Ito form of differential equation is used to model the stochastic chaotic systems. The derivative

of a standardWienner process is used to generate a continuous time Gaussian white noise, and this random process is used
to model the stochastic excitation or stochastically time varying parameters of the system. The stochastic chaotic system is
produced by applying the stochastic excitation or stochastically time varying parameters to a deterministic chaotic system.
In this paper the unstable periodic orbit of a deterministic chaotic system is targeted for stabilization when the system is
excited by a white Gaussian noise. It is assumed that the system dynamic equation has also some uncertainties besides
the random excitations. The sliding mode control with some modification is used for controlling stochastic chaos toward
desired unstable periodic orbits of the deterministic chaotic system. It must be noted that the conventional techniques of
chaos control which are based on the slidingmodemethod [8–10,30,31] are commonly used only for deterministic systems.
It is shown that the convergence of the stochastic states to the desired periodic orbit can not be completely achieved but
tracking error variance will converge to an arbitrarily small bound around zero by applying the proposed sliding mode
control. The stochastic Duffing and Φ6-Van der Pol chaotic systems are used for examining the proposed control scheme.
Simulation results show the correctness and accuracy of the statements presented in this paper.

2. Problem statement

Consider the following ordinary differential equation as a chaotic system:

x(n) = f (x, t)+ b(x, t)u (1)

where x = (x, ẋ, . . . , x(n−1)) = (x1, x2, . . . , xn) ∈ Rn is the state vector, f : Rn × R+ → R and b : Rn × R+ → R are two
nonlinear and sufficiently smooth functions and u is the control variable. It is assumed that for u = 0 Eq. (1) shows chaotic
behavior. A stochastic chaotic system which is modeled by an Ito stochastic differential equation is obtained by adding a
white noise process to the right hand side of Eq. (1):

x(n) = f (x, t)+ b(x, t)u+ h(x, t)v̇ (2)

where h : Rn × R+ → R is a nonlinear, sufficiently smooth and bounded function, |h(x, t)| ≤ H . v is a standard Wiener
process and v̇ = dv/dt produceswhite Gaussian noise process. Due to some technicalities and restrictions used in definition
of v̇ = dv/dt [17], Eq. (2) must be rewritten in the following differential form:

dx(n−1) = [f (x, t)+ b(x, t)u]dt + h(x, t)dv. (3)

It is assumed that xd(t) is one of unstable periodic orbits of the deterministic chaotic system of Eq. (1), so:

x(n)d = f (xd, t). (4)

It is supposed that h(xd, t) 6= 0. In addition it is assumed that the functions f and b have some uncertainties with known
upper and lower bounds, and their nominal values are denoted by f̂ and b̂, respectively. Also the function b is a positive
definite function which has a strictly positive lower bound bm, and upper bound bM :

|f (x, t)− f̂ (x, t)| < F(x, t) (5)

0 < bm(x, t) < b(x, t) < bM(x, t)
0 < bm(x, t) < b̂(x, t) < bM(x, t).

(6)

Uncertainties on function h(x, t) are modeled through Wiener process v̇, so there is no need to set any assumption on
the uncertainties of h(x, t). The main goal is to design a feedback Markov controller uwhich stabilizes the unstable periodic
orbits of the deterministic chaotic system (1), in the stochastic chaotic system (2).

3. Stochastic chaos control

It is assumed that all the states of system (2) are measurable. Setting e = x− xd, e = x− xd and subtracting (4) from (2)
one obtains the error dynamics as:

e(n) = f (xd + e, t)− f (xd, t)+ b(xd + e, t)u+ h(xd + e, t)v̇. (7)



H. Salarieh, A. Alasty / Journal of Computational and Applied Mathematics 225 (2009) 135–145 137

The above equation is an Ito stochastic differential equation that must be rewritten in the following differential form:

de(n−1) = [f (xd + e, t)− f (xd, t)+ b(xd + e, t)u]dt + h(xd + e, t)dv. (8)

The above equation implies that e(t) is a stochastic process so it is preferred to use the mean square convergence in
designing an appropriate controller which asymptotically stabilizes the unstable periodic orbit, xd. The mean square norm
is defined as:

‖e‖ ,
(
E[eTe]

)1/2
(9)

where E[.] is the expected value function.
Prior to move into controller design procedure, three important remarks should be stated.

