JOURNAL OF COMPLEXITY 11, 265-292 (1995)

Computational Complexity of Fixed Points and
Intersection Points

Ker-I Ko*

Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, New York 11794

Received December {4, 1994

We study the computational complexity of Brouwer’s fixed point theorem and
the intersection point theorem in the two-dimensional case. Papadimitriou (1990,
in “Proceedings, 31st IEEE Sympos. Found. Comput. Sci.,” pp. 794-801) defined
a complexity class PD LF to characterize the complexity of the fixed point theorem
in the three-dimensional case. We define a subclass PMLF of PDLF and show that
the fixed points and the intersection points of polynomial-time computable functions
are not polynomial-time computable if PMLF contains a function on unary inputs
that is not polynomial-time computable. @ 1995 Academic Press, Inc.

1. INTRODUCTION

Brouwer’s fixed point theorem states that a continuous function f mapping
the d-dimensional unit cube [0, 1] to itself must have a fixed point z, €
[0, 1]% such that f(z) = zo (see, e.g., Shashkin, 1991). A variation of the
fixed point theorem for the case of dimension d = 1 is the following
intersection point theorem: Let I'; and I'; be two continuous, simple curves
lying inside the unit square [0, 1}* such that I'; connects the left side of the
unit square to the right side and I'; connects the upper side of the unit
square to the lower side. Then, I') and I'; must have an intersection point.
Brouwer’s fixed point theorem for dimension d = 1 is a special case of the
intersection point theorem with I'; being the graph of a continuous function
f mapping [0, 1] to itself and I'; being the graph of the function g(x) = x.
In this paper, we investigate the computational complexity of fixed points
and intersection points when the underlying functions and curves are poly-
nomial-time computable.

* Research supported in part by NSF Grant CCR 9121472. E-mail: keriko@sbcs.sunysb.edu.

265
0885-064X/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

266 KER-1 KO

The complexity of finding the fixed points has been studied in two differ-
ent computational models for real functions. In the continuous real RAM
model, the exact arithmetic and comparison operations on real numbers
can be performed in one unit of time, and the function f is presented as
an oracle that answers any query for f(z) with its exact real value. Hirsch
et al. (1989) proved, in the real RAM model, an exponential lower bound
20t+4) for finding an approximate fixed point z such that |f(z) — z| = 27",
for continuous functions f that map [0, 1]¢ to itself. In the discrete Turing
machine model, the function f is presented by a polynomial-time Turing
machine (TM) M that, on any dyadic point z of precision n, gives an
approximate value M(z) for f(z) with |M(z) — f(z)| = 27". Both the machine
M and the error bound 27" are given as the input to the problem. Papadimi-
triou (1990) showed in this model that the problem of finding an approxi-
mate fixed point for the cases of dimension d = 3 is complete for the
complexity class PDLF. The class PDLF is the class of search problems
for each of its instances there exists a (possibly exponentially long) locally
polynomial-time computable search path leading an initial point to the
solution point. Thus, this class captures the inherent complexity of the
combinatorial search of Sperner’s lemma. The case of dimension d = 2 in
the discrete Turing machine model was left open.

In this paper, we study these problems in the continuous Turing machine
model of Ko and Friedman (1982) (see also Ko, 1991). That is, we use
ordinary Turing machines that work with finite strings as the computational
model, but we require that the output values of a Turing machine for
computing a real number converge in a polynomial speed. In this model,
areal number x is called polynomial-time computable if there exists a Turing
machine M that, on input n, outputs a dyadic rational d in time polynomial
in n such that |d — x| = 27", A function f:[0, 1] — R is called polynomial-
time computable if there is a Turing machine M that computes f as in the
discrete model and f has a polynomial modulus p such that if [x — y| =
277 then | f(x) = f(y)l = 27"

The Brouwer fixed point problem in this model is formulated as follows:
if f is polynomial-time computable mapping [0, 1]¢ to itself, does it always
have a fixed point z, that is polynomial-time computable? We observe that
by a simple design, it is easy to construct a polynomial-time computable
function fsuch that it has a unique fixed point of arbitrarily high complexity
(but having many approximate fixed points of low complexity). Thus, the
answer to the Brouwer fixed point problem is a trivial no, which, however,
does not provide much insight into the real combinatorial complexity of
searching for the fixed points. To remedy this situation, we add an additional
requirement to the function f in our study: the function g(z) = f(z) — z
must have a polynomial inverse modulus at its zeros; that is, there exists a
polynomial g such that if |z — z,| > 27" for all zeros z, of g, then |g(z)| >

COMPUTATIONAL COMPLEXITY 267

279 (see Ko, 1991, for more discussions on this notion and its relation to
the zero-finding problem). We note that functions fsatisfying this condition
have the property that an approximate fixed point of the function fis indeed
a good approximation to an exact fixed point of £ i.e., if | f(z) — 2| < 279"
then there is a fixed point z, of fsuch that |z — zy| < 27". Thus, the complexity
of the fixed points of such functions f has an upper bound NP, and the
lower bound is comparable with those found in the above two different
models.! In particular, it is easy to see that Papadimitriou’s construction
can be carried over to our computational model. Namely, assuming that
PDLF ¢ PF (i.e., PDLF contains a function not computable in polynomial
time), then there exists a polynomial-time computable function f mapping
[0, 1]? to itself such that g(z) = f(z) — z has a polynomial inverse modulus
of continuity at zeros and all fixed points of f are not polynomial-time com-
putable.

The first main result of this paper is a new lower bound for the fixed
point problem in the case of dimension 4 = 2. This result is an extension
of Papadimitriou’s result. We define a subclass PMLF of PDLF to be the
class of search problems whose search path is unique and is monotone
under a natural ordering. We show that if PMLF, ¢ PF, (ie., PMLF
contains a function defined on unary inputs that is not computable in
polynomial time), then the fixed point problem for the case d = 2 is
not solvable in polynomial time. More precisely, we construct, under the
assumption PMLF; ¢ PF;, a polynomial-time computable function f map-
ping [0, 1)? to itself such that g(z) = f(z) — z has a polynomial inverse
modulus of continuity at zeros and f has a unique fixed point z, that is not
polynomial-time computable. Interestingly, the construction of the function
fis based on the staircase construction of Hirsch et al. (1989) that established
the lower bound for the fixed point theorem in the continuous RAM model.

The intersection point problem in our model can be formulated in a
similar way. We say that two functions f and g mapping [0, 1] to [0, 1] are
polynomially distinguishable away from the intersection points if for any
L, 6 €0, 1], [f(ty) — 2ol = 27" and |g(r;) — z¢| = 27" for all intersection
points zo of f and g imply that |f(¢;) — g(x)] = 277" and | f(x) — g(&:)| =
2-7(" for some fixed polynomial p and for all x € [0, 1]. Then, for such
functions, an approximate intersection point is a good approximation to
an exact intersection point, and the exact intersection points for functions
f and g satisfying this condition can be computed in nondeterministic poly-
nomial time. What is the exact complexity of finding an intersection point
of such functions f and g? We observe that if f(f) = (¢, #), then the above
question is almost the same as the fixed point problem, and the binary

! Note that it does not make sense to consider approximate fixed points in our model. since
for any function f there always exist rational approximate fixed points.

268 KER-I KO

search algorithm yields a polynomial-time intersection point. Indeed, if
either curve f or g is the graph of a polynomial-time computable function,
then the intersection points are easy to find. However, in the general case,
as functions fand g can wind around each other, the binary search algorithm
apparently fails. Our second main result establishes PM L F as a lower bound
for the complexity of the intersection points. That is, f PMLF, ¢ PF),
then there exist functions f and g which are polynomially distinguishable
away from intersection points such that fand g have a unique intersection
point z, that is not polynomial-time computable. This result shows a differ-
ence in complexity between the geometric-oriented method of binary search
and the purely combinatorial method of Sperner’s lemma for the proof of
the existence of fixed points.

The above two lower bound results are based on the assumption that
the class PMLF, does not collapse to the class PF,. How plausible is this
assumption? Since PMLF is a subclass of PDLF, as well as the class UPF?
it is very close to PF and does not seem to have many natural complete
problems. As a partial justification, we show, in the next section, that under
a natural relativization, the class PMLF does not collapse to the class PF
relative to some oracle. It is interesting to point out that, although some of
recent results such as Shamir (1990) indicated that the relativized separation
does not have much to say about the unrelativized case, it does have some
interesting implication on the complexity of real-valued problems. Namely,
this relativized separation does imply the exponential lower bound for the
fixed points in the real RAM model (this is demonstrated by the similarity
between the adversary argument of our Theorem 2.4 and the proof of
Hirsch et al., 1989).

