Rational approximation rate for the Müntz system $\left\{x^{\lambda_{n}}\right\}$ with $\lambda_{n} \searrow 0$

S.P. Zhou ${ }^{1}$
Department of Mathematics, Statistics and Computing Science, Dalhousie University, IIalifax, N.S., B3II 3J5, Canada

Received 27 April 1992

Abstract

The present paper establishes, by employing some new ideas, a nontrivial result of quantitative rational approximation rate for the Müntz system $\left\{x^{\lambda_{n}}\right\}$ in case $\lambda_{n} \searrow 0$ as $n \rightarrow \infty$.

Keywords: Rational approximation; Müntz system; Approximation rate

1. Introduction

From the Müntz theorem (cf. [4]), it is well known that the combinations of $\left\{x^{\lambda_{n}}\right\}$ for

$$
0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots
$$

are dense in the continuous function space on $[0,1]$ (which we denote by $C_{[0,1]}$) if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty
$$

As to the rational case, Newman [6] asked a natural question: What is the condition on the λ_{n} which makes the rational combinations of $\left\{x^{\lambda_{n}}\right\}$ (denoted by $R(\Lambda)$) dense in $C_{[0,1]}$? The correct necessary and sufficient condition is not simply that $\sum_{n=1}^{\infty}\left(1 / \lambda_{n}\right)=\infty$, what is it?

In 1976, Somorjai's surprising result in [7] showed that for any sequence $\left\{\lambda_{n}\right\}$ of distinct nonnegative increasing numbers, $R(\Lambda)$ are always dense in $C_{[0,1]}$. In 1978, Bak and Newman [3] proved that if $\left\{\lambda_{n}\right\}$ is a sequence of distinct positive numbers, then $R(\Lambda)$ are dense in $C_{[0,1]}$ as well. Recently, in [8] we generalized the above results to include the case when $\left\{\lambda_{n}\right\}$ is a sequence of distinct negative numbers.

[^0]Let

$$
\omega(f, t)_{[a, b]}=\max \{|f(x+h)-f(x)|: x \in[a, b-h], 0<h \leqslant t\}
$$

for continuous functions f on $[a, b]$ (denoted $f \in C_{[a, b]}$),

$$
\omega(f, t):=\omega(f, t)_{[0,1]}
$$

and

$$
\|f\|_{[a, b]}=\max _{x \in[a, b]}|f(x)|, \quad\|f\|=\|f\|_{[0,1]}
$$

Denote

$$
\Lambda_{n}=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}, \quad R\left(\Lambda_{n}\right)=R\left(\operatorname{span}\left\{x^{\lambda_{k}}\right\}: \lambda_{k} \in \Lambda_{n}\right)
$$

for $f \in C_{[a, b]}$,

$$
R_{n}(f, \Lambda)_{[a, b]}=\min _{r \in R\left(\Lambda_{n}\right)} \| f-\left.r\right|_{[a, b]}, \quad a \geqslant 0, \quad R_{n}(f, \Lambda)=R_{n}(f, \Lambda)_{[0,1]}
$$

Throughout the paper, C always indicates an absolute constant which may have different values in different places.

On quantitative Müntz rational approximation rate with respect to $\left\{x^{\lambda_{n}}\right\}$, one important untreated case is when $\lambda_{n} \searrow 0$ as $n \rightarrow \infty$ (which means that λ_{n} strictly decreases to 0 as $n \rightarrow \infty$). Simply following Bak and Newman's method for density in [3], one can obtain a trivial result as follows. For $f \in C_{[0,1]}$, find a polynomial

$$
p(x)=\sum_{j=0}^{n} a_{j} x^{j}
$$

such that (see [5])

$$
\|f-p\| \leqslant C \omega\left(f, n^{-1}\right) \quad \text { and } \quad\left\|p^{(r)}\right\| \leqslant C^{r} n^{r} \omega\left(f, n^{-1}\right)
$$

Then Bak and Newman's calculation leads to a rational function $r \in R\left(\Lambda_{2 n}\right)$ such that

$$
\|p-r\| \leqslant C \omega\left(f, n^{-1}\right), \quad \text { whenever } \lambda_{n} \leqslant \frac{\omega\left(f, n^{-1}\right)}{\sum_{j=0}^{n}\left|a_{j}\right|}
$$

