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Abstract

The present paper establishes, by employing some new ideas, a nontrivial result of quantitative rational
approximation rate for the Miintz system {x*7} in case A,N0Oas n—oow.
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1. Introduction

From the Miuntz theorem (cf. [4]), it is well known that the combinations of {x*-} for
O0=A) <A <A, < -+

are dense in the continuous function space on [0, 1] (which we denote by C[O,”) if and only if
® 1]
L ==
n=1 An

As to the rational case, Newman [6] asked a natural question: What is the condition on the
A, which makes the rational combinations of {x":} (denoted by R(A)) dense in Cy,? The
correct necessary and sufficient condition is not simply that ©>_ (1/A,,) = », what is it?

In 1976, Somorjai’s surprising result in [7] showed that for any sequence {A,} of distinct
nonnegative increasing numbers, R(A) are always dense in Cio.y- In 1978, Bak and Newman [3]
proved that if {A,} is a sequence of distinct positive numbers, then R(A) are dense in C,
well. Recently, in [8] we generalized the above results to include the case when {A
sequence of distinct negative numbers.
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Let
o(f, Oapy=max{| f(x +h) —f(x)|: x€la, b—h],0<h <t}
for continuous functions f on [a, b] (denoted f& Cp, ),

o(f, t) =o(f, o

and
I f a1 = max Lf)L WFI=I1S Mo,
Denote
A, ={A; gy A}, R(A,) =R(span{x}: A, €A4,),
for fe C[a,b],
R,(f, Map1= rer?za,,) I f=rl@e, a>0, R,(f, A)=R,(f, Ao

Throughout the paper, C always indicates an absolute constant which may have different
values in different places.

On quantitative Miintz rational approximation rate with respect to {x*}, one important
untreated case is when A, \ 0 as n — % (which means that A, strictly decreases to 0 as n — o).
Simply following Bak and Newman’s method for density in [3], one can obtain a trivial result as
follows. For f € Cy, ), find a polynomial

n
p(x)= Z ajxj
j=0

such that (see [5])
Il f-pll<Co(f,n") and [ pPll<Cn'o(f, n7").

Then Bak and Newman’s calculation leads to a rational function r € R(A,,) such that

w(f,n™")

| p—rll<Cw(f,n""), whenever A, < —7——

o .
Noting that from the above cited result [5] (it is unimprovable in general),

(@)} J
p(0)| C .
il < j—'n’w(f, n ),

|aj|=

we obtain from a rough calculation that
R,(f, A)<Co(f,n™'), whenever A,<Cn™".

Of course this trivial result does not much increase the present level of knowledge
concerning this case. But the above observation reveals where the main difficulty lies in dealing
with this: one cannot achieve better estimates for coefficients of polynomials!



S.P. Zhou / Journal of Computational and Applied Mathematics 53 (1994) 11-19 13
The present paper establishes, by employing some new ideas, a nontrivial result of quantita-

tive rational approximation rate for the Miintz system {x*-} in case A, \v 0 as n — o, which, we
wish, could prompt further research in this direction.

2. Results and proofs

We establish first the following lemma, which itself is of some independent interest.

Lemma 1. Let m,=n? n=1,2,.... Fix n>2. Then for f& Cy,, with f(0)=0, there is a
rational function with the following form:

X F(2)Q(x)
0 (x)

r(x)=

such that

| f—rll<Cao(f, n=1/?),
where

J .

xj=;’ ]=n0+1:=[\/;l—]+1,n0+2,...,n_1,

and forj=n,+1,ny+2,..., n—1,
J j—1
Qj(x) =xm,-llj[1x1—4m,, Q;k(x) =xmj——lxj—Am,-+l l];]l:xl—Am,’

Am, =m,, Am,=m,—m,_;, n>2.

Proof. Since Am,, > n for n > 2, in a similar way to [1,9], we can prove that for x, — %A*x P SX
<xp+3&%x,,, k=ny+2,n,+3,...,n—1, and Je€lng+ 1, no+2,....,n—1\{k—1, k},

_Q&)_ <2e—alkﬂf\/8, (1)
O+(x)
where
2x, 42, k=ng+2,
A*x,={1/n, ny+3<k<n—1,

2/n, k=n,

nyg+1, 0<x<x

ng+2°
k*=k*(x)= k-1, x,—34%, <x<x,, np+3<k<n—1,
k, X <x<xp+ 34%x, ., ng+2<k<n-—1
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Write

o (F(x) = £(x,)) Q% (x) ) Y o ) (QF(x) = Q)(x))

f(x)—r(x)=

=3,+3,.