2. CowmprLexiTy CLAss PMLF

Consider the problem of computing a multi-valued, total function ¢: {0,
1}* — {0, 1}*. We say the function ¢ is polynomial-time computable (denoted
by ¢ € PF) if there exists a deterministic polynomial-time TM M such that
for each input x, M(x) is a value of ¢(x). We say ¢ is nondeterministic
polynomial-time computable (denoted by ¢ € TNPF) if there exists a
nondeterministic polynomial-time TM N such that for each input x, there
exists at least one halting computation of N(x) and that every halting
computation path of N(x) outputs a value of ¢(x) (not necessarily the same
one). For certain search problems, the function ¢ is not only in TNPF, but
also has some structural properties that may help the machine to find the

2 UPF denotes the class of single-valued total functions computable by nondeterministic
polynomial-time Turing machines that have, on each input, exactly one halting computation.

COMPUTATIONAL COMPLEXITY 269

solutions. For instance, Johnson et al. (1988) studied the class PLS of
polynomial-time local search problems: A local search problem is a multi-
valued optimization function ¢ for which there exists a deterministic polyno-
mial-time TM M that on input (x, y) either verifies that y is an optimal
solution to @(x) or outputs a new candidate z as a better solution to ¢(x)
than y. Note that for each local search problem ¢, there is a generic search
path for each input x: starting with any potential solution y,, then at each
iteration applying machine M to (x, y;) to either, verifies that y; is an optimal
solution, or to get a better solution y..,. This algorithm, although not
necessarily halting in polynomial time, demonstrates a structural property
of the problem ¢ and, hence, suggests that problem ¢ is probably not
complete for the more general complexity class TNPF. Johnson et al. (1988)
and Papadimitriou (1990) argued that the problems with the same structural
properties ought to be grouped together as a new complexity class, and
they proved that such classes possess many natural complete problems.

In the following, we formally define complexity classes PDLF and PMLF
of search problems that have a property similar to that of polynomial-time
local search problems. Let n be a positive integer and V = {0, 1}". We say
a directed graph G = (V, E) is a path graph, if for any node w € V, both
the outdegree of w and the indegree of w are bounded by 1. Thus, each
node w has at most one predecessor and one successor. A path graph G
is called monotone if (u, v) € E implies that ¥ < v under the lexicographic
ordering on {0, 1}". Let A = V U {A}, where A denotes the empty string.
We say that a function ¢:V — A X A represents the path graph G if for
any w € V, ¢{w) = (u, v), where u is the (unique) predecessor of w and
v is the successor of w, and u (and v) is A if w does not have a predecessor
(successor, respectively). The class PDLF, as defined in Papadimitriou
(1990), is the class of all multi-valued functions ¢:{0, 1}* — {0, 1}* for
which there exist a polynomial-time computable function #:{0, 1}* x {0,
1}* — {0, 1}* x {0, 1}* and a polynomial p such that for each string x of
length n,

(i) the function ¥,(y) = ¥(x, y), when restricted to inputs y of length
p(n), represents a path graph G, on {0, 1}*™® of which 07" is a leaf, and
(i) &(x) = {w € {0, 1}P™:w is a leaf of G,, w %= 0P},
We define a new complexity class PMLF (M stands for monotone) as

the class of single-valued functions ¢:{0, 1}* — {0, 1}* in PDLF having the
following additional properties:

(iii) for each string x of length n, ,(y) represents a monotone path
graph G, on {0, 1}7®;
(iv) each G, has exactly two leaves: 07 and ¢(x).

In other words, the value ¢(x) in PMLF can be computed by following

270 KER-I KO

2
2

2

0/
1 A2

2/ 0/
11 /)2

2/ 21/ 01/;
I /2

0/ 0l 0/ 0l
o ‘—@- —- -1»- -»-Tl 2
11 11 A1 /]2

0,/ 04

/ AN A2 A2 12 A2 A2

FiG. 1. Triangle T3 with a coloring 6, with respect to the sequence yy = 0, y; = 2 and
¥2= i = 6.

the path yo < y, < - - - < yi, where yq = 07" and y;., is the successor of
y; in the path graph represented by ¢, and ¢(x) is the point y, that does
not have a successor. This search path is in general, however, exponentially
long, and so it does not provide a polynomial-time search algorithm. It is,
of course, computable in polynomial time by a nondeterministic algorithm
that guesses the point y, and verifies that y, does not have a predecessor.
Indeed, this witness is unigue by our definition and so it is actually contained
in the class UPF. This observation proves the following relation between
the classes PMLF and PF. In the following, UP denotes the complexity
class of sets that are acceptable by unambiguous nondeterministic TMs in
polynomial time that on any input have at most one halting computation
path (Ko, 1991).

ProvrosiTion 2.1. If PMLF & PF then P * UP N co-UP.

Proof. Assume that ¢ € PMLF — PF. Let A = {{x, u):u is a prefix of
&(x)}. Then it is clear that A € UP N co-UP, since for each x we can guess
a unique string w and verify in polynomial time that w = ¢(x) and that u
is a prefix (or, not a prefix) of w. Since we can use A as an oracle to compute
¢ in polynomial time, the set A isnotin . =

The class PMLF is defined to capture the inherent complexity of the
fixed point theorem in the two-dimensional plane. Let us illustrate this idea
by showing that PMLF is a lower bound for the two-dimensional Sperner
lemma as defined in Papadimitriou (1990). Our result on the two-dimen-
sional fixed point problem is based on this construction.

We consider a simplified form of Sperner’s lemma on the triangle 7,
with the following three vertices: 0, 0), (27, 0), and (2, 2"). The triangle
T,, is divided into 2°" subtriangles as shown in Fig. 1. Each subtriangle

COMPUTATIONAL COMPLEXITY 271

either has three vertices (s,), s + 1,), (s + 1,1t + 1), withO0=r=s5 <
2m — 1, or it has three vertices (s, t — 1), (s,), (s + 1,), withl = r =5 =<
2™ — 1. We say that 6:{0,1,. . ., 2"} x{0,1,. . .,2"} — {0, 1, 2} defines
an admissible coloring on triangle T, if

(i) 60,0) =0, 627, 0) = 1, &2", 2"y = 2,
(ii) (s, 0) € {0, 1}, (s, s) €40, 2}, &2, 1) € {1, 2}, for all 5, 1 € {0,
..., 2"

The problem SPERNER; is as follows: Given a polynomial-time TM M
and an integer m, such that M on inputs (s,) € {0, 1, . . ., 2"} X {0, 1,
. . ., 2™} defines an admissible coloring on 7,,, find a subtriangle of 7,
whose vertices are colored by three different colors. (The existence of such
a subtriangle is guaranteed by the Sperner lemma.) Papadimitriou (1990)
showed that SPERNER, is in class PDLF for all d = 2 and that SPERNERy
is complete for PDLF for ali d = 3. In the following, we show that SPERNER;
is not polynomial-time solvable if PMLF ¢ PF.

THeOREM 2.2. If PMLF ¢ PF, then SPERNER; is not polynomial-time
computable.

Proof. Assume that ¢ € PMLF — PF. Thus, for each x of length n,
there is an increasing sequence of strings y, = 07" <y, <. - - <y of
length p(n) such that ¢(x) = y,; and the mapping from (x, ;) to (yi-1, Vis1)
is computable in polynomial time. In the following, we identify each string
y; with the integer j, 0 < j < 27" — |, whose p(n)-bit binary representation
is y;. Note that for infinitely many x, the value y; is less than 20t — 1,
since y; would be easy to compute otherwise. For each x with Vi, = 2p(n) —
2, we define a coloring 8, on triangle 7, as follows:

(1) 6.(0,0) =0, 6,(s,0) = 1if 1 =5 =< 27" and 6,(2", 1) = 2if 1
t < 29

IA

2) G,)=1ifr=y,andy, + 1 =s=y, +1forsome0=i=<
ki —lorifs=y,+landy,_, =¢t=<y forsomel =/=<k,.

3) 6. 0)=0ifr=y;+1landy, +1 =s=y,forsome0=i=<
k,—lorifs=yandy, +1 =t=<yforsomel =i=<k,.

(4) For all other vertices (s, 1) of T, let 8,(s, 1) = 2.

Figure 1 shows such a coloring.

