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Abstract 

The present paper establishes, by employing some new ideas, a nontrivial result of quantitative rational 
approximation rate for the Miintz system ix”“} in case A, L 0 as it + m. 
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1. Introduction 

From the Miintz theorem 

O=A,<A,<A,t .** 

are dense in the continuous 

(cf. [4]), it is well known that the combinations of {x”n} for 

function space on [O, 11 (which we denote by C~O,II) if and only if 

As to the rational case, Newman [6] asked a natural question: What is the condition on the 
A, which makes the rational combinations of (x”n} (denoted by R(A)) dense in C,,,,,? The 
correct necessary and sufficient condition is not simply that C~=,(l/A,) = m, what is it? 

In 1976, Somorjai’s surprising result in [7] showed that for any sequence {A,} of distinct 
nonnegative increasing numbers, R(A) are always dense in C~O,ll. In 1978, Bak and Newman [3] 
proved that if {A,} is a sequence of distinct positive numbers, then R(A) are dense in 
well. Recently, in [8] we generalized the above results to include the case when 

C 0 r1 as 
{A, I ‘is a 

sequence of distinct negative numbers. 
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Let 

w(f, t)[,,,~=max{If(x+h)-f(x)I: XE [a, b-h],O<ha}, 

for continuous functions f on [a, b] (denoted f~ CLa,bl), 

4.L t) := 4.L %,I17 

and 

Ilf II [a,b] = x~~bl 1 f b> 1) II f II = II f Il[O,l]. 

Denote 

A,={A,, AW..,A,J, R(A,) = R(span{xAk}: A, E A,), 

for f E C[a,b]y 

R,(f) A)[a,b] = rE$c; ) II f - r I [a,b], a 2 0, Uf 9 4 = Uf 9 4,OJl. 
n 

Throughout the paper, C always indicates an absolute constant which may have different 
values in different places. 

On quantitative Miintz rational approximation rate with respect to {x*n}, one important 
untreated case is when A,, L 0 as IZ + CC (which means that A,, strictly decreases to 0 as it + ~1. 
Simply following Bak and Newman’s method for density in [3], one can obtain a trivial result as 
follows. For f E Cro,Il, find a polynomial 

p(x) = 2 ajxi 
j=O 

such that (see [51) 

II f-P II G C@(f, 12 -‘) and ]I p(‘) II G Crn’co( f, n-l). 

Then Bak and Newman’s calculation leads to a rational function r E R(A,,) such that 

@(f, n-l) 
]]p-r]I<Cw(f, n-l), whenever A,< cn= la,l. 

Jo J 

Noting that from the above cited result [5] (it is unimprovable in general), 

p(j)(O) 

Iajl= 7 
I .I 

< ;nq f) n-l), 
* 

we obtain from a rough calculation that 

R,( f, A) G Cw( f, n-l), whenever A, =G Cn-“. 

Of course this trivial result does not much increase the present level of knowledge 
concerning this case. But the above observation reveals where the main difficulty lies in dealing 
with this: one cannot achieve better estimates for coefficients of polynomials! 
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The present paper establishes, by employing some new ideas, a nontrivial result of quantita- 
tive rational approximation rate for the Miintz system {x”n] in case A, L 0 as n + ~0, which, we 
wish, could prompt further research in this direction. 

2. Results and proofs 

We establish first the following lemma, which itself is of some independent interest. 

Lemma 1. Let m, = n2, n = 1, 2,. . . . Fix n > 2. Then for f~ CLO,II with f(0) = 0, there is a 
rational function with the following form: 

such that 

II f - r II G Co( f, n-‘I*), 

where 

j 
‘i = - n, j=nO+l:= [G] +l, n,+2 ,..., n-l, 

andforj=n0+1,n,+2 ,..., n-l, 

Qj(x) =x-$x;““‘, 
j-l 

Q,*(x) =x mj-lXJAm,+l nXIAm,, 

I=1 

Am, = m,, Am,=m,-m,_,, n>2. 

Proof. Since Am, > n for n 2 2, in a similar way to [1,9], we can prove that for xk - $A*x, GX 
<x, + +A*x~+~, k = n, + 2, no + 3,. . . , n-Land jE{n,+l,n,+2 ,..., n-l}\{k-l,k}, 

< 2e-alk-jl/8 
7 

where 

I 
2x no+27 k=n,+2, 

A*xk= l/n, n,+3Gk<n-1, 

2/n, k=n, 

n,+l, 

I 

0 6x 6X,,+*, 

k*:=k*(x)= k-l, xk--~A*xk<x<xk, n,,+3<k<n-1, 

k, x~<x<x~+~A*x~+~, n,+2<k<n-1. 