Noting that from the above cited result [5] (it is unimprovable in general),

$$
\left|a_{j}\right|=\left|\frac{p^{(j)}(0)}{j!}\right| \leqslant \frac{C^{j}}{j!} n^{j} \omega\left(f, n^{-1}\right),
$$

we obtain from a rough calculation that

$$
R_{n}(f, \Lambda) \leqslant C \omega\left(f, n^{-1}\right), \quad \text { whenever } \quad \lambda_{n} \leqslant C n^{-n}
$$

Of course this trivial result does not much increase the present level of knowledge concerning this case. But the above observation reveals where the main difficulty lies in dealing with this: one cannot achieve better estimates for coefficients of polynomials!

The present paper establishes, by employing some new ideas, a nontrivial result of quantitative rational approximation rate for the Müntz system $\left\{x^{\lambda_{n}}\right\}$ in case $\lambda_{n} \searrow 0$ as $n \rightarrow \infty$, which, we wish, could prompt further research in this direction.

2. Results and proofs

We establish first the following lemma, which itself is of some independent interest.
Lemma 1. Let $m_{n}=n^{2}, n=1,2, \ldots$. Fix $n \geqslant 2$. Then for $f \in C_{[0,1]}$ with $f(0)=0$, there is a rational function with the following form:

$$
r(x)=\frac{\sum_{j=n_{0}+1}^{n-1} f\left(x_{j}\right) Q_{j}(x)}{\sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}(x)}
$$

such that

$$
\|f-r\| \leqslant C \omega\left(f, n^{-1 / 2}\right)
$$

where

$$
x_{j}=\frac{j}{n}, \quad j=n_{0}+1:=[\sqrt{n}]+1, n_{0}+2, \ldots, n-1,
$$

and for $j=n_{0}+1, n_{0}+2, \ldots, n-1$,

$$
\begin{aligned}
& Q_{i}(x)=x^{m_{j}} \prod_{l=1}^{j} x_{l}^{-\Delta m_{l}}, \quad Q_{j}^{*}(x)=x^{m_{j}-1} x_{j}^{-\Delta m_{j}+1} \prod_{l=1}^{j-1} x_{l}^{-\Delta m_{l}}, \\
& \Delta m_{1}=m_{1}, \quad \Delta m_{n}=m_{n}-m_{n-1}, \quad n \geqslant 2 .
\end{aligned}
$$

Proof. Since $\Delta m_{n} \geqslant n$ for $n \geqslant 2$, in a similar way to [1,9], we can prove that for $x_{k}-\frac{1}{2} \Delta^{*} x_{k} \leqslant x$ $<x_{k}+\frac{1}{2} \Delta^{*} x_{k+1}, k=n_{0}+2, n_{0}+3, \ldots, n-1$, and $j \in\left\{n_{0}+1, n_{0}+2, \ldots, n-1\right\} \backslash\{k-1, k\}$,

$$
\begin{equation*}
\left|\frac{Q_{j}^{*}(x)}{Q_{k^{*}}^{*}(x)}\right| \leqslant 2 \mathrm{e}^{-\alpha|k-j| / 8}, \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta^{*} x_{k}= \begin{cases}2 x_{n_{0}+2}, & k=n_{0}+2, \\
1 / n, & n_{0}+3 \leqslant k \leqslant n-1, \\
2 / n, & k=n,\end{cases} \\
& k^{*}:=k^{*}(x)= \begin{cases}n_{0}+1, & 0 \leqslant x \leqslant x_{n_{0}+2}, \\
k-1, & x_{k}-\frac{1}{2} \Delta^{*} x_{k} \leqslant x \leqslant x_{k}, n_{0}+3 \leqslant k \leqslant n-1, \\
k, & x_{k}<x<x_{k}+\frac{1}{2} \Delta^{*} x_{k+1}, n_{0}+2 \leqslant k \leqslant n-1 .\end{cases}
\end{aligned}
$$