Since the mapping from (x, y;) to (-1, yi+1) is polynomial-time comput-
able, it is clear that 6, is uniformly computable in polynomial time. Further-
more, the triangle T, with the coloring 8, has a unique search path starting
from the edge connecting (0, 0) and (1, 0) and continues with the edges
whose two vertices are colored by (0 and 1 (shown by arrows in Fig. 1).
The subtriangles in the search path, except the last triangle, are colored

272 KER-1 KO

by colors 0 and 1. The subtriangles to the right of the search path are
colored by colors 1 and 2. The subtriangles to the left of the search path
are colored by colors 0 and 2. Thus, there is a unique 3-colored subtriangle
in T, namely, the one with the vertices (yi,ys),{(yx, + 1,y), and
(¥« + 1, ye, + 1). Since the vertices of this subtriangle encode the value
d(x) = Y&, the problem of computing ¢ is reduced to the problem of
finding the unique 3-colored subsquare, and so the theorem is proven. ®

In Sections 4 and 5, we will use a stronger assumption than PMLF ¢
PF for the lower bound results. For any complexity class C of sets, we let
C, denote the subclass of sets A C {O}* that is in C. For any complexity
class F of functions, we let F, denote the subclass of functions ¢:{0}* —
{0, 1}* that is in F. We are interested in the complexity class PMLF, of
functions defined on a singleton alphabet that is in PMLF. The complexity
of functions in PMLF, is weaker than the complexity of sets in UP; N
co-UP,. It is known that the complexity class UP, N co-UP, characterizes
the complexity of one-way functions whose range is {0}* (Ko, 1991). The
inverse functions ¢! of functions ¢ in PMLF, are candidates of such one-
way functions.

ProrosiTiON 2.3. If PMLF, € PF| then P, # UP; N co-UP,.

Since we do not know of any natural complete problems for the class
PMLF, and yet we will use the assumption that PMLF, ¢ PF,, we need
some justification for this assumption. In the following, we show that PMLF,
does not collapse to PF relative to some oracle. In other words, any uniform
way of searching the second leaf of a monotone path graph must take
superpolynomial time in the worst case.

First, we recall that relative to an oracle set A, the class PF4 is just all
the functions computable in polynomial time by deterministic oracle TMs
that use A as the oracle. The class PMLF4{ is naturally defined to be the
class of functions ¢:{0}* — {0, 1}* for which there exist a function ¢ €
PF# and a polynomial p satisfying conditions (i)-(iv) of the definition
of PMLF.

THEOREM 2.4. There exists a set A such that PMLF{ PF{.

Proof. Let A be a subset of {0, 1}* and y a string of length n. We define
the A-predecessor of y to be the least string w of length n such that 0"1y0u €
A for all prefixes u of w, and the A-successor of y to be the last string z
of length n such that 0"1ylv € A for all prefixes v of z; we say that y does
not have an A-predecessor (or, an A-successor) if such a string w (or,
respectively, z) does not exist. We are going to construct a set A satisfying
the following conditions:

COMPUTATIONAL COMPLEXITY 273

(a) For any strings y and z, y is the A-predecessor of z if and only
if z is the A-successor of y.

(b) For any strings y and z, if z is the A-successor of y then y < z
under the lexicographic ordering on {0, 1}*.

(c) For any string y, 0"1y0u € A if and only if u is a prefix of the
A-predecessor w of y; and ("1ylv € A if and only if v is a prefix of the
A-successor z of y. (If y does not have an A-predecessor then ("1y0u & A
for all strings u; and if y does not have an A-successor then 0"1yly & A
for all strings v.)

(d) For each integer n, either no string of length n has an A-predeces-
sor or an A-successor, or there is a unique A-successor chain of strings of
length n, beginning with (. That is, if we define a directed graph G = (V,
E), with V = {0,1}"and E = {(y, z): z is the A-successor of y}, then either
E = J or G is a monotone path graph with exactly two leaves, one of
them being 0”.

(e) The function ¢4(0") = the last string in the A-successor chain of
length n is not in PF4,

The above conditions (a), (b), and (c) together imply that the A-predeces-
sor and A-successor functions are well defined and are in PFA. Condition
(d) implies that the function ¢, is well defined and is in PMLF$. Thus, the
theorem is proven once set A4 is constructed to satisfy the above conditions.

Let {M,} be an effective enumeration of all polynomial-time oracle Turing
machines with the runtime of M, bounded by the eth polynomial p.(n) =
n° + e. We are going to construct set A in stages. At each stage e, we
construct a finite subset of A to ensure that M4 does not compute ¢,.

First, for stage 0, we let Ay = J and let ny, = 1. Assume that by the end
of stage e — 1, we have defined integer n,_, and set A,_,.

Stage e. We define n, to be the least integer n such that n > p._(n..,)
and p.(n) < 2""!. We write n for n,. (The first condition on n guarantees that
adding strings of length =n to set A does not affect the earlier simulation of
M7 (07). The second condition allows enough space to deny M¥0") any
chance of computing ¢,(0%).)

In the following, we describe an algorithm to construct an A-successor
chain G, :x,0 = 0" <x,; <- - - <ux,, of strings of length n. Assume that
a string z is greater than the last element y of the current chain C,. We
say that we add z to the chain C, to mean that we add 0"1ylu and 0"1z0v
to set A, for all prefixes u of z and all prefixes v of y. We say that the
machine M, queries about the A-predecessor (or, the A-successor) of a
string y if M, asks whether 0"1yOu € A for some u of length =n (or,
respectively, asks whether 0"1ylv € A for some v of length =n).

ALGORITHM FOR THE CHAIN C,,.

274 KER-I1 KO

(1) Let C, consist of a single string ('. Let B, = (J.
(2) Forifrom 1 to p.(n) do the following:

Simulate the ith move of the computation of M4(0").

Case 1. If M2(0") does not make a query, then do nothing.

Case 2. If M4(0") queries A about a string w that is not of the form
0"1u for any string u of length n + 1 < |u| = 2n + 1, then answer the query
according to the set A,_,.

Case 3. If M%(0") queries about the A-predecessor or the A-successor
of a string y of length # that is not in C,, then answer no and add y to the
set B,,.

Case 4. If M2(0") queries about the A-predecessor of a string y in C,,.
then answer according to the chain C,.

Case 5. If M2(0") queries about the A-successor of a string y that is
in C, but not the last element of C,,, then answer according to the chain C,,.

Case 6. If M}((") queries about the A-successor of the last string y in
C,, then let z = min{fw:|w| = n, w > y, w & B,}, add z as the new last
element of C,, and answer the query according to the new C,.

Case 7. If M(0") halts and outputs a string z that is not in C,, then
add z to B,.

(3) Let y be the last element of C,. Define z = min{w:|w| = n, w >
y, w & B,}, and add z as the new last element of C,.

(4) Let A, be the set A, plus the new strings added to A in the
stage e.

END OF ALGORITHM.

Note that M(0") must halt in p,(n) moves, and so set B, is always of
size =p.(n) < 2"°!. Also, the chain C, is also of size =2"!. Thus, Case 6
of Step (2) and Step (3) are well defined.

Welet A = U7, A,. Itis clear that through the construction of the chain
C,,, conditions (a)—(d) are easily satisfied. To see that ¢, is not computable
in polynomial time relative to A, we first verify that the simulation of
M4(0™) in Stage e is identical to the computation of M,(0") with respect to
the final set A. This is true because in Stage e, we have included all queries
answered with ““no A-predecessor nor A-successor” in the set B, and made
sure that B, N C, = J. Furthermore, we never add any string of length
<p.(n) to set A in later stages. Thus, the simulation of M4((") in Stage e
is correct and its output is different from ¢,(0"), and condition (e) is
satisfied. ®

COMPUTATIONAL COMPLEXITY 275
3. CoMPUTATIONAL MoODEL OF REAL FUNCTIONS

The concept of polynomial-time computable real functions used in this
paper was first introduced in Ko and Friedman (1982). This concept is an
extension of the notion of recursive real functions used in recursive analysis
(Pour-El and Richards, 1989), based on the bit-operation complexity mea-
sure defined on Turing machines.

The basic computational objects in this model are dyadic rationals D =
{m/2":m € Z, n € N}. For each integer n > 0, let D, denote the class of
dyadic rationals with at most n bits in the fractional part of its binary
representation. A real number x € R is polynomial-time computable if
there exist a Turing machine M and a polynomial p such that on the input
n € N, the machine M outputs, in time p(n), a dyadic rational d satisfying
|d — x| =2

The notion of polynomial-time computable real functions is formally
defined by oracle Turing machines. In this paper, we use an equivalent
definition that avoids the use of the oracle Turing machines. We say a
function f: [0, 1] — R has a polynomial modulus of continuity if there exists
a polynomial p such that |x — y| < 277 implies | f(x) — f(y)| = 2"

DeriniTiON 3.1. A function f:[0, 1] — R is polynomial-time comput-
able if

(i) fhas a polynomial modulus, and

(i1)) there exist a Turing machine M and a polynomial p such that for
any dyadic rational number d € D, and any integer n, M(d, n) outputs,
in time p(n), a dyadic rational number e such that e — f(d)| = 27"

For functions f satisfying the above two conditions, it is easy to see how
we can approximate the value f(x) for a “given” input x: first, get a dyadic
rational d that is very close to x; then use M to find an approximate value
e to f(d). Since d is close to x, condition (i) guarantees that e is also close
to f(x).

