Groups with Many FC-Subgroups

Silvana Franciosi and Francesco de Giovanni

Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II,”
Complesso Universitario Monte S. Angelo, Via Cintia, I 80126 Naples, Italy

and

Yaroslav P. Sysak

Institute of Mathematics, Ukrainian National Academy of Sciences,
ul. Tereshchenkivs'ka 3, 252601 Kiev, Ukraine

Communicated by Gernot Stroth

Received February 2, 1998

DEDICATED TO DEREK J. S. ROBINSON ON THE OCCASION OF HIS 60TH BIRTHDAY

1. INTRODUCTION

A group G is called an FC-group if every element x of G has only finitely many conjugates in G, that is, if the centralizer $C_G(x)$ has finite index in G. There exists a wide literature on this subject, and the monograph [18] can be used as a general reference. In the last few years many authors have studied the structure of minimal-non-FC groups, i.e., those groups which are not FC-groups while all their proper subgroups have the property FC (see, for instance, [2, 4, 5, 10] and the last section of [18]). Clearly Tarski groups are minimal-non-FC, and hence in this investigation it is necessary to impose some additional condition in order to avoid such groups. In the above mentioned articles, it has been proved that minimal-non-FC groups having proper commutator subgroup are Černikov groups, and that every perfect locally graded minimal-non-FC group is a

* This research was done while the last author was a visiting professor at the Università di Napoli “Federico II” supported by the “Istituto Nazionale di Alta Matematica.” He is grateful to the Department of Mathematics for its excellent hospitality.
countable p-group for some prime number p. Our aim here is to extend such results, considering groups that are rich in some sense of subgroups which are FC-groups.

Bruno and Phillips have proved in [6] that if a locally graded group G satisfies the minimal condition on subgroups which have infinite commutator subgroup, then either G is a Černikov group or its commutator subgroup G' is finite (recall that a group G is locally graded if every finitely generated non-trivial subgroup of G contains a proper subgroup of finite index). On the other hand, it is well known that a group has finite commutator subgroup if and only if it has boundedly finite conjugacy classes (see [14, Part I, Theorem 4.35]), and hence the result of Bruno and Phillips suggests considering the minimal condition on non-FC subgroups. This is the subject of the second section of this article, where it will be proved that a locally graded group with the minimal condition on non-FC subgroups has an ascending normal series whose factors either are abelian or direct products of finite simple non-abelian groups; in particular, a simple locally graded group with this property must be finite. Moreover, if a group satisfies the minimal condition on non-FC subgroups and has a descending series with finite or abelian factors, then it is either an FC-group or a Černikov group. It turns out that locally graded groups with finitely many conjugacy classes of non-FC subgroups satisfy both the minimal and the maximal condition on non-FC subgroups, and this fact will be used in the last section of the article to give a characterization of locally graded groups with such a property. It follows in particular that a locally graded group with finitely many conjugacy classes of non-FC subgroups has only finitely many subgroups which are not FC-groups.

Most of our notation is standard and can be found in [14]. For the main properties of FC-groups we refer the reader to the monograph [18].

2. THE MINIMAL CONDITION ON NON-FC SUBGROUPS

In order to study groups satisfying the minimal condition on non-FC subgroups, we have first to consider the special case of groups whose proper subgroups either are FC-groups or Černikov groups.

Lemma 2.1. Let G be a group having a descending series whose factors either are finite or abelian. If every proper subgroup of G either is an FC-group or a Černikov group, then the group G itself either is an FC-group or a Černikov group.