Write

$$
\begin{aligned}
f(x)-r(x) & =\frac{\sum_{j=n_{0}+1}^{n-1}\left(f(x)-f\left(x_{j}\right)\right) Q_{j}^{*}(x)}{\sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}(x)}+\frac{\sum_{j=n_{0}+1}^{n-1} f\left(x_{j}\right)\left(Q_{j}^{*}(x)-Q_{j}(x)\right)}{\sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}(x)} \\
& :=\Sigma_{1}+\Sigma_{2} .
\end{aligned}
$$

By (1), for $x_{k}-\frac{1}{2} \Delta^{*} x_{k} \leqslant x<x_{k}+\frac{1}{2} \Delta^{*} x_{k+1}, k=n_{0}+3, n_{0}+4, \ldots, n-1$,

$$
\begin{align*}
& \left|\Sigma_{1}\right| \leqslant 2 \sum_{j=n_{0}+1}^{k-2} \omega\left(f, \frac{k-j+1}{n}\right) \mathrm{e}^{-(k-j) / 8}+2 \sum_{j=k+1}^{n-1} \omega\left(f, \frac{j-k+1}{n}\right) \mathrm{e}^{-(k-j) / 8}+2 \omega\left(f, \frac{2}{n}\right) \\
& \quad \leqslant 8 \omega\left(f, n^{-1}\right) \sum_{j=1}^{\infty} j \mathrm{e}^{-j / 8}+4 \omega\left(f, n^{-1}\right) \leqslant C \omega\left(f, n^{-1}\right) \tag{2}
\end{align*}
$$

Similarly, for $x \in\left[0, x_{n_{0}+2}+1 /(2 n)\right]$, by (1) again, we have

$$
\begin{equation*}
\left|\Sigma_{1}\right| \leqslant 4 \omega\left(f, x_{n_{0}+3}\right) \sum_{j=1}^{\infty} j \mathrm{e}^{-j / 8}+4 \omega\left(f, x_{n_{0}+3}\right) \leqslant C \omega\left(f, n^{-1 / 2}\right) . \tag{3}
\end{equation*}
$$

On the other hand, we see that

$$
\begin{equation*}
Q_{j}^{*}(x)-Q_{j}(x)=Q_{j}^{*}(x)\left(1-\frac{x}{x_{j}}\right) \tag{4}
\end{equation*}
$$

Let $x \in\left[x_{k}-\frac{1}{2} \Delta^{*} x_{k}, x_{k}+\frac{1}{2} \Delta^{*} x_{k+1}\right), k=n_{0}+3, n_{0}+4, \ldots, n-1$; then,

$$
\begin{equation*}
\left|Q_{k-1}^{*}(x)-Q_{k-1}(x)\right| \leqslant Q_{k-1}^{*}(x) \frac{2}{k-1} \leqslant \frac{2}{\sqrt{n}+1} Q_{k \quad 1}^{*}(x) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|Q_{k}^{*}(x)-Q_{k}(x)\right| \leqslant \frac{1}{\sqrt{n}+2} Q_{k}^{*}(x) \tag{6}
\end{equation*}
$$

Meanwhile for $x \in\left[x_{k}-\frac{1}{2} \Delta^{*} x_{k}, x_{k}+\frac{1}{2} \Delta^{*} x_{k+1}\right), k=n_{0}+3, n_{0}+4, \ldots, n-1$, by (4),

$$
\begin{aligned}
\sum_{j=n_{0}+1}^{k-2}\left|Q_{j}^{*}(x)-Q_{j}(x)\right| & \leqslant Q_{k^{*}}^{*}(x) \sum_{j=n_{0}+1}^{k-2} \mathrm{e}^{-(k-j) / 8} \frac{k-j+1}{j} \\
& \leqslant \frac{2 Q_{k^{*}}^{*}(x)}{\sqrt{n}} \sum_{j=n_{0} \mid 1}^{\infty} j \mathrm{e}^{-j / 8} \leqslant C \frac{Q_{k^{*}}^{*}(x)}{\sqrt{n}}
\end{aligned}
$$

$$
\sum_{j=k+1}^{n-1}\left|Q_{j}^{*}(x)-Q_{j}(x)\right| \leqslant C \frac{Q_{\kappa^{*}}^{*}(x)}{\sqrt{n}}
$$