Remark 1. Regarding the definition of the Wiener process we have [17]:

E [h(x(t), t)dv(t)] = 0, E
[
k(x, t)dv(t)

]2
= k2(x, t)dt. ♣ (10)

Remark 2. There is not any feedback Markov control such that complete tracking achieves, i.e. ‖x(t)− xd(t)‖2 → 0, where
‖.‖2 is the standard Euclidian norm. Otherwise if we assume the achievement of complete tracking, it means that xd must
satisfy Eq. (2), so:

x(n)d = f (xd, t)+ b(xd, t)u+ h(xd, t)v̇. (11)

Then, comparing with Eq. (4) it is obtained that:

b(xd, t)u+ h(xd, t)v̇ = 0. (12)

This implies that u is not a Markov process, so Eq. (11) can not be achieved. ♣

Remark 3. If y = g(x, t) is a scalar value, i.e. g : Rn × R+ → R, and g is a twice differentiable function, where x satisfies
Eq. (3), then:

dy =
∂g
∂t
dt +

n∑
i=1

∂g
∂xi
dxi +

1
2

n∑
i,j=1

∂2g
∂xi∂xj

dxidxj (13)

where xi is the ith element of the x vector. For expanding Eq. (13) it must be noted that [17]:

dt · dt = 0, dt · dv = 0, dv · dv = dt (14)

where v is a Weiner process. ♣

Design procedure of the sliding mode control starts with definition of a sliding surface as:

S(t) =
(
d
dt
+ λ

)n−1
e(t) =

n−1∑
m=0

(
n− 1
m

)
e(n−1−m)λm,

(
n− 1
m

)
=

(n− 1)!
m!(n− 1−m)!

(15)

where λ is an arbitrary positive constant. Note that S is a stochastic process which satisfies the following Ito differential
form:

dS(t) =
n−1∑
m=1

(
n− 1
m

)
λme(n−1−m)dt +

[
f (xd + e, t)− f (xd, t)+ b(xd + e, t)

]
dt + h(xd + e, t)dv. (16)

To design the control law, first consider the following theorem.

Theorem 1. Let ∆ be a set as:

∆ =

{
S ∈ R|E

[
S2
]
≤
H2

θ

}
(17)

where θ is an arbitrary positive constant. Define a control law as:

u = −
1

bm(xd + e, t)

[
f̂ (xd + e, t)− f̂ (xd, t)+

n−1∑
m=1

(
n− 1
m

)
e(n−1−m)λm + Ksign(S(t))+ θS(t)

]
(18)
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where

K ≥

{
F(xd + e, t)+ F(xd, t)+

(
bM
bm
− 1

)(
|f̂ (xd + e, t)− f̂ (xd, t)| +

∣∣∣∣∣n−2∑
m=1

(
n− 2
m

)
e(n−m)λm

∣∣∣∣∣
)}

. (19)

Applying the control action of Eq. (18) to the stochastic chaotic system of Eq. (8), make the∆ set to be an attracting set, i.e.

E
[
S2(t)

]
≤
H2

θ
as t →∞. (20)

In other words, the control law of Eq. (18) implies that, an exponentially stable form of the tracking errors converge, in the
mean square norm, toward an arbitrarily small bound around zero.

Proof. Consider a Lyapunov function constructed by the mean square norm of S(t) and its differential form:

V (t) =
1
2
E
[
S2(t)

]
(21)

dV =
1
2
E
[
d(S2(t))

]
. (22)

Using Eq. (13) it is obtained that:

d(S2(t)) = 2S(t)dS(t)+ dS(t)dS(t). (23)

Substituting Eq. (16) into Eq. (23) and using Eq. (14) result in:

d(S2(t)) = 2S(t)

[
n−1∑
m=1

(
n− 1
m

)
λme(n−1−m)dt +

[
f (xd + e, t)− f (xd, t)

+ b(xd + e, t)
]
dt + h(xd + e, t)udv

]
+ h2(xd + e, t)dt. (24)

Applying the expected value function to Eq. (24) and using the properties of Weiner process mentioned in Remark 1, it
is obtained that:

dV = E

(
S(t)

[
n−1∑
m=1

(
n− 1
m

)
λme(n−1−m)dt +

[
f (xd + e, t)− f (xd, t)

+ b(xd + e, t)u
]
dt

]
+
1
2
h2(xd + e, t)dt

)
. (25)

So:

V̇ = E

(
S(t)

[
n−1∑
m=1

(
n− 1
m

)
λme(n−1−m) + f (xd + e, t)− f (xd, t)+ b(xd + e, t)u

]
+
1
2
h2(xd + e, t)

)
. (26)

Substituting control law (18) into the right hand side of Eq. (26) and regarding Eq. (19) result in:

V̇ ≤ −θE
[
S2(t)

]
+
1
2
E
[
h2(xd + e, t)

]
. (27)

Eq. (27) implies that the set defined in Eq. (17) is an attracting set of the S(t) trajectories. To show this, first assume that
in t = t0, S(t) is outside the∆ set, so:

E
[
S2(t0)

]
>
H2

θ
. (28)

Since H is the upper bound of |h(x, t)|, then:

V̇ (t0) ≤ −θE
[
S2(t0)

]
+
1
2
E
[
h2(xd + e, t)

]
< 0. (29)

This implies that V decreases along S(t) trajectory until S(t) enters into the∆ set.
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Fig. 1. Schematic diagram of the convergence in Theorem 1.