Proof. Assume that the statement is false. Then by a result of Belyaev and Sesekin [5] the group G must contain a proper subgroup H which is
not an FC-group, so that H is a Černikov group, and hence it can be chosen minimal with respect to this condition. Clearly every proper subgroup of G containing H is a Černikov group. By hypothesis there exists a proper normal subgroup N of G such that G/N either is finite or abelian. If $HN \neq G$, then HN is a Černikov group and so G/N cannot be finite. Thus G/N is abelian and HN is a normal subgroup of G. As the factor group G/HN satisfies the minimal condition on subgroups, it follows that G is a Černikov group. This contradiction shows that $G = HN$, so that N is a non-Černikov FC-group. Let J be the finite residual of the Černikov group H, and assume that $G = JN$. Then $H = J(N \cap H)$, and $N \cap H$ is a normal subgroup of H, so that $N \cap H$ is infinite as H is not an FC-group. It follows that $N \cap J$ is also infinite. On the other hand, H is minimal-$non-FC$, and hence J does not contain infinite proper H-invariant subgroups (see [5]), so that $N \cap J = J$ and J is a subgroup of N. This contradiction shows that JN is a proper normal subgroup of G, and by replacing N by JN we may suppose that J is contained in N. Let E be a finite subgroup of H such that $H = EJ$, so that $G = EN$. If K is any E-invariant subgroup of N such that $G = EK$, then $N = K(E \cap N)$ and the index $|N : K|$ is bounded by the order of E, so that there exists an E-invariant subgroup L of N which is minimal with respect to the condition $G = EL$. Assume that L contains a proper subgroup of finite index M. Then also the core M_G of M has finite index in G, so that EM_G is a proper subgroup of G containing J, and hence H is also contained in EM_G. It follows that EM_G is a Černikov group, and G itself has this property. This contradiction shows that the FC-group L has no proper subgroups of finite index, and hence it is a radicable abelian group. Assume that L contains an element x of infinite order. Then $\langle x \rangle^E$ is a finitely generated normal subgroup of G, and $H\langle x \rangle^E$ is neither an FC-group nor a Černikov group, so that $G = H\langle x \rangle^E$. It follows that $L = \langle x \rangle^E(H \cap L)$, and $L/H \cap L$ is a non-trivial finitely generated abelian group, a contradiction. Thus L must be periodic, and its socle S is an infinite normal subgroup of G. Then HS is not a Černikov group, so that $G = HS$ and $L = S(H \cap L)$. Therefore also in this case L has a finite non-trivial homomorphic image, and this last contradiction completes the proof of the lemma.

Theorem 2.2. Let G be a group satisfying the minimal condition on non-FC subgroups. If G has a descending series whose factors either are finite or abelian, then either G is an FC-group or it is a Černikov group.

Proof. Assume that the theorem is false, so that the set \mathcal{L} of all subgroups of G which are neither FC-groups nor Černikov groups is not empty. Then \mathcal{L} contains a minimal element L, and obviously every proper
subgroup of L is either an FC-group or a Černikov group, contradicting Lemma 2.1. The theorem is proved.

It is an open question whether there exist perfect locally graded minimal-non-FC groups. Since such groups obviously satisfy the minimal condition on non-FC subgroups, a positive solution to this problem would also prove that in Theorem 2.2 the hypothesis that the group G has a descending series with finite or abelian factors could not be weakened assuming that G is locally graded. On the other hand, information on the structure of locally graded groups satisfying the minimal condition on non-FC subgroups can be obtained.

Lemma 2.3. Let G be a locally graded group satisfying the minimal condition on non-FC subgroups. Then G is locally (finite-by-abelian).

Proof. Let E be any infinite finitely generated subgroup of G. Since G is locally graded, there exists an infinite strictly descending sequence

$$E_1 > E_2 > \cdots > E_n > \cdots$$

of subgroups of finite index of E. Thus the subgroup E_n is an FC-group for some positive integer n, so that $E_n/Z(E_n)$ is finite and E is abelian-by-finite. In particular, E satisfies the maximal condition on subgroups, so that all its FC-subgroups are central-by-finite. It follows that E satisfies the minimal condition on subgroups which are not finite-by-abelian, and hence either E is finite-by-abelian or it is a Černikov group (see [6, Theorem 1]). Then E must be finite-by-abelian, and so G is locally (finite-by-abelian).

Theorem 2.4. Let G be a non-periodic locally graded group satisfying the minimal condition on non-FC subgroups. Then G is an FC group.

Proof. The group G is locally (finite-by-abelian) by Lemma 2.3, so that in particular its commutator subgroup is locally finite and the set T of all elements of finite order of G is a subgroup. If x is an element of infinite order of G, the chain of subgroups

$$\langle T, x \rangle > \langle T, x^2 \rangle > \cdots > \langle T, x^n \rangle > \cdots$$

is infinite, and hence there exists a positive integer n such that $\langle T, x^n \rangle$ is an FC-group. Assume that G is not an FC-group. Then it contains a subgroup H which is minimal non-FC, and H must be locally finite (see [18, Lemma 8.14]). It follows that H is contained in T, and this contradiction proves that G is an FC-group.