Combining these estimates with (5) and (6) yields that for $x_{k}-\frac{1}{2} \Delta^{*} x_{k} \leqslant x<x_{k}+\frac{1}{2} \Delta^{*} x_{k+1}$, $k=n_{0}+3, n_{0}+4, \ldots, n-1$,

$$
\begin{equation*}
\left|\Sigma_{2}\right| \leqslant C n^{-1 / 2}\|f\| \leqslant C \omega\left(f, n^{-1 / 2}\right) \tag{7}
\end{equation*}
$$

Finally, suppose $x \in\left[0, x_{n_{0}+2}+1 /(2 n)\right]$. Obviously for $j=n_{0}+1, n_{0}+2, \ldots, n-1$,

$$
Q_{j}^{*}(x)-Q_{j}(x)=\mathrm{O}\left(Q_{j}^{*}(x)\right)
$$

holds in the present case, and applying (1) and $f(0)=0$ leads to

$$
\begin{align*}
& \sum_{j=n_{0}+1}^{n-1}\left|f\left(x_{j}\right)\right|\left|Q_{j}^{*}(x)-Q_{j}(x)\right| \\
& \leqslant \\
& \quad 2 \omega\left(f, x_{n_{0}+3}\right)\left(Q_{n_{0}+1}^{*}(x)+Q_{n_{0}+2}^{*}(x)\right) \\
& \quad+C Q_{n_{0}+1}^{*}(x) \sum_{j=n_{0}+3}^{n-1}\left(\omega\left(f, x_{n_{0}+1}\right)+\omega\left(f, \frac{j-n_{0}-1}{n}\right)\right) \mathrm{e}^{-\left(j-n_{0}-1\right) / 8} \tag{8}\\
& \leqslant C \omega\left(f, n^{-1 / 2}\right) \sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}(x) .
\end{align*}
$$

Combining (2), (3), (7) and (8) completes the proof of Lemma 1.
Lemma 2. Let

$$
r^{*}(x)=\frac{\sum_{j=n_{0}+1}^{n-1} f\left(x_{j}\right) Q_{j}(-1 / \log (x / \mathrm{e}))}{\sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}(-1 / \log (x / \mathrm{e}))}
$$

Then there is a rational function $R(x) \in R\left(\Lambda_{4 m_{n}}\right)$ such that

$$
\left\|r^{*}-R\right\| \leqslant C\|f\| \lambda_{m_{n}}
$$

Proof. Let $P_{k}\left(x, a_{0}, a_{1}, \ldots, a_{k}\right)$ denote the k th divided difference of $(x / \mathrm{e})^{\alpha}$ at $\alpha=a_{0}, a_{1}, \ldots, a_{k}$ with respect to α, that is,

$$
\begin{aligned}
& P_{0}\left(x, a_{0}\right)=\left(\frac{x}{\mathrm{e}}\right)^{a_{0}}, \\
& P_{k}\left(x, a_{0}, a_{1}, \ldots, a_{k}\right)=\frac{P_{k-1}\left(x, a_{0}, a_{1}, \ldots, a_{k-1}\right)-P_{k-1}\left(x, a_{1}, a_{2}, \ldots, a_{k}\right)}{a_{0}-a_{k}} .
\end{aligned}
$$

Write

$$
P_{0}(x)=P_{0}\left(x, \lambda_{m_{n}}\right)
$$

for $k=1,2, \ldots, m_{n-1}$,

$$
P_{k}(x)=P_{k}\left(x, \lambda_{m_{n}}, \lambda_{m_{n}+1}, \ldots, \lambda_{m_{n}+k}\right)
$$

for $k=1,2, \ldots, m_{n-1}-1$,

$$
P_{k}^{*}(x)=P_{k-1}\left(x, \lambda_{m_{n}+m_{n-1}+1}, \lambda_{m_{n}+m_{n-1}+2}, \ldots, \lambda_{m_{n}+m_{n-1}+k}\right)
$$

and

$$
P_{m_{n-1}}^{*}(x)=P_{m_{n-1}-1}\left(x, \lambda_{m_{n}+2 m_{n-1}}, \lambda_{m_{n}+2 m_{n-1}+1}, \ldots, \lambda_{m_{n}+3 m_{n-1}-1}\right) .
$$