By (1), for x, — 3A*x, <x <x,+ 34%x,,,, k=ny+3, no+4,...,n—1,

T O () D1 Q5 (%)

k-2 k—j+1 _ n-1 j—k+1 ‘ 2
512 T ol T e T ool I ey 1, 2
n n n

j=ng+1 j=k+1

<8w(f,n1) ije‘f/8 +4o(f, n™") < Co(f, n~1.
j=1
Similarly, for x € [0, X,.+2+ 1/(2n)], by (1) again, we have
131401, %0015) T e+ 40(F, %,,,5) < Ca(f, n772).
j=1
On the other hand, we see that

X
1—~).
X

J

Q7 (x) ~Q;(x) = Qf (x)

Let x € [x; — 34%x,, x, + 34%x,, ), k=ny+3, ny+4,...,n—1; then,

2 2
IQ;ck—l(x)_Qk-l(x)'<Q;f—1(x)k_1 < ‘/;+1Q;ck—1(x)

and

1
Q% (x) = Qu(x)I< ka(x)-

Meanwhile for x € [x, — 34%x,, x, + 34%x,,,), k =ny+3, ng+4,...,n— 1, by (4)

5 k22 k—j+1
Z IQ]*('x) - Q,(x)‘<Q,’§*(x) 2 e—(k_])/s_ -
I=notl j=ng+1 J

20-(x) & . OF(x)
n—1 Q;c"*(x)

2 1QF(x)—Q(x)I<C —

J~k+1

M

(2)

(3)

4)

(5)

(6)
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Combining these estimates with (5) and (6) yields that for x, — 34%x, <x <x, + 34*x, |,

k=ny+3,n,+4,....,.n—1,
|3,1<Cn 2 fll< Ca(f, n~'/?).

Finally, suppose x €0, x,, ., + 1/(2n)]. Obviously for j=n,+1, ny+2,....,n -1,
QF (x) = Q;(x) = O(Qf (%))

holds in the present case, and applying (1) and f(0) = 0 leads to

n—1

L fxe)NQf(x) = Qi(x)l
j=ng+1
< 2w(f, xn0+3)( :!:0+1(x) + Q:0+2(x))
+CQ:’;U+1(x) "Z_:l (w(f’ xn0+1) +w(f’ ]_—E))e—(i—no—l)/s

j=ng+3 n

n—1
<Co(f,n™'?) X Qf(x).

j=ng+1

Combining (2), (3), (7) and (8) completes the proof of Lemma 1. O
Lemma 2. Let
n—1
2 iny o1 f(x)Q;(—1/l0g(x/¢))
n—1 *
¥ 0 (~1/log(x/<))

Then there is a rational function R(x) € R(A,,, ) such that
lr*=RI<CIflA,,.

rf(x)=

Proof. Let P, (x, a,, a,,...,a,) denote the kth divided difference of (x/e)* at a =ay, a,...

with respect to «, that is,
x \ %
P(x, a,)= (—) ,

o(xs a) = | 5

P._(x,ay,ay,...,8,_1) —P_i(x, ay,a,,...,a;)
P(x,ay, ay,...,a;,)=

a,—a;
Write

Py(x) =Py(x, Ay,,),
for k=1,2,...,m,_;,

Pk(x) =Pk(x’ )\mn, Am,,+l""’/\m,,+k)’

(7

(8)
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fork=1,2,....m,_,_,—1,

n—1
* =
Pk (x) _Pk—l(x’ )‘m,,+m,,_1+1’ Amn+mn_1+2" cr Amn+m,,_1+k)
and

* _
Pm,,,l(x) _Pm,,_l—l(x’ )‘m,,+2m,l_1’ Am,l+2m,,‘1+l’"")‘m,,+3m,,_1—1)‘

By the mean value theorem,

x/¢) *log*(x /e
Pk(x)=(/) g'(x/e)
k!
A, SN <A, ok k=0,1,....m,_,
Pr(x)= (x/e)™logh~!(x/¢)
, (k—1) ’

Amyvm, 41 < N < Amytm,_i ko k=0,1,...,m, -1,
(x/e)"log™-1"1(x/e)

pP* = .
i) (s D)
Amn+2mn_1 < T’;kn,,_l < Am,,+3m,,_1—1 - Am"+3m"_1—1‘
Define
n—1 ;
R( ) Zj=n0+1(_1)m(mn 1_m) f(x) m,_ m( )
x =

E et~ (o = m = D)UPE L (x)
then R(x) € R(A,,, ). By (9)-(11),
Y 1 f(2)Q;(—1/1og(x/e))(x/€)"

S 0 (~1/log(x/e))(x/€)”

where for j=n,+1, n,+2,...,n -1,

R(x)=

_ _ * _ ok _ )
af - nmn—l—mj nmn-—l_mng+1 > 0’ 0 < af nmn—l_mj nmn—l_mn0+l < a)'

We come to estimate r*(x) — R(x). Write

)= T fx ol )  p- T 10| )(5)

j=ng+1 j=np+1

q(x) = Z Q*(log(xl/e)) g,(x) = Z Q*(log(—xl/e))(x)ay.