It was mentioned in the Introduction that every locally graded minimal non-FC group is locally finite. As a consequence of Lemma 2.3 and
Theorem 2.4 it can be observed here that if a locally graded group G satisfies the minimal condition on non-FC subgroups, then either G is an FC-group or it is locally finite.

Lemma 2.5. Let G be a linear group over a field. If G satisfies the minimal condition on non-FC subgroups, then either G is finite-by-abelian or it is a Černikov group.

Proof. It is well known that every linear group over a field is locally graded. Moreover, all linear FC-groups are central-by-finite (see [19, Corollary 5.6]) and so also finite-by-abelian. Therefore the group G satisfies the minimal condition on subgroups that are not finite-by-abelian, and hence either G itself is finite-by-abelian or it is a Černikov group (see [6, Theorem 1]).

It has been proved by Kuzucuoglu and Phillips [10] that a locally finite minimal non-FC-group cannot be simple. Our next results show in particular that every simple locally graded group satisfying the minimal condition on non-FC subgroups is finite.

Lemma 2.6. Let G be a locally graded group satisfying the minimal condition on non-FC subgroups. Then every simple section of G is finite.

Proof. Suppose first that G is not periodic. Then G is an FC-group by Theorem 2.4, and hence all its simple sections are finite. Assume now that G is periodic, so that it follows from Lemma 2.3 that G is locally finite. By contradiction let H/K be an infinite simple section of G. Then H is not an FC-group, and so it can be chosen minimal with respect to this condition. Since every infinite simple group contains countably infinite simple subgroups (see, for instance, [9, p. 114]), we obtain that H/K must be countable. Moreover, H/K obviously satisfies the minimal condition on non-FC subgroups, and hence without loss of generality it can be assumed that G is a countably infinite simple group and that all proper simple sections of G are finite. There exists an ascending chain

$$H_1 < H_2 < \cdots < H_n < \cdots$$

of finite perfect subgroups of G such that

$$G = \bigcup_{n \in \mathbb{N}} H_n,$$

and for each $n > 1$ there exists a maximal normal subgroup M_n of H_n such that $H_{n-1} \cap M_n = 1$ (see [13, Theorem 1] and the remark at the end of Section 1). Put $K_i = \langle M_i | i > t \rangle$ and $R_i = \langle H_i, K_i \rangle$ for every positive integer t. Since $H_i \cap K_i = 1$ for all t, the subgroup R_i is residually finite,
and hence it is an FC-group by Theorem 2.2. If $M = K_r$, we obtain that the subgroup $[M, H_r]$ is finite. With this notation, the last part of the proof of Lemma 1 of [10] can be used to produce an ascending chain

$$G_1 < G_2 < \cdots < G_n < \cdots$$

of finite perfect subgroups of G such that

$$G = \bigcup_{n \in \mathbb{N}} G_n,$$

the factor group $G_n/Z(G_n)$ is simple and $G_n \cap Z(G_{n+1}) = 1$ for every $n \geq 1$. Application of Lemma 2 of [10] yields now that either G is linear or it contains an element $g \neq 1$ such that $C_G(g)$ has a section which is simple and non-linear. On the other hand, all proper simple sections of G are finite, so that G must be linear, and hence it is finite by Lemma 2.5. This contradiction completes the proof of the lemma.

Theorem 2.7. Let G be a locally graded group satisfying the minimal condition on non-FC subgroups. Then G has an ascending normal series whose factors either are abelian or direct products of finite simple non-abelian groups.