On the other hand if in t = t0, S(t) ∈ ∆ then for all t > t0, S(t) will remain in ∆. If S(t) tends to exit the ∆ set, it must
pass the following region:

H2

2θ
< E

[
S2(t)

]
<
H2

θ
. (30)

In this region, regarding Eq. (29) it is obvious that V̇ < 0 hence V is a decreasing function, and then S(t) can not exist the
∆ set. Therefore, the statement of Eq. (20) is proved (see Fig. 1). ♣

Note that θ is an arbitrary constant, so for large values of θ , the mean square of S(t) is arbitrarily small.

Theorem 2. Let:

η =
[
e ė · · · e(n−2)

]T
. (31)

Under the assumptions of Theorem 1 it is obtained that:

E
[
ηT(t)η(t)

]
≤

H2

λ2n−2θ
,

E
[(
e(n−1)(t)

)2]
≤ 2

(
1

λ2n−2

n−1∑
m=1

[(
n− 1
m

)
λm
]2
+ 1

)
H2

θ
.

(32)

In other words, as the switching function S(t) converges to the ∆ set of Eq. (17), the error trajectories converge, in the mean
square norm, to an arbitrarily small region around zero.

Proof. Considering the definition of S(t), one can write:

n−1∑
m=0

(
n− 1
m

)
λme(n−1−m) = δ(t)⇒ e(n−1) = −

n−1∑
m=1

(
n− 1
m

)
λme(n−1−m) + δ(t) (33)

where E
[
δ2(t)

]
< H2

θ
for sufficiently large t . Now let:

A =



0 1 0 · · · 0

0 0 1
...

...
. . .

. . . 0
0 0 · · · 0 1

−λn−1
(
n− 1
n− 1

)
−λn−2

(
n− 1
n− 2

)
· · · −λ2

(
n− 1
2

)
−λ

(
n− 1
1

)


(n−1)×(n−1)

, B =


0
0
...
0
1


(n−1)×1

(34)

then Eq. (33) can be rewritten as:

η̇(t) = Aη(t)+ Bδ(t), η =
[
e ė · · · e(n−2)

]T
. (35)
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Solving the above equation for η it is obtained that:

η(t) = exp (−A(t − t0)) η(t0)+
∫ t

t0
exp (−A(t − τ)) Bδ(τ )dτ . (36)

To calculate the mean square of error we have:

E
[
ηT(t)η(t)

]
= E

[(
exp (−A(t − t0)) η(t0)

)T (
exp (−A(t − t0)) η(t0)

)]
+ 2E

[(
exp (−A(t − t0)) η(t0)

)T ∫ t

t0
exp (−A(t − τ)) Bδ(τ )dτ

]

+ E

[(∫ t

t0
exp (−A(t − τ)) Bδ(τ )dτ

)T ∫ t

t0
exp (−A(t − τ)) Bδ(τ )dτ

]
. (37)

On the sliding surface, the system dynamics is chosen to be exponentially stable. Therefore two first terms of the above
equation converge to zero for large t , so:

lim
t→∞

E
[
ηT(t)η(t)

]
= lim
t→∞

E

[(∫ t

t0
exp (−A(t − τ)) Bδ(τ )dτ

)T ∫ t

t0
exp (−A(t − τ)) Bδ(τ )dτ

]
. (38)

From linear system and real analysis theories [32], it is concluded that:

lim
t→∞

E
[
ηT(t)η(t)

]
≤

(
BT
(
A−1

)T
A−1B

)
lim sup
t→∞

(
E
[
δ2(t)

])
≤

(
BT
(
A−1

)T
A−1B

) H2
θ
=

H2

λ2n−2θ
. (39)

From Eq. (33) it is obtained that:

(
e(n−1)

)2
≤ 2

{
n−1∑
m=1

[(
n− 1
m

)
λm
]2 (
e(n−1−m)

)2
+ (δ(t))2

}
. (40)

Hence,

E
[(
e(n−1)

)2]
≤ 2

{
n−1∑
m=1

[(
n− 1
m

)
λm
]2
E
[(
e(n−1−m)

)2]
+ E

[
(δ(t))2

]}
. (41)

Substituting Eq. (39) into Eq. (41) yields:

E
[(
e(n−1)

)2]
≤ 2

{
1

λ2n−2

n−1∑
m=1

[(
n− 1
m

)
λm
]2
+ 1

}
H2

θ
(42)

and this completes the proof. ♣

Therefore, the mean square error can also be arbitrarily small for sufficiently large θ .