By the mean value theorem,

$$
\begin{align*}
& P_{k}(x)=\frac{(x / \mathrm{e})^{\eta_{k}} \log ^{k}(x / \mathrm{e})}{k!}, \tag{9}\\
& \lambda_{m_{n}} \leqslant \eta_{k} \leqslant \lambda_{m_{n}+k}, \quad k=0,1, \ldots, m_{n-1}, \\
& P_{k}^{*}(x)=\frac{(x / \mathrm{e})^{\eta_{k}^{*}} \log ^{k-1}(x / \mathrm{e})}{(k-1)!}, \tag{10}\\
& \lambda_{m_{n}+m_{n-1}+1} \leqslant \eta_{k}^{*} \leqslant \lambda_{m_{n}+m_{n-1}+k}, \quad k=0,1, \ldots, m_{n-1}-1, \\
& P_{m_{n-1}}^{*}(x)=\frac{(x / \mathrm{e})^{\eta_{m_{n-1}}^{*} \log ^{m_{n-1}-1}(x / \mathrm{e})}}{\left(m_{n-1}-1\right)!}, \tag{11}\\
& \lambda_{m_{n}+2 m_{n-1}} \leqslant \eta_{m_{n-1}}^{*} \leqslant \lambda_{m_{n}+3 m_{n-1}-1} \rightarrow \lambda_{m_{n}+3 m_{n-1}-1} .
\end{align*}
$$

Define

$$
R(x)=\frac{\sum_{j=n_{0}+1}^{n-1}(-1)^{m_{j}}\left(m_{n-1}-m_{j}\right)!f\left(x_{j}\right) P_{m_{n-1}-m_{j}}(x)}{\sum_{j=n_{0}+1}^{n-1}(-1)^{m_{j}-1}\left(m_{n-1}-m_{j}-1\right)!P_{m_{n-1}-m_{j}}^{*}(x)} ;
$$

then $R(x) \in R\left(\Lambda_{4 m_{n}}\right)$. By (9)-(11),

$$
R(x)=\frac{\sum_{j=n_{0}+1}^{n-1} f\left(x_{j}\right) Q_{j}(-1 / \log (x / \mathrm{e}))(x / \mathrm{e})^{\alpha_{j}}}{\sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}(-1 / \log (x / \mathrm{e}))(x / \mathrm{e})^{\alpha_{j}^{*}}}
$$

where for $j=n_{0}+1, n_{0}+2, \ldots, n-1$,

$$
\alpha_{j}=\eta_{m_{n-1}-m_{j}}-\eta_{m_{n-1}-m_{n_{0}+1}}>0, \quad 0 \leqslant \alpha_{j}^{*}=\eta_{m_{n-1}-m_{j}}^{*}-\eta_{m_{n-1}-m_{n_{0}+1}}<\alpha_{j}
$$

We come to estimate $r^{*}(x)-R(x)$. Write

$$
\begin{aligned}
& p(x)=\sum_{j=n_{0}+1}^{n-1} f\left(x_{j}\right) Q_{j}\left(\frac{-1}{\log (x / \mathrm{e})}\right), \quad p_{1}(x)=\sum_{j=n_{0}+1}^{n-1} f\left(x_{j}\right) Q_{j}\left(\frac{-1}{\log (x / \mathrm{e})}\right)\left(\frac{x}{\mathrm{e}}\right)^{\alpha_{j}}, \\
& q(x)=\sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}\left(\frac{-1}{\log (x / \mathrm{e})}\right), \quad q_{1}(x)=\sum_{j=n_{0}+1}^{n-1} Q_{j}^{*}\left(\frac{-1}{\log (x / \mathrm{e})}\right)\left(\frac{x}{\mathrm{e}}\right)^{\alpha_{j}^{*}} .
\end{aligned}
$$

Then,

$$
\begin{equation*}
r^{*}(x)-R(x)=\frac{p(x)-p_{1}(x)}{q(x)}+\frac{p_{1}(x)}{q_{1}(x)} \frac{q_{1}(x)-q(x)}{q(x)} . \tag{12}
\end{equation*}
$$