Proof. If G is not periodic, then it is an FC-group by Theorem 2.4, so that its chief factors are finite (see [18, Theorem 1.13]), and in this case the statement is obvious. Suppose now that G is periodic, and hence locally finite by Lemma 2.3. Since the hypotheses are inherited by homomorphic images, it is enough to prove that G contains a non-trivial normal subgroup which is either abelian or a direct product of finite non-abelian simple groups. Suppose first that G has a non-trivial normal FC-subgroup N. Since every minimal normal subgroup of N is finite, the socle S of N has a direct decomposition $S = S_1 \times S_2$, where S_1 is abelian and S_2 is a direct product of finite simple non-abelian groups. Moreover, S_1 and S_2 are characteristic subgroups of N, and hence they are normal in G. Assume now that G has no non-trivial normal FC-subgroups, so that the set of non-trivial normal subgroups of G satisfies the minimal condition and G contains a minimal normal subgroup M. It follows from Lemma 2.6 that the group M has a proper non-trivial normal subgroup K. Assume that K is not an FC-group. Then M/K satisfies the minimal condition on subgroups, and hence it is a Cernikov group (see [17]). Since M is perfect, it follows that M has a proper subgroup of finite index, and hence it is residually finite. Then M is an FC-group of Theorem 2.2, and this contradiction shows that K must be an FC-group, so that it contains a minimal subnormal subgroup E. If E is abelian, then $M = E^G$ is locally nilpotent and so even abelian (see [9, p. 11]), a contradiction. Therefore E
is a finite non-abelian simple subnormal subgroup of G, and hence $M = E^G$ is a direct product of finite non-abelian simple groups (see [14, Part 1, Lemma 5.44]). The theorem is proved.

3. CONJUGACY CLASSES OF NON-FC SUBGROUPS

Another natural interpretation of the requirement that the group G has only few subgroups which do not have a certain property χ is the condition that G has only finitely many conjugacy classes of non-χ subgroups. This point of view was, for instance, adopted in [15, 16], where groups with finitely many conjugacy classes of non-soluble subgroups and those with the same property for non-nilpotent subgroups were considered.

Lemma 3.1. Let G be a group having finitely many conjugacy classes of non-FC subgroups. Then:

(a) Every homomorphic image of G has finitely many conjugacy classes of non-FC subgroups.

(b) Every subgroup of finite index of G has finitely many conjugacy classes of non-FC subgroups.

Proof. The first part of the statement is obvious. To prove (b), it is enough to observe that, if K is a subgroup of finite index of G and H is any subgroup of K, then the conjugacy class of H in G contains only finitely many conjugacy classes of subgroups under the action of K.

Lemma 3.2. Let G be an infinite finitely generated soluble-by-finite residually finite minimax group. Then G contains a torsion-free subgroup H of finite index such that H/H' is infinite.

Proof. It is well known that the Fitting subgroup F of G is nilpotent and the factor group G/F is abelian-by-finite (see [14, Part 2, Theorem 10.33]). Let N/F be a torsion-free abelian normal subgroup of G/F such that G/N is finite. Since the subgroup T consisting of all elements of finite order of F is finite, there exists a normal subgroup of finite index K of N such that $K \cap T = 1$. Then K is a torsion-free soluble subgroup of finite index of G. Let i be the largest positive integer such that the ith term $H = K^{(i)}$ of the derived series of K has finite index in K. Then H is a torsion-free subgroup of finite index of G and H/H' is infinite.

It was proved in [16] that every locally graded group with finitely many conjugacy classes of non-nilpotent subgroups is locally (soluble-by-finite). This is a consequence of our next result. Recall here that, if G is a soluble-by-finite minimax group, the set of all prime numbers p such that G has a section of type p^* is an invariant of G, called the spectrum of G.
Proposition 3.3. Let \mathcal{X} be a subgroup closed class of groups, and let G be a locally graded group having finitely many conjugacy classes of non-\mathcal{X} subgroups. Then G is locally $(\mathcal{X}$-by-finite).

Proof. Assume by contradiction that G contains a finitely generated subgroup E which is not \mathcal{X}-by-finite, and let J be the finite residual of E. Then E/J is an infinite residually finite group. Since G has finitely many conjugacy classes of non-\mathcal{X} subgroups, there exists a positive integer r such that every finitely generated subgroup of G which is not in \mathcal{X} can be generated by at most r elements. In particular, each subgroup of finite index of E can be generated by at most r elements, and so E/J is a soluble-by-finite minimax group (see [11, Theorem A]). It follows from Lemma 3.2 that E/J contains a torsion-free subgroup of finite index H/J such that H/H' is infinite. Clearly the group H/H' is residually finite, so that J is contained in H'. Thus, if p is any prime number, we have $JH^p < JH'^p$ if $m < n$. Let π be the spectrum of the minimax group H/J.