Remark 4 (UPO Calculation). There are some standard techniques to extract UPO in deterministic chaotic systems, e.g.
References [33,34] introduce some of these techniques. For the stochastic case since xd is the UPO of the deterministic
system, we have

xd = E
[
xd
]
. (43)

So the desired orbit satisfies the following equation:

x(n)d = f (xd, t)⇒

x(n)d = E
[
x(n)d
]
= E

[
f (xd, t)+ h(xd, t)v̇

]
= E

[
f (xd, t)

]
.

(44)

Note that

dn

dtn
E [x] = E

[
x(n)
]
= E

[
f (x, t)+ h(x, t)v̇

]
(45)

hence xd = E
[
xd
]
is a UPO of the above equation. Therefore one can use the conventional methods of finding the UPO of

deterministic systems by applying them to E
(
x
)
which is calculated from the observation, i.e. the measurement of x. ♣
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Fig. 2. (a) Chaotic attractor of the Duffing system, (b) Two unstable periodic orbits of the Duffing system.

4. Simulation results

In this section the suggested controller is applied to two different systems and the control performancewill be examined.

4.1. Duffing system

The following differential equation represents the chaotic Duffing system excited by a white noise:

ẍ = αx+ βx3 + γ ẋ+ f0 cos t + (1+ x2)u+ av̇. (46)

For α = 1, β = −1, γ = −0.15, f0 = 0.3, u = 0 and a = 0 a deterministic chaotic Duffing system is achieved. u is the
control action and v is a standard Wiener process. So the functions defined in Eqs. (1) and (2) are:

f (x, ẋ, t) = αx+ βx3 + γ ẋ+ f0 cos t

b(x, ẋ, t) = 1+ x2

h(x, ẋ, t) = a.

(47)

It is assumed that the system parameters and functions have some uncertainties and their nominal values are, α̂ = 1.2,
β̂ = −1.5, γ̂ = −0.1, f̂0 = 0.5, b̂(x, ẋ, t) = 1.5 + x2. The upper and lower bounds of the uncertain functions are assumed
to be known and selected as:

F(x, ẋ, t) = |x| + |x|3 + |ẋ| + 0.3, bm(x, ẋ, t) = 1, bM(x, ẋ, t) = 2+ x2. (48)

Here the unstable periodic orbits of periods 2π and 4π are chosen for stabilization. Fig. 2(a), (b) show, respectively, the
phase portrait, the 2π-periodic (1-cycle) and the 4π-periodic (2-cycle) orbits of the deterministic chaotic Duffing system.
The presented control scheme in Eqs. (18) and (19) with θ = 1 and λ = 1 is used for stabilizing the mentioned periodic
orbits in the phase space of the stochastic Duffing equation with h(x, ẋ, t) = a = 0.5. The results of simulation using a
fourth-order Runge–Kuta–Maruyama algorithm with time step of 0.001 are shown in Figs. 3 and 4. In each simulation for
time less than 20 s, the control action is not applied and for t ≥ 20 the control algorithm is executed. The initial conditions
are for both cases are x(0) = 1, ẋ(0) = 2. Figs. 3(a) and 4(a) illustrate the results for 2π and 4π-periodic orbits in the time
domain. As it is seen the system states converge to the desired UPO and deviates randomly around it with a fixed bound.
However both periodic orbits are indeed two solutions of the deterministic chaotic system, but due to random inputs, i.e.
the white noise, to the deterministic Duffing equation, the control action does not converge to zero. Figs. 3(b) and 4(b)
show the same results in the phase plane. Comparing to deterministic case, the simulation is repeated for the 4π-periodic
orbit when the white Gaussian noise omitted from the system. The results are shown in Fig. 5. It is obvious that the control
action converges to zero since there is not any stochastic perturbing signal and the desired periodic orbit satisfies the system
equation.