(1) 
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k-2 k-j+1 n-l 

I-&Id c w 
n 

e-(k-jW + 2 C w 
j-k+1 

j=n,+ 1 j=k+l n 

G 8w(f, n-l) 2 je-j/‘+ L(f, n-1) G co(f, n-l). 
j=l 

Similarly, for x E [0, X,~+~ + l/@z:)], by (1) again, we have 

I Zl I G 4w(f, x,0+3) fi: je-j/’ + 4w(f, x,~+~) < Co(f, n-l/*). 
j=l 

On the other hand, we see that 

(3) 

(4) 

Let x E [xk - iA*x,, xk + $d*xk+l), k = n, -I 3, n, + 4,. . . , n - 1; then, 

1 QLH - Q,-,(x) 1 G Q:-,b& G &Q:,(x) (5) 

and 

Meanwhile for x E [xk - +Lt*x,, xk + id*xk+l), k = Ito + 3, no + 4,. . . , n - 1, by (41, 

k-2 k-2 

c IQ,*(x)-Q,(x)I<Q$(x) c e-(k-~)/Sk-jfl 
j=no+ 1 j=n,+ 1 j 

(6) 

n-l 

C IQ~(X)-Qj(~)I~~~. 
j=k+l n 
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Combining these estimates with (5) and (6) yields that for xk - iA*x, <x <x, + ~A*x~+~, 
k = n, + 3, n, + 4,. . . , n - 1, 

I ix:, I G cn-1’2 II f II < Cw(f, .-li2). (7) 

Finally, suppose x E [O, x,,,+~ + 1/(2n)]. Obviously for j = a0 + 1, n, + 2,. . . , n - 1, 

Q:(X) -Q,(X) =o(QJ(x)) 

holds in the present case, and applying (1) and f(O) = 0 leads to 
n-l 

C lf(Xj)llQj*(~)-Q,(x)1 
j=n,+l 

G 2w( f, ~,~+~)(Qn*,td~) + Q&+2(4 

+ CQ;,+ 1 
(x) ncl 

j=n,+3 

n-l 

< Co(f, n-li2) c Q,*(x). 
j=no+ 1 

Combining (2), (31, (7) and (8) completes the proof of Lemma 1. q 

(8) 

Lemma 2. Let 

r*(X) = 
C,“:ni+lf(Xj)Qj( - l/lOg(X/e)) 

C,~~n~+,Q::(-l/log(x/e)) ’ 
Then there is a rational function R(x) E R(Adm,) such that 

II r” -R II =G C II f II A,,. 

Proof. Let P,<x, a,, a,, . , . , a,) denote the kth divided difference of (x/eja at (Y = a,, a,, . . . , ak 
with respect to cy, that is, 

P,(x, a,, a,, . . . , ak) = 
Pk_l(x, a,, al,...,ak-l) --pk-~(X, a17 az~...~~k> 

aO-ak 

Write 

P,(x) = po(x, &2,>9 

for k=l, 2 ,..., m,_,, 

&cx) =pk(x> hnrn~ Amn+l~*..+hnn+k)' 
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for k=1,2 ,..., m,_,-1, 

pk*(x) =pk-l(x~ hm,+m,_,+l~ ‘mn+m,_,+2,...,‘m,+m,_,+k) 

and 

pm*,_I(x) =p~n-I-I(x~ hm,+2m,_l~ hmn+2m,_,+1~...~hmn+3m,_l-1)’ 

By the mean value theorem, 

P/b) = 
( x/e)““logk(x/e) 

k! ’ 

Pk*(x) = 
(x/e)“logk-‘(x/e) 

(k-l)! ’ 

A m,+m,_,+l G qk ’ *<h m,+m,_,+k? k=O, 1 ,...,m,_,- 1, 

Pm*“&> = 
(x/e)qr.-'logm~-l-'(x/e) 

(m,_l-l)! ’ 

A m,+2m,_I q 7; n _, G Am ” +3m _ -1+ Am n I n +3m - -1’ n 1 

Define 

R(x) = 
CJ’in~+~t-l)m’tmn-l -mj)! .f(xj)pm,_l-m,(x) 

~jn_;llo+l(-l)mj-l(m,_, -mj- I)! P_*.,_,(,) ’ 
then R(x) E R(Aamn). By (9)~(111, 

R(x) = 
C,~~n~+,f(xj)Qj(-l/log(x/e))(x/e)”l 

C,~~n~+lQ~( - l/los(x/e)>(-Ve>“’ ’ 
whereforj=n,+l,n,+2 ,..., n-l, 

‘yj = 77 m,_l-mj -77 m,-l-m,O+l > 0, 0 G aT = ‘7i,_1-mj - 77 m,-l-m,O+l 
<cYj. 