For every prime p which is not in π and for every positive integer n, the subgroup JH^p has finite index in E and hence it is not an \mathcal{X}-group. Therefore there exist positive integers m and n such that $m < n$ and $(JH^p)^g = H'^p$ for some $g \in G$. Clearly J is the finite residual of JH^p, so that J^g is the finite residual of JH'^p, and hence $J^g = J$. Moreover $X = JH^p$ is a characteristic subgroup of X^g, and X^g/X is a finite p-group. Let X_p be the union of the ascending chain.

$$X < X^g < \cdots < X^{g^n} < \cdots.$$

Then every X^{g^n} is a normal subgroup of X_p, and X_p/X is an infinite Chernikov p-group. It follows that X_p/J is a torsion-free soluble-by-finite minimax group with spectrum $\pi \cup \{p\}$, and J is the finite residual of X_p.

By hypothesis there exist two different primes p and q which do not belong to π such that $(X_p)^h = X_q$ for some element h of G. Then $J^h = J$, and hence the groups X_p/J and X_q/J are isomorphic. This contradiction completes the proof of the proposition.

Groups satisfying the minimal condition on non-FC subgroups are naturally involved in the investigations concerning groups with a finite number of conjugacy classes of non-FC subgroups. This is a consequence of the following result of Zaicev (see [1, Lemma 4.6.3]) and a related corollary.

Lemma 3.4. Let G be a group locally satisfying the maximal condition on subgroups. If H is a subgroup of G such that $H^x \leq H$ for some element x of G, then $H^x = H$.

Corollary 3.5. Let G be a locally graded group having finitely many conjugacy classes of non-FC subgroups. Then G satisfies both the minimal and
the maximal condition on non-FC subgroups. In particular, if \(G \) is not periodic, then it is an FC-group.

Proof. Since every finitely generated FC-group is polycyclic-by-finite, it follows from Proposition 3.3 that the group \(G \) is locally polycyclic-by-finite. Therefore \(G \) satisfies both the minimal and the maximal condition on non-FC subgroups by Lemma 3.4. Finally, if \(G \) is not periodic, it follows from Theorem 2.4 that \(G \) is an FC-group.

The main result of this section gives a characterization of locally graded groups with finitely many conjugacy classes of non-FC subgroups. To prove this, we need a series of lemmas, most of which are designed to produce infinitely many conjugacy classes of complements of particular subgroups.

Lemma 3.6. Let \(G \) be an FC-group, and let \(E \) be a finite subgroup of \(G \). Then \(E \) is contained in a characteristic subgroup \(K \) of \(G \) with finite exponent.

Proof. The normal closure \(E^G \) of \(E \) is finite by Dic'man's lemma, so that without loss of generality it can be assumed that \(E \) is a finite normal subgroup of \(G \). Then \(E \) contains a minimal normal subgroup of \(G \), and hence \(E \cap S \neq 1 \), where \(S \) is the socle of \(G \). Since \(S \) is a direct product of finite simple groups, the subgroup \(E \cap S \) is a direct factor of \(S \), and it is also a direct product of finite simple groups (see [14, Part 1, Theorem 5.45]). It follows that \(E \cap S \) is contained in a characteristic subgroup of finite exponent \(L \) of \(S \). By induction on the order of \(E \) we may suppose that \(EL/L \) is contained in a characteristic subgroup of finite exponent \(K/L \) of \(G/L \), and hence \(K \) is a characteristic subgroup of finite exponent of \(G \) containing \(E \).

Recall here that if \(G \) is a locally finite group and \(p \) is a prime number, then a Sylow \(p \)-subgroup of \(G \) is a maximal element of the set of all \(p \)-subgroups of \(G \). It is not difficult to prove that the following holds.

Lemma 3.7. Let the group \(G = \bigoplus_{n \in \mathbb{N}} G_n \) be the direct product of infinitely many non-abelian groups.

(a) If every factor \(G_n \) is a semidirect non-direct product \(G_n = B_n \ltimes A_n \), then the complements of \(A = \bigoplus_{n \in \mathbb{N}} A_n \) in \(G \) fall into infinitely many conjugacy classes.

(b) If every factor \(G_n \) is a finite simple group whose order is divisible by a prime \(p \), then the Sylow \(p \)-subgroups of \(G \) fall into infinitely many conjugacy classes.