The above definition can be extended to functions mapping [0. 1] to R®
or functions mapping [0, 1}> — R? in a natural way. A point in R? is denoted
by a bold-faced character z or a pair {x, y) of real numbers.

4. CoMPLEXITY OF FIXED PoINTS

Let f be a polynomial-time computable function from [0, 1] to itself.
Then we can easily find a fixed point of f by a simple binary search method.
However, in our computational model, the binary search method does not
necessarily work in polynomial time, because each iteration of the binary

276 KER-1 KO

search method involves the comparison of two real numbers, and the
amount of time to perform the comparison operation could be arbitrarily
high if two numbers are not identical but are arbitrarily close to each other.
Or, equivalently, a point x could be very far from the exact fixed point x,
but the function value f(x) is very close to x (see Theorem 4.4 of Ko, 1991).
In order to understand the inherent complexity of the combinatorial search
process for fixed points, we consider a function f an ill-conditioned function
if it has approximate fixed points that are not a good approximation to the
exact fixed points. Formally, we use the notion of polynomial inverse moduli
to identify the class of well-conditioned functions.

DeriNiTiON 4.1 (Ko, 1991). A function £:]0, 1]> — R? has a polynomial
inverse modulus at zeros if there exist a polynomial p and a constant n,
such that for all n = n,, if [z — z,| > 27" for all zeros z, of f, then | f(z)| >
277 The function p is called an inverse modulus function of f at zeros.

We will consider functions f:[0, 1]* — [0, 1]* such that g(z) = f(z) — z
has a polynomial inverse muludus at zeros. We call such functions f well-
conditioned functions (with respect to the Brouwer fixed point problem).
For such functions, their fixed points have an upper bound PDLF.

ProrosiTioN 4.2. Assume that [is a well-conditioned, polynomial-time
computable function mapping [0, 1]* to itself. Further assume that f has a
unique fixed point 2. If PDLF = PF then 2, is polynomial-time computable.

Proof. 'The proof is essentially the same as Papadimitriou’s (1990) proof
for the discrete Turing machine model. ®

We now show the lower bound PMLF, for the fixed points of well-
conditioned, polynomial-time computable functions.

THEOREM 4.3. Assume that PMLF, ¢ PF,. Then, there exists a well-
conditioned, polynomial-time computable function f:[0, 1}* — [0, 1)? that
has a unique fixed point z, but z, is not polynomial-time computable.

Proof. Assume that ¢ is a function in PMLF, — PF;. We are going to
construct a function fon [0, 1] such that it has a unique fixed point z, with
the property that the binary expansion of z, encodes the values ¢(0"). The
construction consists of two steps. First, we describe, for each integer n, a
basic construction of a function f, on [0, 1]? such that f, has a unique fixed
point that is enclosed in a small subsquare [a,, b,|* with the real number
a, encoding the value ¢(0"). In the second step, basic functions f, are
combined to form the desired function f in the following way: f on [0, 1]?
is identical to fy, except on the subsquare [aq, bo]>. Then, we embed f; on
[0, 1]? into the subsquare [aq, by]> Let [a}, bi]? be the image of the square

COMPUTATIONAL COMPLEXITY 277

[a;, b)]? under this embedding function. Then, we embed f; on [0, 1}* into
the subsquare [a{, b{]>, etc. Thus, the function f has a unique fixed point
z, that is the limit point of the subsquares [ao, bo)?, [ai, bi), [az, b3)%,
Finding the point z, is equivalent to finding &(0'), ¢(0?),

The basic construction of the function f, follows the idea of the staircase
construction of Hirsch et al. (1989) (the case d = 2). Indeed, the adversary
argument of Hirsch et al. (1989) is almost identical to our argument for
separating PMLF, from PF| by an oracle (Theorem 2.4). We first give a
brief review of their construction of the function g. We omit the details
that are irrelevant to our construction. For an integer K > 4, we first divide
the square [0, 1]? into K? subsquares each of size 1/K X 1/K. We identify
each subsquare whose lower left corner is the point {s/K, ¢/K) by the pair
(s, 7). These subsquares are divided into two parts. The outer most two
layers, that is, squares (s, r) with s or tin {0, 1, K — 2, K — 1}, are called
the frame, and the rest are called the picture. Each subsquare is labeled by
an integer from 1 to 11. The labels of the subsquares in the frame are fixed:

(1) A subsquare (s, ¢) in the frame with ¢t = 2 is labeled by 1.
(ii) A subsquare (s, ¢) in the frame with ¢t = 0 is labeled by 11.
(ili) A subsquare (s, t) in the frame with = 1 is labeled by 8 if s =
1, labeled by 9 if s = 2, and labeled by 10 if s = 3.

There is a staircase defined on the picture which is a sequence of sub-
squares of the shape of a staircase starting with the subsquare (2, 2) and
ends with a subsquare (u, v) for some u« and v between 2 and K — 3. The
subsquares in the picture are labeled by integers from 1 to 6 as follows:

(i) The subsquares outside the staircase are labeled by 1.

(ii) The upward tracks of the staircase, except the endpoints, are
labeled by 2.

(iii) The rightward tracks of the staircase, except the endpoints, are
labeled by 3.

(iv) The subsquares that are the turning point from the upward tracks
to the rightward tracks are labeled by 4.

(v) The subsquares that are the turning point from the rightward
tracks to the upward tracks are labeled by 5.

(vi) The last subsquare in the staircase is labeled by 6.
It is best described by a picture. Figure 2 shows an example of a staircase.

The function g on each subsquare labeled by integer i, 1 =i = 11, is
defined by Template i. The reader is referred to Hirsch et al. (1989) for

278 KER-1 KO

1y1/11f{1i1]1 111
1 {1171 11 1]1
1)1 131
111 6 |11
141 4 |3 |5(11]1
111 2 111
111|143]3{5 1)1
1112 1)1
g8:819|10({10{10({10}10](10/{ 10
11111111)11 11|11 |11]11;11

Fic. 2. An example of a staircase with K = 10. The blank subsquares are those in the
picture but not in the staircase and have label 1.

the precise definition of each template. Here, we only summarize the critical
properties of the templates and the function g:

(a) The templates i, 1 =< i = 11, are defined in such a way that the
two neighboring templates agree on their boundaries.

(b) For each point zon Template i, 1 =i <11, let g(z) = z + g;(z).
Then, the direction of the vector g;,(z) depends only on the relative position
of z in the subsquare, and if i # 6 then the absolute value |g; ;(z)| is equal
to ¢,/K, where ¢, is a constant with 0 < ¢, < 1.

(c) If i # 6, then the template / does not have a fixed point; and if
i = 6, then the template i has a unique fixed point.

(d) g satisfies the Lipschitz condition with a Lipschitz constant M
that is independent of K.

The above properties imply that the (unique) fixed point of g lies inside
the subsquare labeled 6. The fixed point problem for a continuous function
then is reduced to the combinatorial problem of searching for the subsquare
that is labeled by 6. By an adversary argument similar to our argument in
Theorem 2.4, it is proved in Hirsch er al. (1989) that this combinatorial
search problem has an exponential lower bound.

Now we describe our basic construction. Assume that ¢:{0}* — {0, 1}*
is a function in PMLF, that is not polynomial-time computable. Then, there
exists a polynomial function p and, for each integer n, there is an increasing
sequence 07 = y, < y; < - - - <y, = ¢(0") of strings of length p(n)
such that the mapping ¢ from (0", y;) t0 (yi-1, yi+1) is polynomial-time
computable. We now define, for each integer n, a function 6, that maps
each pair (u, v) € {0, 177" X {0, 1}’ to an integer i € {1,2,. . ., 6} as

COMPUTATIONAL COMPLEXITY 279

V]

AR VRN .CEE N

4133

Fi. 3. An example of function §,. All blank subsquares are labeled by 1.

2, ifu=yandy_,<v<yforsomei=1,... k%,
3, ify <u<yandv=y. forsomei=1,...,k,
J4, ifu=v=y ,forsomei=1,...,k,
6,(u, v) =
5, ifu=yandv=y_forsomei=1,. .., k%,
6, ifu=v=y,
{ 1, otherwise.

For instance, assume that p(n) = 3, and y, = 000, y; = 011, y, = 100, and
y3 = yi, = 110. Let us identify each string u of length p(n) with the integer
iy, 0= i, = 2P — 1, whose p(n)-bit binary representation is u. Then,
function 6, 1s a function defined on a standard chessboard, whose values
are shown in Fig. 3.

Function 6, thus defines a staircase. Since ¢ is polynomial-time comput-
able, it follows that the function &0", u, v) = 8,(u«, v) is also polynomial-
time computable.