J=ng+1 Jj=np+1

©)

(10)

(11)
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Then,
* _ _ p(x)—pi(x)  pi(x) qi(x)—q(x)
r*(x) - R(x)= 2 + () TR (12)
It follows from
1- (/)"
log(x/€) s

for n > 0 that

n—1 —m. @;
p(x)—py(x)| X, i f(x)og™(x/e)l I(x/e)” ~ 1]
< <Iflll max «a;.
q(x) Q(x) not+l<j<n—1 4
Similarly,
ai\x)—4gq{x X px X
a(x) —alx) | log(—) max @ and |23 Cypy 1og—1(—) |
q(x) e/ |np+1<j<n-1 q,(x) e
since af <a; for all j=ny+1, ny+2,...,n— 1. Combining these estimates with (12), we get
for x €(0, 1] that
|r*(x) —R(x)I<II Il max ey, af},

np+1<gjgn—1

which is the required result. O

Theorem 3. Let {A,} be a sequence with A, 0 as n— . Suppose that {o,} is a positive
decreasing sequence satisfying
A, <0,

forn=1,2,..., and

g,

= 0(1).

O2n
Denote

s, =max{n~'/*, o,}.
Then for any f € Cyg 1y,

Rn(f’ A) < Cw(f’ Sn)‘

Corollary 4. Let {A,} be a sequence with A, 0 as n — ». Suppose that
A, <Cn~ 174

forn=1,2,... Then for any f€ Cloap
R,(f, A)<Cao(f, n™'/%).



18 S.P. Zhou / Journal of Computational and Applied Mathematics 53 (1994) 11-19

Proof of Theorem 3. For f & Cy;y, set

g(t)=f(e'"1") = f(0);
then g(¢) € Co,1y With g(0) = 0. Applying Lemma 1, we find a rational function r of degree m,,
such that

lg—rli<Co(g, n”?) < Ca(f, n="?)

or

Il f(x)—£f(0) —r*(x) < Ca(f, n"'/?). (13)
Let R(x) € R(A,,, ) be defined as in Lemma 2; then we have

Ir* = RIl< CA,, Il £ 1< Ca,, | f < Ca(f, ) (14)

The estimates (13) and (14) then imply that
I f(x) = f(0) —=R(x) I < Ca(f, 5,)
or, in an equivalent form,
R,(f, A) <Co(f, s,),
since f(0) + R(x) € R(A,, ). Theorem 3 is completed. O

With the same calculation we can establish better estimates in the interval [a, 1] for a > 0.

Theorem 5. Let {A,} be a sequence with A, 0 as n— ». Suppose that {0,} is a positive
decreasing sequence satisfying

An <a-n’

forn=1,2,..., and

.~ 0q1).

2n

Denote
s, =max{n~'2, g,}.

Then for any f€ C, 4y, a >0,
Rn(f’ A)[a,ll < Caw(f’ sn)[a,ll’

where C is a positive constant depending upon a only.

Corollary 6. Let {A,} be a sequence with A, 0 as n — . Suppose that
A, <Cn 172,

forn=1,2,... Then for any f€ C,,}, a >0,
R,(fs M < Coo(f, n7 )0
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3. Remark

On the quantitative Miintz rational approximation rate, Bak [1] proved that if fe C[O,l] and
{A,} is a sequence of distinct nonnegative increasing numbers with A\, > k for all k > 2, then 2

R,(f, A) < Co(f, n71).

In the case A, — [ for some [/, 0 </ < oo, the best nth Miintz polynomial approximation rate
of fe& Cp, with respect to {x*} is well known to be Cw(f, n™"/ 2) (see, for example, [2]);
hence a trivial consequence is that the bound for R, (f, A) in this case is Co(f, n™1/?) as well.

All these results together with Theorem 3 are still far away from confirmation of the
following problem raised by Newman.

Problem (Newman [6, Problem 10.3]). Is it true that for any f € Cyy,; there exists R(x) € R(A,)
such that

Il f=RI<Co(f, n7')?
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