Lemma 3.8. Let \(\pi \) be a set of primes, and let the periodic group \(G = H \ltimes K \) be the semidirect product of a \(\pi \)-subgroup \(H \) and a normal \(\pi' \)-subgroup \(K \) such that every proper subgroup of \(G \) containing \(K \) is an
FC-group and H has no maximal subgroups. If L is a subgroup of G containing K and X is a complement of K in L, then there exists a complement of K in G containing X.

Proof. Clearly it can be assumed that L is a proper subgroup of G, so that it is an FC-group. Since $L = K(H \cap L) = KX$, there exists a locally inner automorphism α of L such that $(H \cap L)\alpha = X$ (see [18, Theorem 5.25]). Moreover, it follows from the hypotheses that H is the union of an ascending chain $(H_i)_{i \in I}$ of proper subgroups containing $H \cap L$. Then each product KH_i is an FC-group and contains L, so that for every $i \in I$ there exists a locally inner automorphism β_i of KH_i such that $\beta_i(x) = \alpha(x)$ for all $x \in L$ and $\beta_i(g) = \beta_i(g)$ if $g \in KH_j$ and $H_j \leq H_i$ (see [18, Theorem 4.18(i)]). Since

$$G = \bigcup_{i \in I} KH_i,$$

for each element g of G there exists $i \in I$ such that $g \in KH_i$, and the position $\beta(g) = \beta(g)$ defines an automorphism β of G extending α. Therefore H^β is a complement of $K^\beta = K$ in G containing X. $lacksquare$

The following elementary result on direct products of simple non-abelian groups is probably well known.

Lemma 3.9. Let G be a group, and let K be a normal subgroup of G which is a direct product of simple non-abelian groups. Then $K = C_K(H \times K)$ for every subgroup H of G.

Lemma 3.10. Let the periodic FC-group $G = H \times K$ be the semidirect product of an elementary abelian p-subgroup H and a normal p'-subgroup K which either is abelian or a direct product of finite simple non-abelian groups. If $H/C_H(K)$ is infinite, then the complements of K in G fall into infinitely many conjugacy classes.

Proof. The core H_C of H in G is obviously contained in every complement of K in G, so that without loss of generality it can be assumed that $H_C = 1$, and in particular $C_H(K) = 1$. Consider an element $y_1 \neq 1$ of H, and put $L_1 = \langle y_1 \rangle$. Assume now that for some integer $n > 1$ we have defined a subgroup

$$L_{n-1} = \langle y_1 \rangle \times \cdots \times \langle y_{n-1} \rangle$$

of H of order p^{n-1}, such that

$$[K, L_{n-1}] = [K, \langle y_1 \rangle] \times \cdots \times [K, \langle y_{n-1} \rangle].$$
As G is a periodic FC-group, $[K, L_{n-1}]$ is a finite normal subgroup of G, so that $H/C_H([K, L_{n-1}])$ is finite, and $C_H([K, L_{n-1}]) \neq 1$. Let y_n be a non-trivial element of $C_H([K, L_{n-1}])$, and let $L_n = L_{n-1} \times \langle y_n \rangle$. Suppose first that K is abelian. Then

$$K = C_K(L_{n-1}) \times [K, L_{n-1}]$$

(see [7, Theorem 5.2.3]), so that

$$[K, \langle y_n \rangle] = [C_K(L_{n-1}), \langle y_n \rangle] \leq C_K(L_{n-1}),$$

and hence

$$[K, L_n] = [K, L_{n-1}] \times [K, \langle y_n \rangle] = [K, \langle y_1 \rangle] \times \cdots \times [K, \langle y_n \rangle].$$

Suppose now that

$$K = \bigoplus_{i \in I} K_i$$

is a direct product of finite simple non-abelian groups. Then there exists a subset J of I such that

$$[K, L_{n-1}] = \bigoplus_{j \in J} K_j,$$

and hence $K = [K, L_{n-1}] \times N$, where

$$N = \bigoplus_{i \in I \setminus J} K_i$$

is a normal subgroup of G (see [14, Part 1, Lemma 5.44]). Therefore

$$[K, \langle y_n \rangle] = [N, \langle y_n \rangle] \leq N,$$

and hence

$$[K, L_{n-1}] \cap [K, \langle y_n \rangle] = 1.$$
and hence

\[[K, L]L = \bigcap_{n \in \mathbb{N}} [K, \langle y_n \rangle] \langle y_n \rangle. \]