It follows from

$$
\left\|\frac{1-(x / e)^{\eta}}{\log (x / e)}\right\| \leqslant \eta
$$

for $\eta>0$ that

$$
\left|\frac{p(x)-p_{1}(x)}{q(x)}\right| \leqslant \frac{\sum_{j-n_{0}+1}^{n-1}\left|f\left(x_{j}\right) \log ^{-m_{j}}(x / \mathrm{e})\right|\left|(x / \mathrm{e})^{\alpha_{j}}-1\right|}{q(x)} \leqslant\|f\| \max _{n_{0}+1 \leqslant j \leqslant n-1} \alpha_{j}
$$

Similarly,

$$
\left|\frac{q_{1}(x)-q(x)}{q(x)}\right| \leqslant\left|\log \left(\frac{x}{\mathrm{e}}\right)\right| \max _{n_{0}+1 \leqslant j \leqslant n-1} \alpha_{j}^{*} \quad \text { and } \quad\left|\frac{p_{1}(x)}{q_{1}(x)}\right| \leqslant\|f\|\left|\log ^{-1}\left(\frac{x}{\mathrm{e}}\right)\right|,
$$

since $\alpha_{j}^{*}<\alpha_{j}$ for all $j=n_{0}+1, n_{0}+2, \ldots, n-1$. Combining these estimates with (12), we get for $x \in(0,1]$ that

$$
\left|r^{*}(x)-R(x)\right| \leqslant\|f\| \max _{n_{0}+1 \leqslant j \leqslant n-1}\left\{\alpha_{j}, \alpha_{j}^{*}\right\}
$$

which is the required result.
Theorem 3. Let $\left\{\lambda_{n}\right\}$ be a sequence with $\lambda_{n} \searrow 0$ as $n \rightarrow \infty$. Suppose that $\left\{\sigma_{n}\right\}$ is a positive decreasing sequence satisfying

$$
\lambda_{n} \leqslant \sigma_{n}
$$

for $n=1,2, \ldots$, and

$$
\frac{\sigma_{n}}{\sigma_{2 n}}=\mathrm{O}(1)
$$

Denote

$$
s_{n}=\max \left\{n^{-1 / 4}, \sigma_{n}\right\} .
$$

Then for any $f \in C_{[0,1]}$,

$$
R_{n}(f, \Lambda) \leqslant C \omega\left(f, s_{n}\right)
$$

Corollary 4. Let $\left\{\lambda_{n}\right\}$ be a sequence with $\lambda_{n} \searrow 0$ as $n \rightarrow \infty$. Suppose that

$$
\lambda_{n} \leqslant C n^{-1 / 4}
$$

for $n=1,2, \ldots$. Then for any $f \in C_{[0,1]}$,

$$
R_{n}(f, \Lambda) \leqslant C \omega\left(f, n^{-1 / 4}\right)
$$

Proof of Theorem 3. For $f \in C_{[0,1]}$, set

$$
g(t)=f\left(\mathrm{e}^{1-1 / t}\right)-f(0)
$$

then $g(t) \in C_{[0,1]}$ with $g(0)=0$. Applying Lemma 1 , we find a rational function r of degree m_{n} such that

$$
\|g-r\|<C \omega\left(g, n^{-1 / 2}\right) \leqslant C \omega\left(f, n^{-1 / 2}\right)
$$

or

$$
\begin{equation*}
\left\|f(x)-f(0)-r^{*}(x)\right\|<C \omega\left(f, n^{-1 / 2}\right) \tag{13}
\end{equation*}
$$

Let $R(x) \in R\left(\Lambda_{4 m_{n}}\right)$ be defined as in Lemma 2; then we have

$$
\begin{equation*}
\left\|r^{*}-R\right\| \leqslant C \lambda_{m_{n}}\|f\| \leqslant C \sigma_{m_{n}}\|f\| \leqslant C \omega\left(f, \sigma_{m_{n}}\right) \tag{14}
\end{equation*}
$$