4.2. Φ6-Van der Pol system

The stochastically perturbedΦ6-Van der Pol system has the following equation:

ẍ = µ(1− x2)ẋ+ ζ x+ δx3 + ρx5 + f0 cos(ωt)+ (2+ cos t)u+ a cos(2t)v̇ (49)
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Fig. 3. Stabilizing 1-cycle orbit in stochastic Duffing system. (a) the results in time series, (b) the results in phase space.

Fig. 4. Stabilizing 2-cycle orbit in stochastic Duffing system. (a) the results in time series, (b) the results in phase space.

Fig. 5. Stabilizing 2-cycle orbit in deterministic Duffing system using proposed method.

where for µ = 0.4, ζ = −0.26, δ = −1, ρ = −0.1, ω = 0.86, f0 = 4.5, u = 0 and a = 0 the behavior of the system is
chaotic which is shown in Fig. 6(a). In Eq. (49), u is the control action and v is a standardWiener process. Here the functions
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Fig. 6. (a) Chaotic attractor of theΦ6-Van der Pol system, (b) Two unstable periodic orbits of theΦ6-Van der Pol system.

Fig. 7. Stabilizing 1-cycle orbit in stochasticΦ6-Van der Pol system. (a) the results in time series, (b) the results in phase space.

defined in Eqs. (1) and (2) are:

f (x, ẋ, t) = µ(1− x2)ẋ+ ζ x+ δx3 + ρx5 + f0 cos(ωt)
b(x, ẋ, t) = 2+ cos t
h(x, ẋ, t) = a cos(2t).

(50)

The nominal values of the system coefficients are µ̂ = 0.6, ζ̂ = −0.36, δ̂ = −0.5, ρ̂ = −0.3, f̂0 = 5.5, b̂(x, ẋ, t) = 1.5.
So F(x, ẋ, t), bm(x, ẋ, t) and bM(x, ẋ, t) in Eq. (7) are set to:

F(x, ẋ, t) = |(1− x2)ẋ| + |x| + |x|3 + |x|5 + 1, bm(x, ẋ, t) = 1, bM(x, ẋ, t) = 3. (51)

Fig. 6(b) shows the unstable periodic orbits of periods 2π/ω (1-cycle) and 4π/ω (2-cycle) when a = 0. The presented
control scheme in Eqs. (18) and (19) with θ = 1 and λ = 1 is used for stabilizing the mentioned periodic orbits in the phase
space of the stochastic Φ6-Van der Pol equation when a = 1. Again the fourth-order Runge–Kuta–Maruyama algorithm
with time step size 0.001 is used for numerical simulation. Simulation results with initial conditions x(0) = 0 and ẋ(0) = 0
are shown in Figs. 7 and 8. The control action applies to the system for t ≥ 20. Figs. 7(a) and 8(a) illustrate the system
time series which converge to the desired UPOs in a way that the tracking error lies in a small neighborhood around zero.
Figs. 7(b) and 8(b) show the results in the phase space. Again the simulation for 4π/ω-periodic solution is repeated when
the perturbing stochastic input is omitted from the system. Since the desired orbit is a solution of the deterministic system,
the control action will settle on zero as shown in Fig. 9.

Remark 5. As it is observed from simulation results, in the case of stochastic chaos the control signal u is larger than
the deterministic chaos case. It is due to white noise which exerts to the stochastic system. In deterministic cases when
the stochastic input is zero, the control action should converge to zero, so in compare to the standard methods used for
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Fig. 8. Stabilizing 2-cycle orbits in stochasticΦ6-Van der Pol system. (a) the results in time series, (b) the results in phase space.

Fig. 9. Stabilizing 2-cycle orbits in deterministicΦ6-Van der Pol system using the proposed method.

deterministic systems, the proposed control signal is large. There exist some techniques, such as using saturation function
at the output of the control signal, which can result in reduction of the control action value. However, it needs further studies
to investigate its nonlinear effects on stabilization of the controlled system. ♣

5. Conclusion

In this paper the problemof chaos control in stochastic chaotic systemshas been investigated. Formodeling the stochastic
chaos, an Ito differential equation produced by applying awhite noise to a deterministic chaotic system, has been considered.
Then one of the unstable periodic orbits of the deterministic part of the stochastic differential equation has been chosen
for stabilization. Using the concept of the sliding mode control a controller has been designed for stabilizing the unstable
periodic orbit. It has been shown that, the system trajectories converge to the desired UPO and deviate randomly around
it in a way that the mean square norms of all error states lie in an arbitrarily small neighborhood of zero. The stochastic
Duffing and Φ6-Van der Pol systems as two stochastic chaotic systems have been used for applying the proposed control
scheme. The simulation results verify the performance and feasibility of the control algorithm.
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