Now we are ready to define the function f,. Divide the square [0, 1]? into
2% many subsquares each of size 277" X 27" _]dentify each subsquare by
integers (s, 1) if its lower left corner is (s-277™, ¢-277"), Let s, be the
integerin {0, 1,. . ., 27" — 1} such that 6,(s,,, s,) = 6, and let a,, = s, - 27P("
and b, = (s, + 1)277". The function f, on [0, 1]? is a continuous function
that encodes the labels 6,(s, #) in the corresponding subsquares (s, £). That
is, f, on subsquare (s, 1), with 8,(s,) = i, is the same as the function g on
Template i, with K = 27,

The function £, defined as above then has the property that its unique fixed
point locates in the subsquare [a,, b,]*, and so the problem of computing the
fixed point of f, is equivalent to the problem of computing the last subsquare
(sn. 5,) of the staircase defined by 6,. However, this definition of f, does

280 KER-I KO

a b
Up Ug U7 Us Us ve vy Vs
S, Sz S22 S2,3
S1,2
S1a
uy uz uy Ug v v vs Uy

FiG. 4. The subareas of (a) S, and (b) §,.

not satisfy all our needs. We note that, in step 2, the function f,,, will be
embedded into the subsquare [a,, b,]* of the function f,. In order to make
the final function f a continuous function, we need to make sure that the
values of f, at the boundary of [a,, b,]* are consistent with the values of
f.+1 at the boundary of [0, 1]? (after applying the embedding mapping to
it). To satisfy this additional requirement, we modify the function f, on the
subsquares (s, f) that are neighbors of the subsquare (s,, s5,) as follows:

Case 1. Subsquare (s,) is not the one right below the subsquare (s,
s,). Assume that 8,(s,) = i. Let g; be the function g defined on Template
i (with K = 27"} and g, (z) = g(z) — z. For each z in the subsquare (s,
t), let d, be the L.-distance to the boundary of the subsquare (s,, s5,),* and
let r, = 2°P00(1 — 2770*)d, + 27701 We define f(z) = z + r,-ge.1(2).
That is, considering f,1(z) = f,(z) — z as a vector, its direction is the same
as the direction of g;;(z) and |, 1(z)| = r,-|gi1(z)] = r.-cg-277™. Note that
if z is at the boundary of the subsquare (s,, s,), then r, = 27P""*1) and
lf"'l(z)l = Cg.2~(p(n)+p(n+l)),

Case 2. Subsquare (s, f) is the subsquare below the subsquare (s, s,)-
That is,s = s,and t = 5, — 1. Let ¢, = (s, — 1)277". Then, the subsquare
(s, 1) is [an, b,] X [c,, a,]. We first define a piecewise linear transformation
¢ on [a,, b,] X [c,, a,]. This piecewise linear transformation is complicated
in the numerical form but is easy to illustrate in the picture form. In Fig.
4, we show two squares S| and S, both representing [a,, b,] X [ca, au]-
Each square S, i = 1, 2, is divided into three subareas §;;, j = 1, 2, 3,
whose corners are defined as

* The L.-distance between two points (x, v;) and {x,, y5) is max{lx; — xaf, |y1 — 2|}

COMPUTATIONAL COMPLEXITY 281

Uy = v ={a,, ¢y, u = vy ={(a, + (1)27°", ¢,),
uz=vi={a, + 327" c), ws=vy=(bnca),

us = vs = (a,, a,), Ue = @, + (§)27P00-P+D) g5,
ve = (a, + (12770, q,), u; = {a, + ()27, g3
vy ={a, + (177", a,), ug = vg = {b,, a,).

For each j = 1, 2, 3, we let ¢; be the linear function mapping $;; to S, ,
with ¢ (1) = v forallk = 1,. . ., 8. Let ¢ be the combination of ¢, j =
1,2, 3.

The function f, on the subsquare (s,, s, — 1) can be defined according
to this mapping ¢. Let i = 6,(s, t). Let g,(z) be the function g defined on
Template i, and let g;,(z) = g{z) — z. Then, we define f,(z) = z +
r.-g:.1(¢(z)), where r, is defined as in Case 1. That is, the direction of
the vector f,,(z) = f(z) — z is the same as that of g;,(¢(z)) and
)fn.l(z)l = ,-z.Cg.Z*P(")‘

Case 3. (s, t) = (s, S,). We leave f, undefined on the subsquare (s,
s,) (except on its boundary).

The following observation on the function f, on subsquare (s,, s, — 1)
will be used later.

Cram 1. For each z = (x, a,) on the top boundary of [a,, b,] X [c,, a.),
letz' = (x', 0), where x' = 2""(x — a,). Then, f,(z) — z and f,.\(z') — 7'
have the same direction.

Proof. 'This claim depends on the precise definition of the templates.
We note that subsquare (s,, s, — 1) must have 0,(s,,s, — 1) =i € {2, 5}.
In either case, the direction of g;(z) — z 1s downward for all z lying in the
rightmost quarter of the top boundary. (This follows from the definition
of Templates 2 and 5.) So, after the transformation ¢, f,(z) — z has the
downward direction for all z = (x, a,), except when a, =< x =< a, +
2 (r+ptn=D) On the line segment [a,, a,, + 2~ PEE} % {q,}, its direction
is the same as that of the top of Template i on a square of size 2-(P(m*pin+1),

To see that the direction of f,(z) — z agree with f,.,,(z) — z’, we observe
that (i) all f,.,(z') — 2z’ on the line segment [277""*D 1] X {0} have the
downward direction (this follows from the definition of Templates 1, 3, and
5), and (ii) f,., on the square [0, 277"*Y)? is a Template 4, and the bottom
of Template 4 agrees with the top of Template 2 and 5. Thus, Claim 1
is proven. ®

[t is not hard to see that the absolute value of f, ;(z) can shrink from
g1(z) by a factor at most 2771 and that the Lipschitz constant for f, can
increase by a factor at most 27"V So, f, has the following properties:

(a) f, satisfies the Lipschitz condition with a Lipschitz constant
M -2°0-1) where M is a constant independent of n.

282 KER-1 KO

(b) For any z outside the subsquare (s,, s,), CK.Z*(/J(n)‘p(nH N <
ifn(l) - Z| = cg.zfli(n)_

5

The above completes the basic construction for £, on [0, 1]* — [a,, b.]*
Next we define the function f as a combination of the functions f,, applied
with appropriate linear transformations. Let [a, b]* be a square of size b —
a = r. Then, there is a unique linear bijection ¢ from [0, 1]° to [a, b]*;
namely, ¢({x, y)) = {a + rx,a + ry).

Let g(0) = 2 and g(n) = 2., p(n) + 2 for n > 0. Without loss of
generality, assume that p(k) = k + 1 for all Kk = 1 and p(1) = 2. We define
f by stages.

Stage 0. We define fon [0, 1]* — [4, §]° to be the same as function g
on the frame with size K = 8. Let S, = [1, §]> Note that S, is of size
2-at0) ¢ gy

Stage n + 1. Assume that in stage n, f has been defined on [0, 1]°,
except on a square S, = [a,, b;]* of size 274" X 274" Then, we define f
on S, to be the image of function f,,, under the linear bijection ¢, that
maps [0, 1]* to S,.. That is, f(¢,(z)) — ¢@.(z) = 279"(f,..(z) — z). Note that
f.-1 is undefined on a subsquare of size 2 71 x 277"*1) The image of
this square under ¢, is a square of size 2 401 x 2-9*1) We let this square
be S,,H.

The above defined f on every z except the point z, that is the intersection
of all S,,, n > 0. We let f(z,) = z). Note that the absolute value of f(z) —
z for z € S, converges to 0 as »n tends to o; thus f is continuous at z,.

We verify that function f satisfies our need.

Cram 2. fis well defined. That is, for each n, the values f(z) defined in
stage n and the values f(z) defined in stage n + 1 agree on the boundary of
square S,,.

Proof. Let z be a point on the boundary of S,. We let fl/l(z) denote
the value of f(z) defined in stage j, for j = n, n + 1. That is, f/l(z) = z +
27907 D(f(@7(2)) — ¢~1(2)), where ¢, is the linear bijection from [0, 1]?
to Si‘l’j =nn+ 1.

First, from the definition of f,, we know that | f,(w) — w| = ¢, - 2~ P01+ 1)
for all w on the boundary of the subsquare with label 6. It follows that
|filz) — z| = 2790D.g 2 tptmrplnl) = o LDmat-D o Also, since
[fs1(W) — w| = ¢,-277"*D for all w on the boundary of [0, 1]?, we have
| flnei(z) — 2] = 27400 ¢, . 2P0+ 1) = ¢ . 2740+ D) Thus, the absolute value of
fl"\(z) and f1**'i(z) are equal.