The estimates (13) and (14) then imply that

$$
\|f(x)-f(0)-R(x)\| \leqslant C \omega\left(f, s_{m_{n}}\right)
$$

or, in an equivalent form,

$$
R_{n}(f, \Lambda) \leqslant C \omega\left(f, s_{n}\right)
$$

since $f(0)+R(x) \in R\left(\Lambda_{4 m_{n}}\right)$. Theorem 3 is completed.
With the same calculation we can establish better estimates in the interval [$a, 1$] for $a>0$.
Theorem 5. Let $\left\{\lambda_{n}\right\}$ be a sequence with $\lambda_{n} \searrow 0$ as $n \rightarrow \infty$. Suppose that $\left\{\sigma_{n}\right\}$ is a positive decreasing sequence satisfying

$$
\lambda_{n} \leqslant \sigma_{n}
$$

for $n=1,2, \ldots$, and

$$
\frac{\sigma_{n}}{\sigma_{2 n}}=\mathrm{O}(1)
$$

Denote

$$
s_{n}=\max \left\{n^{-1 / 2}, \sigma_{n}\right\} .
$$

Then for any $f \in C_{[a, 1]}, a>0$,

$$
R_{n}(f, \Lambda)_{[a, 1]} \leqslant C_{a} \omega\left(f, s_{n}\right)_{[a, 1]}
$$

where C_{a} is a positive constant depending upon a only.
Corollary 6. Let $\left\{\lambda_{n}\right\}$ be a sequence with $\lambda_{n} \searrow 0$ as $n \rightarrow \infty$. Suppose that

$$
\lambda_{n} \leqslant C n^{-1 / 2}
$$

for $n=1,2, \ldots$. Then for any $f \in C_{[a, 1]}, a>0$,

$$
R_{n}(f, \Lambda)_{[a, 1]} \leqslant C_{u} \omega\left(f, n^{-1 / 2}\right)_{[a, 1]} .
$$

3. Remark

On the quantitative Müntz rational approximation rate, Bak [1] proved that if $f \in C_{[0,1]}$ and $\left\{\lambda_{n}\right\}$ is a sequence of distinct nonnegative increasing numbers with $\Delta \lambda_{k} \geqslant k$ for all $k \geqslant 2$, then ${ }^{2}$

$$
R_{n}(f, \Lambda) \leqslant C \omega\left(f, n^{-1}\right)
$$

In the case $\lambda_{n} \rightarrow l$ for some $l, 0<l<\infty$, the best nth Müntz polynomial approximation rate of $f \in C_{[0,1]}$ with respect to $\left\{x^{\lambda_{n}}\right\}$ is well known to be $C \omega\left(f, n^{-1 / 2}\right)$ (see, for example, [2]); hence a trivial consequence is that the bound for $R_{n}(f, A)$ in this case is $C \omega\left(f, n^{-1 / 2}\right)$ as well.

All these results together with Theorem 3 are still far away from confirmation of the following problem raised by Newman.

Problem (Newman [6, Problem 10.3]). Is it true that for any $f \in C_{[0,1]}$ there exists $R(x) \in R\left(\Lambda_{n}\right)$ such that

$$
\|f-R\| \leqslant C \omega\left(f, n^{-1}\right) ?
$$

References

[1] J. Bak, On the efficiency of general rational approximation, J. Approx. Theory 20 (1977) 46-50.
[2] J. Bak, Approximation by Müntz polynomials away from the origin, J. Approx. Theory 34 (1982) 211-216.
[3] J. Bak and D.J. Newman, Rational combinations of $x^{\lambda_{k}}, \lambda_{k} \geqslant 0$ are always dense in $C_{[0,1]}$, J. Approx. Theory 23 (1978) 155-157.
[4] E.W. Cheney, Introduction to Approximation Theory (McGraw-Hill, New York, 1966).
[5] D. Leviatan, The behavior of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory 35 (1982) 169-176.
[6] D.J. Newman, Approximation with Rational Functions (Amer. Mathematical Soc., Providence, RI, 1978).
[7] G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976) 197-199.
[8] S.P. Zhou, On Müntz rational approximation, Constr. Approx. 9 (1993) 435-444.
[9] S.P. Zhou, On the density of rational combinations of $\left\{x^{\lambda_{n}}\right\}$ for some complex sequences $\left\{\lambda_{n}\right\}$, Studia Sci. Math. Hungar., to appear.

[^1]
[^0]: ${ }^{1}$ This research is supported in part by NSERC Canada.

[^1]: ${ }^{2}$ Newman [6] announced that Bak's result also holds for $\left\{\lambda_{n}\right\}$ with $\Delta \lambda_{k} \geqslant C>0$, but we found no reference about this.