We come to estimate r*(x) -R(x). Write 

(9) 

(10) 

(11) 
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Then, 

r*(x) -R(x) = 
P(X) -P1(4 + Pl(X> 4d-4 --q(x) 

q(x) q,(x) q(x) . 

It follows from 

1 - (x/e)” II II log( x/e) ’ ” 

for 7 > 0 that 

p(x) -J%(x) 

4(x) 

Similarly, 

41(x) -4(x) 

4(x) 

Ci”=1,‘,+ 1 I f( Xj)lOg-“i( X/e) I I (x/e>“j - 1 I 

4(x) 
Gllfll mm aja 

no+lgjGn-1 

ai* and !!$$I <llflJlog-‘(~)~, 

17 

(12) 

since ai* < aj for all j = IZ~ + 1, 120 + 2,. . . , n - 1. Combining these estimates with (12), we get 
for x E (0, 11 that 

I r*(x) -R(x) I <II f II n,+Ezn_l Iaiy aj*ly 

which is the required result. 0 

Theorem 3. Let {A,) be a sequence with A, L 0 as n + ~0. Suppose that {a,} is a positive 
decreasing sequence satisfying 

A, G a,, 

for n = 1, 2, . . . , and 

Denote 

s, = max(n-‘/4, on}. 

7hn for any f E CiO,ll, 

&if, 4 G Co(f, &J. 

Corollary 4. Let {A,) be a sequence with A, L 0 as n + 03. Suppose that 

A,, < Cn-‘/4 7 

for n = 1, 2,... . Then for any f E CIO,ll, 

R,(f, A) < Co(f, n-li4). 
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Proof of Theorem 3. For f~ CtO,rI, set 

g(t) =f(e 1-1/t) -f(O); 

then g(t) E CtO,rI with g(0) = 0. Applying Lemma 1, we find a rational function r of degree m, 
such that 

]I g -I- ]I < Cw(g, n-l/2) < Cw(f, n-1’2) 

or 

II f(x) -f(O) -r*(X) II < Cw(f, n-1’2). 

Let R(x) E R(A,,“) be defined as in Lemma 2; then we have 

II r* - R II < CAmn II f II G Cum” II f II G Co(f, a,,& 

The estimates (13) and (14) then imply that 

II f(x) -f(O) -R(x) II G Cw(f, s,~), 

(13) 

(14) 

or, in an equivalent form, 

R,(f, A) G Cw(f, s,), 

since f(O) + R(x) E RCA,_). Theorem 3 is completed. 0 

With the same calculation we can establish better estimates in the interval [a, l] for a > 0. 

Theorem 5. Let {A,} be a sequence with A, L 0 as n -+ 03. Suppose that {u,,} is a positive 
decreasing sequence satisfying 

A, G @,, 

for n = 1, 2,. . . , and 

an - = O(1). 
@2n 

Denote 

s, = max{n-‘/2, a,}. 

Then for any f E Cra,ll, a > 0, 

RAf Y 4,%11 =G CJ4f 7 5J[a,ll7 

where C, is a positive constant depending upon a only. 

Corollary 6. Let {A,,} be a sequence with A, L 0 as n + 00. Suppose that 

A, S Cne112 7 

for n = 1, 2,... . Then for any f E Cra,ll, a > 0, 

R,(f y 4~ G C,w(f y n-‘/2)[a,11e 
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3. Remark 

On the quantitative Miintz rational approximation rate, Bak [l] proved that if f~ CtO,ll and 
{A,} is a sequence of distinct nonnegative increasing numbers with A/\, > k for all k > 2, then * 

R,(f, 4 G Cw(f, n-l). 

In the case h, -+ 1 for some 1, 0 < 1 < 03, the best nth Miintz polynomial approximation rate 
of f E C,, 11 with respect to { x”n} is well known to be Cw(f, y1- ‘I*) (see, for example, [2]); 
hence a trivial consequence is that the bound for R,(f, A> in this case is Co(f, n-l/*) as well. 

All these results together with Theorem 3 are still far away from confirmation of the 
following problem raised by Newman. 

Problem (Newman [6, Problem 10.31). Is it true that for any f~ CLo,II there exists R(x) 6 RCA,) 
such that 

II f-R II < Cw(f, n-l)? 
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