It is left to verify that the two definitions of f agree on the direction of
the vector f(z) — z. Note that on the left, right, and upper sides of §,, the
vectors fUl(z) — z,j = n, n + 1, all have the downward direction. This is

COMPUTATIONAL COMPLEXITY 283

clear for j = n + 1. For j = n, we note that in the definition of f,, the left,
right, and upper neighbors of the subsquare labeled by 6 must have label
1, and function f,, on Template 1 is always downward. Finally, we note that
Claim 1 has established that the two definitions of f agree on the lower
sideof §,. =

CLamM 3. Forallz € S, — Sy, ¢,- 279D = |f(z) — 2] = - 2790,
Proof. This follows from Property (b) of f,.,. ®
Ciamm 4. For each z € [0, 1], f(z) € [0, 1}~

Proof. Note that f(z) on the frame (defined in stage 0) are all within
[0, 1)°. For each z € S, — S,,.,, we know that f(z) lies either within §,, or,
by Claim 3, within a distance ¢,-277"*" from the boundary of §,. Thus,
f(z) lies within [0, 1]°, since ¢, < 1. =

CLaM 5. f has a polynomial modulus on [0, 1]%

Proof. Assume thatz,, 2z, € §, — §,.,. Let w; = <p,‘,‘(z,) forj=1,2.
Recall that f,,., satisfies the Lipschitz condition with the Lipschitz constant
M2rt=2 It follows then that

|f(z)) — f(22)] = |21 — 2] + 279 (jwy — Wyl + [£ (W) = frai(W2)])
=2z, — 2} + 279 M. 2P0 |, — |

= (sz(n+2) + 2)'11 - Zgl.

Define py(k) = p(k + 2) + k + rlog M1 + 2. We claim that p; is a
polynomial modulus function for f. Assume that |z, — z;| = 277*), We
consider four cases. First, if z;, z, € S, then, by Claim 3, |f(z,) — f(z,)| =
|z) — 2| + 2-¢,- 279D = 4.2790) < 270D gince z,, 2, € S, implies that
lZ] - Zz' = 2-2790),

Next, assume that z;, z; € S, — S,.; for some n < k. Then |f(z;) —
f(z)| = (M-27*2) 4+ 2) |z, — z,| = 27**1) by the above observation. Further-
more, if |z; — z] = r-277% for some r € [0, 1], then |f(z)) —
flaz)| = r-2-6,

For the third case, assume thatz, € S, — S,,and z, € S,, — S,,,.(, with
n < m < k. Then, for each j, n < j < m, we may find 2/ in the boundary
of §; such that 2;:,, |z — 2"V = |z, — z,|, where 2" = g, and """ =
z,. Foreach j,n = j = m. letr, = [z — 2U*V|- |z, — z,|". It now follows
from the above case that |f(z") — f(zV"")| = r;-27%*Y_and so | f(z;) —
f@@)] =270

Finally, ifz, € §, — §,..; and z; € §;, then we can find a point z; on the
boundary of S, such that |z, — z3] + |z3 — z,] = |z; — 2z,]. By the first and

284 KER-1 KO

third cases above, we have |f(z)) — f(z)| = |f(z)) — f(z:3)] + |f(z3) —
fa)) =220 =24 m

CrLaM 6. [is polynomial-time computable.

Proof. By Claim 5, we only need to check that for each dyadic point
d, we can compute, in time polynomial in n, an approximate value e to
f(d) within error 27", This amounts to (i) find the integer k such thatd €
Sioy — Sqord€ S,y and k > n, and (i) ifd € S, — S, find an
approximation to f,(w), where w = ¢, ',(z).

For the problem (i), let us assume that we have already found §;_, =
[ai-\, bi-1)°, and determined that d € S; . Now, let w = ¢;',(d) and find
the subsquare [s-2 7% ¢-2°7%)] that contains w. Determine whether (s,
t) = 6. If so, then we have found S, (namely, a; = aj | + s-2°%%) and S, =
[ai, aj + 2 99]?). Otherwise, d € S, |, — S;. The problem (ii) can be solved
then easily from 6,(s, /). =

Cram 7. fi(z) = f(z) — z has a polynomial inverse modulus at zeros.

Proof. The only zero of fy is zy. If jz — z,| = 279" thenz &€ S,,. and it
follows that |fi(z)| = ¢,-2 "D, m

CLaM 8.z is the unique fixed point of f, and z, is not polynomial-
time computable.

Proof. Assume that the lower left corner of S, is {a;,, a,). Then, we have
ay. = a, + 0127900 It follows that x, = § + =, $(07) 27907,
where z, = (x;, xy). In other words, the value $(0") is exactly the subsequence
of the binary expansion of x, from the (g(n — 1) + 1)th bit to the ¢(n)th
bit in the fractional part. So, this number x; is not polynomial-time comput-
able. To be more precise, if x, were polynomial-time computable, then we
would be able to obtain, in time polynomial in #n, a diadic rational d € [0,
1] having g(n) bits in the {ractional part such that |[d — x| = 279", Let u
be the last p(n) bits of d. Then ¢(0”) would be equal to either u (in case
d = xy) or u', the predecessor of u (in case d > xy). (The predecessor of
1707 is 070) We could determine which case it is by running (0", «) and
(07, u') in polynomial time. ®

5. COMPLEXITY OF THE INTERSECTION POINTS

Let fand g be two polynomial-time computable functions from [0, 1] to
[0, 1}? with the properties that f(0) lies on the left side of the unit square,
f(1) lies on the right side of the unit square, g(0) lies on the upper side of
the unit square, and g(1) lies on the lower side of the unit square. We are
concerned with the complexity of the intersection points of the two curves

COMPUTATIONAL COMPLEXITY 285

defined by fand g. Similar to the case of fixed points, the intersection points
of two polynomial-time computable curves on [0, 1)* could have arbitrarily
high complexity if the two curves are allowed to get arbitrarily close to
each other away from the intersection points. We restrict ourselves to
functions f and g for which any approximate intersection point is a good
approximation to an exact intersection point. We say (sq, ty) defines an
intersection point of f and g if f(sy) = g(t). We say two functions f and g
from [0, 1] to [0, 1)? are polynomially distinguishable away from the intersec-
tion points (or, simple well-conditioned) if there exists a polynomial function
q such that if |[s — so| = 277 and |t — o] = 27" for all pairs (s, &) that define
intersection points, then |f(s) — g(x)| = 279" and | f(x) — g(t)] = 279" for
all x € [0, 1]. The complexity of the intersection points of well-conditioned,
polynomial-time computable functions f and g have an upper bound NP.

ProOPOSITION 5.1, Assume that f and g are two well-conditioned, polyno-
mial-time computable functions mapping [0, 1] to [0, 1)* such that f(0) =
{0, @), f(1) = (1, b, g(0) = {c, 1), and g(1) = {d, 0) for some numbers a, b,
¢, d € [0, 1]. If P = NP, then all isolated intersection points of f and g are
polynomial-time computable.

We do not know whether this upper bound can be improved. It appears
that Sperner’s lemma does not apply here, since functions f and g do not
map the unit square to itself.

In the special case that fis a graph of a polynomial-time computable
function A : [0, 1] — [0, 1], the intersection points are provably polynomial-
time computable.

THEOREM 5.2. Assume that f and g satisfy the assumption of Proposition
5.1. Further assume that there is a polynomial-time computable h:[0, 1] —
[0, 1] such that f(t) = {t, h(t)). Then, at least one intersection point of f and
g is polynomial-time computable.

Proof (Sketch). Let U = {{x,y»):0=x =1,y = h(x)}, and let L = {{x,
v):0=x =1,y = h(x)}. Then, g(0) € U and g(1) € L. For any ¢ € [0, 1]
with g(f) = (x, y), we can determine, in time polynomial in #, whether
gty € U, or g(t) € L, or |g(t) — f(x)] = 27", by comparing y with h(x).
Thus, a binary search finds, in time polynomial in », ¢ and s in [0, 1] such
that |g(f) — f(s)] = 27" Since f and g are well-conditioned, g(t) is a good
approximation to an intersection point. ®

In the following, we show that in general, the intersection points are
hard to compute.

THEOREM 5.3. Assume that PMLF, ¢ PF,. Then, there exist two
well-conditioned, polynomial-time computable, one-to-one functions f{,
g:[0, 1] — [0, 1]* such that

286 KER-1 KO

(1)) f(0) =<0,0), f(1) = (1, 1), g(0) = {0,), g(1) = (1,),
(1)) f and g have a unique intersection point f(sy) = g(ty) = 2o in
[0, 1]% and
(i) 1z, is not polynomial-time computable.

Proof. The proof, similar to the proof of Theorem 4.3, consists of two
steps. Assume that ¢ € PMLF, — PF,. First, for each integer n, we describe
two functions f,,, g, such that the intersection point of f, and g, encodes
the value of &(0"). Then, in the second step, we combine functions £, into
a function f and functions g, into a function g.

Basic Construction. Assume that ¢:{0}* — {0, 1}* is a function in
PMLF, thatis not polynomial-time computable. Then, there exists a polyno-
mial function p and, for each integer n, there is an increasing sequence
PP =y, <y < - - < yi, = &(0") of strings of length p(n) such that
the mappiag ¢ from (0", v;) to (v;_y, yi-1) is polynomial-time computable.
Without loss of generality, we assume that p(n) = n for alln = 1.

We let

= % + [~2“(p(")+”, a;, = ([,‘, %) b(= (tu 4L>s

fori=0,1,...,2°™ Foreachi, 0 =i=2"™ — 1, let w, be the ith string
in {0, 1}7™ (i.e., w; is the p(n)-bit binary representation of integer). The
functions f, and g, are piecewise linear functions defined as follows. (In
the following, we let Z; Z; denote the line segment connecting point z; to
point z,.)

(1) On interval [0, 1], f, linearly maps the interval |0,] to the line
segment (0, 0) by; g, linearly maps [0, #] to the line segment (0, 1} a.

(2) Foreachi 0=i=2'"" — 1, ifw, #yforanyj=01 ...,
k,, then f, and g, on [, ;-] are two linear mappings: f, maps [, t;.;]
linearly to the line segment a; a;.; and g, maps [¢, t,.] linearly to the line
segment b; b;, ;.

(3) Fori = 0, we have w; = y,. Let y, = w,,. Functions f, and g, are
piecewise linear on [ty, 1,]. We divide [1,, £;] into five subintervals of equal
length, and we let f,, map these subintervals to five consecutive line segments
defined by the following six points:

b() = <[(),~ ‘%>s <[(), %)» <tm + (%) . 27(I)(")”)~ %),
<tln + (%)) 2*(1)('1%‘1)’ g)» <[] » g)q al = <t] » %>

g, maps (£, t,] into three consecutive line segment defined by the following
four points:

COMPUTATIONAL COMPLEXITY 287

ay = (ty,), (ty + (B)- 27t 2y
t+ B2 D by =D,
4) For any integer i, 0 < i < 277 if w;, = y; forsome J, 0 < j < k,,.
y g Y J]
then we can use function ¢ to find y,_, and y;,,. Assume that y, | = w; and

¥i-1 = w,,. Function f, linearly maps [¢,, £.,] into six consecutive line seg-
ments defined by the following seven points:

a= (0.9, G+ B2, ()2,

(o + (B)- 270D B (g, + (B)- 27000 80 (. D,
a. = (oD

Function g, linearly maps [, t;,] into six consecutive line segments defined
by the following seven points:

b, = (1, b, + (), (G + (3)- 2ttt) By
(t + (B)- 200D Ty, (4 + (B)- 20D Ty (i + () - 27w 1y,
a =i, b
(5) For mteger i with w; = detw, =y, oy Letu, = (t; + ;1)/2,

=t v,=%sandv,=4%+2 “"")’2’ The functlon f, maps [t,, (t; + 1;-1)/
2] piecewise linearly to three consecutive line segments defined by the
following four points:

a =D, &+ @2 D G+ @27 D) (v

The function f, also maps [(f; + t,.,)/2, t;.1] linearly to two consecutive line
segments defined by the following three points:

<ll,,, vn)s <llr’1~ vt’l)\ A

Function g, maps [t,. (t; + t,,,)/2] piecewise linearly to five consecutive line
segments defined by the following six points:

b, = (&, 9, {1, 8, (t+ (3)-270m=D B,
G+ @270 05 g v

g, also maps [(t; + #;.1)/2, t;.1] into two consecutive line segments defined
by the following three points:

(“/1- V/l)s (ll;n Vn)- bi‘l-

288 KER-1 KO

{0,1)
a5 IBL az [81 8 as Fie ar as A9
ZEn
bo 1]] L.
b, b, by by bs bs b, bs be
{0,0)

Fii. 5. The functions f, and g,, corresponding to y, = wy, y; = W, ¥, = ws, and y; =
ve = wy. The point z,, is (u,, v,).

(6) Function f, maps the interval [§, 1] linearly to the line segment
am {1, 1y and g, maps [3, 1] linearly to the line segment b,-00 {1, 0.

We show in Fig. 5 functions f, and g, for the sequence y, = wy, y; =
Wy, y2 = ws,and y; = Yi, = Wi,

For each integer n = 1, let i, be the integer such that y, = w, . Define
a, = (4, +1,+)/2 and b, = (4 + 31, .,)/4. Also let T, be the square [u,,
u,] X [vn, vi). We note that function f, maps [0, 4,] to a curve from (0, 0)
to the point {u,, v,) and maps [b,, 1] to a curve from the point {4, v,) to
(1, 1). Function g, maps [0, a,,] to a curve from (0, 1) to the point (u,,. v,.),
and maps (b,, 1] to a curve from (u,, v,) to (1, 0). In addition, functions f,
and g, satisfy the following properties:

(i) f. and g, are one-to-one functions on [0, 1}.

(ii) f, and g, satisfy the Lipschitz condition with the Lipschitz con-
stant L = 12-2°(,

(iit) For any two points z; on the curve defined by f, and z; on the
curve defined by g,..if 2, & T, or 2, & T, then |z, — z,| = ()27 D (In
particular, f, and g, have a unique intersection point in 7,,.)

(iv) The point u, encodes the value of ¢(0"). More precisely, u, =
i+ 27D = 4 (24(07) + 1)27 WMD),

Combination. For any square [a, b] X [¢, d],withr=b —a=d - c,
there is a unique linear bijection ¢ from [0, 1]? to [a, b] X [c, d]; namely,
(e, y)) = {a + rx, ¢ + ry).

We define functions f and g by stages. We are going to define a sequence
of intervals [c,, d,] such that ¢, < ¢, < d,.,; < d,. At stage n, we define
functions f and g on [0, ¢,,] U [d,. 1]

Stage 1. Letc¢, = a,.d, = b,. Let fon |0, ¢;] U [d), 1] be equal to f

COMPUTATIONAL COMPLEXITY 289

on these two subintervals. Also let g on [0, ¢;] U [d), 1] be equal to g; on
these two subintervals. Note that f(c)) = {uy, vi), f(d1) = {ui, v{), glc) =
(ur, vi), and g(dy) = Cui, vi). We let o = uy, o = uj, By = vy, B = vi,
and let §; = [oq, o] X [B1, Bi]-

Stage n + 1. Assume that in stage », a square S, = [a,, a;] X [B,,
B;] has been defined, and functions f and g have been defined on |0, ¢, U
[dn» 1] with f(cn) = <ans Bn)s f(dn) = (o, B, g(cn) = {ay, B, and g(dn) =
(o, Bn). Let 9, be the linear transformation from [c,, d,} to [0, 1]; that
is, 9,(1) = (t — ¢,)/(d, — ¢,). We define ¢,.; = 3,'(a,.,) and d,,;, =
9, '(bn+1)- Let @, be the unique linear bijection from [0, 1]* to S,.. For each
t € [en, cart] U [dnsi, dn), we define f(£) = @u(for1(9(1))) and g(1) =
(Pn(gn+l(19n(t)))'

Letr, = o, — a, = B, — B.,, and

Qpiy = 0y + ot Upty,s an+1 a, + IO un+ls

.BIHI :Bn+rn'vn+l’ B::H =,B,,+r,,-v,’,+1.

Then, we have f(cn.1) = {@n-1, Bus1), f(dni1) = {otni1s Brer), 8(Cn=1) = (@i
Br1), and g(dn.1) = {@ns1, Brer). We define S0y = [, ana] X [Basr,
Br+1]- This completes the construction at Stage n + 1.

Let t; = lim,_.. c¢,. The above completes the construction of f and g on
[0, 1] — {t}. Let @y = lim,_,.. &, and By = lim,_. B,. We define f(1;) =
g(to) = 2y = (o, Bo). This completes the construction of f and g.

It is easy to see by inspection that f and g are continuous functions
mappmg [O 1] to [0, 1] We verify that they satisfy our requirements. Let
g2(n) = 2, p(i) + 2n and gs(n) = 2, p(i) + 3n. Note that the linterval
[cn, d,] is of length 279" and the square S, is of size 279" X 2792,

Cram 1. fand g have polynomial modulus functions.

Proof. We claim that p,(n) = p(n + 1) + 2n + 5 is a modulus function
for functions f and g. To see this, we assume that 1, t; € [0, 1] and |, —
] <= 2771, We observe that if 1;, t, € [cx, dy], then both f(1,) and f(t,) lie
in the square S, and so |f(1;) — f(&)| = 279% < 27K,

Next, following the same argument as in the proof of Theorem 4.3, we
only need to prove that if t,, t; € [c,, d,] — [cps1, dpsy) With |t — 6] < r-
2°7m® for some n < k and some 0 < r < 1, then |f(1;) — f()| = r-
2-*®+D_1n this case, we know that f(t;) = @.(f,+1(9.(1))) for j = 1, 2, and
we recall that £, satisfies the Lipschitz condition with the Lipschitz constant
L,., = 2°Pt*)%¢ Thys,

290 KER-1 KO

[f(t) = f(12)] = 2700 | £ (8,(01)) = furr(Dul22))]

< 2"12(”) . 2[7(;1’1“4 . 2([1(11) R 2—*[7|lkl

< 2[)(n+1)+n+4 . r.2 -p(k) < r2 (k+1)'

The proof for function g is similar. =
Cram 2. fand g are polynomial-time computable.

Proof. The proof is similar to that of Theorem 4.3. Namely, we need
to compute, in time polynomial in k, for a given dyadic rational d € [0, 1}
(i) an integer n < k such that d € [¢,, d,,] — [cq+, d.+1] (o1 that d € [y,
di]); and (ii) an approximation to f,,.(9,(d)) within distance 2%,

For problem (i), let us assume that we already know that d € |c,, d,].
Now, we compute #,(d) and find the corresponding ¢ such that f, =
3,(d) = t;.; (where ¢ is the value § + i-2°@w"+D defined in the basic
construction step). Then, we verify whether y, = w, . If so, then we have
found [c,+), d,+1]: and if not, then we know d & [c,.+;. d,,+1]. In the latter
case, the corresponding point f,.(9,(d)) is easy to find from the basic
construction. The proof for function g is similar. ®

CLamm 3. fand g are well-conditioned.

Proof. Assume that |s — 1| is greater than or equal to 2% This implies
that s & [c, di]. S0, s € [cn, dn] = [Cn-1, dus1] for some n < k. We check,
in the following, that |f(s) — g(1)| = 27“%=1*% for all t € [0, 1]. The proof
for |g(s) — f(5)] = 2-=k+1+9 js symmetric and is omitted.

Case 1. t € [c,, d,] — [cni1s danr]. Then, we know that | f(s) — g(1)]
is equal to 277 times |f,.((s') — g.+:(¢")| for some s', ¢’ € [0,1] -
[@n+1, busy]- Tt follows from property (iii) of f,., and g,., that |f(s) —
g(t)l = (%)2—(/2“”]] > 2—(112(k+l)+4)‘

Case 2. 1 € (¢, dp] = [Cm-1s d-] Withn <m — 1 = k — 1. Then,
g(?) lies within the square S,.. and f(s) is outside S,.,. We note that, in
the construction of functions f,,., and g,.,, the square 7,,., has a distance
at least § from the boundary of [0, 1]%. Thus, the square S,,., has a distance
at least 27(@("*1*2) from the boundary of the square S,.,. This implies that
g(), which is inside S, has a distance at least 2~ 12 from f(s), which
is outside S,,.;. Thus, |f(s) — g(f)] = 27 @0+1)2) = p-laxkDrd),

Case 3. t € [cy+1» dys1] — [Che2s dnez]. First, assume that ¢, < 5 <
cq+1- We know then that f(s) lies outside the square S,.., and that g(r) lies
inside S,.;. Now, the distance between f(s) and the boundary of ., is
either greater than or equal to 2-“("*2*% or less than that. In the former
case, it is clear that |f(s) — g(¢)] = 27l 244 = 2~(@(k+1+4) gince g(r) is

COMPUTATIONAL COMPLEXITY 291

inside §,,.;. In the latter case, we know from the definition of function f, .
that |f(s) — f(Cus1)] = 2729 (Note that any line segment of f,.,
outside the square 7., is of length at least (3)2-""**D*D_and so f(s) and
f{cnsy) are in the same line segment.) Now, from property (iii) of f,.., we
get | f(cuer) — g(n)] = 270D L2~ 1) = (1))@ D) Tt follows that

1£(s) — 0] = (201D — 2~ 2w8) 2 s+ D-8) 2 D -(gaths 1),

The case of d,.1 = 5 = d, can be checked in a similar way.

Case 4. (€ [, dw] — [Cm+1s dimsi] for some m < n. This case is
similar to Case 2 (if m < n — 1) or to Case 3 (if m = n — 1) above, with
the roles of f and g exchanged. ®

CrLam 4. fand g intersects at a unique point z, and z,, is not computable
in polynomial time.

Proof. From property (iv) of function f,, we know that w,., = § +
20"y + 1)27 it g between § and § and is a dyadic rational whose
binary expansion has length =p(n + 1) + 2 bits in the fractional part. Since
o, = o, + 2792y, | itis clear that the first g,(n + 1) bits of the fractional
part of ay is exactly e,.; or, equivalently, the substring of «, from the
{g2(n) + 1)th bit to the g,(n + 1)th bit encodes exactly u,,,. The claim
then follows from the assumption that ¢ &€ PF,. ®

6. FINAL REMARKS

We have proved two lower bound results showing that if PMLF, ¢
PF, then the fixed points and the intersection points of polynomial-time
computable functions are not necessarily polynomial-time computable,
even if the functions are well-conditioned. Many questions, however, still
remain open. First, for the fixed points in the two-dimensional case, there
is still a gap between the best known upper bound PDLF and the new
lower bound PMLF,. The precise complexity of the problem probably
depends on the complexity of the discrete problem SPERNER;, which appears
to be between PDLF and PMLF,. For the intersection point problem, we
do not even know a better upper bound than the obvious bound NP. There
appears much room for improvement.

Since the fixed point problem may be considered as a subproblem of the
zero-finding problem, it is interesting to review the complexity of zeros of
polynomial-time computable functions. In the two-dimensional case, Ko
(1991) has found a lower bound UPF; for the zeros of a one-to-one, polyno-
mial-time computable function on [0, 1]* that has a polynomial inverse

292 KER-1 KO

modulus at zeros (i.e., is well-conditioned). This is a stronger lower bound;
the function constructed there, however, is not a mapping from a square
[0, 1]? to itself, although the unique zero z, is indeed in [0, 1]2. The following
stronger lower bound on fixed points can be obtained by a simple modifica-
tion of this result.

THEOREM 6.1 (Ko, 1991). Assume that P, # UP, N co-UP,. Then, there
exists a polynomial-time computable function f mapping [0, 1] to R? such
that (i) f has a unique fixed point z,, (ii) f is well-conditioned (with respect
to the fixed-point problem), and (iii) zy is not polynomial-time computable.

A similar stronger lower bound exists for the zeros of one-dimensional,
polynomial-time computable functions that have polynomial inverse moduli
at zeros (but not necessarily one-to-one). We remark that the function f
constructed above is not a mapping from a square [a, b] X [c, d] to itself,
and the construction depends heavily on this property. The requirement
that f maps a square to itself allows the application of Sperner’s lemma
and appears to have lowered the complexity of the fixed points.

Finally, we note that the relation between the new complexity classes
PDLF, PMLF, and the classes UP and PLS (the class of problems solvable
by polynomial local searches) is critical to our understanding of the com-
plexity of fixed points and intersection points.

ACKNOWLEDGMENT

The author thanks Professor Arthur Chou for interesting discussions on fixed points.

REFERENCES

HirscH, M. D., Parapimitriou, C. H., aND Vavasis, S. A, (1989), Exponential lower bounds
for finding Brouwer fixed points, J. Complexity §, 379-416.

Jounson, D. S, PapapimiTrIOU, C. H., AND YANNAKAKIS, M. (1988), How easy is local search?
J. Comput. System Sci. 37, 79-100.

Ko, K. (1991}, “Complexity Theory of Real Functions,” Birkhiuser, Boston.

Ko, K., anp Friepman, H. (1982), Computational complexity of real functions, Theoret.
Comput. Sci. 20, 323-352.
PapapimiTriou, C. H. (1990), On graph-theoretic lemmata and complexity classes, in “*Pro-
ceedings, 31st IEEE Symposium on Foundation of Computer Science, pp. 794-801.
Pour-EL, M., AND RicHARDS, 1. (1989), “Computability in Analysis and Physics,”” Springer-
Verlag, Berlin.

SHAMIR, A. (1990), IP = PSPACE, in *31st IEEE Symposium on Foundations of Computer
Science,” pp. 11-15.

SHASHKIN, Yu. A. (1991), “Fixed Points,” transl. from Russian by V. Minachin, Amer. Math.
Soc., Providence, RI.