As \(H \) does not contain non-trivial normal subgroups of \(G \), each subgroup \(\langle y_n \rangle^G = [K, \langle y_n \rangle] \langle y_n \rangle \) is not abelian, and it follows from Lemma 3.7 that there exists an infinite sequence \((X_n)_{n \in \mathbb{N}}\) of pairwise non-conjugate complements of \([K, L]L\) in \([K, L]L\). In particular, every \(X_n \) is also a complement of \(K \) in \(KL \). Let \(n \) be any positive integer, and let \(P_n \) be a Sylow \(p \)-subgroup of \(G \) containing \(X_n \). Since the Sylow \(p \)-subgroups of \(G \) are locally conjugate (see [18, Theorem 5.2]) and \(G = HK \), we obtain that \(P_n \) is a complement of \(K \) in \(G \). Assume that \(P_n^g = P_m \) for some element \(g \) of \(K \). The subgroup \([K, L]L\) is normal in \(G \), and

\[P_i \cap [K, L]L = X_i \]

for all \(i \), so that \(X_i^g = X_n \). It follows from Lemma 5.2.3 of [7] or from Lemma 3.9 that \(g = uv \), where \(u \in C_K(X_n) \) and \(v \in [K, X_n] \). Thus

\[X_m = X_n^g = X_n^{uv} = X_n^v, \]

and hence the subgroups \(X_n \) and \(X_m \) are conjugate in \([K, L]L\). This contradiction shows that the subgroups \(P_n \) (\(n \in \mathbb{N} \)) are pairwise non-conjugate, and completes the proof of the lemma. \[\blacksquare \]

Lemma 3.11. Let the locally finite group \(G = HK \) be the product of a countable \(p \)-subgroup \(H \) and a normal subgroup \(K \) such that every proper subgroup of \(G \) containing \(K \) is an FC-group. If \(P \) is any Sylow \(p \)-subgroup of \(K \), there exists a Sylow \(p \)-subgroup \(P^* \) of \(G \) such that \(P^* \cap K = P \) and \(G = P^*K \).

Proof. Since the factor group \(G/K \) is countable, there exists an ascending chain

\[G_1 < G_2 < \cdots < G_n < \cdots \]

of proper subgroups of \(G \) containing \(K \) such that

\[G = \bigcup_{n \in \mathbb{N}} G_n. \]

For each positive integer \(n \) let \(P_n \) be a Sylow \(p \)-subgroup of \(G_n \), such that

\[P \leq P_n \leq P_{n+1}. \]
Then the set
\[P^* = \bigcup_{n \in \mathbb{N}} P_n \]
is a Sylow p-subgroup of G such that $P^* \cap K = P$. For every positive integer n, the group G_n is FC, and so its Sylow p-subgroups are locally conjugate (see [18, Theorem 5.2]), and so there exists a locally inner automorphism φ of G_n such that $H \cap G_n$ is contained in P_n^φ. Therefore
\[G_n = (H \cap G_n)K = P_n^\varphi K, \]
so that $G_n = P_nK$ and hence $G = P^*K$.

Our next lemma produces an infinite number of conjugacy classes of p-subgroups. This will be used in the study of groups with finitely many conjugacy classes of non-FC subgroups.

Lemma 3.12. Let G be a perfect locally finite group satisfying both the minimal and the maximal condition on non-FC subgroups and having no proper subgroups of finite index, and let H be a minimal-non-FC subgroup of G. Then H is a perfect p-group for some prime p and $G = HK$, where K is a normal FC-subgroup of G such that every proper subgroup of G containing K is an FC-group. Moreover, K can be chosen minimal with respect to this condition, and if K is a minimal normal subgroup of G, then there exist infinitely many conjugacy classes of Sylow p-subgroups of G supplementing K.

Proof. Let N be a normal subgroup of G which is not an FC-group. Then the factor group G/N satisfies both the minimal and the maximal condition on subgroups, and hence it is finite. Therefore $N = G$ and every proper normal subgroup of G is an FC-group. By Lemma 2.6 the group G has no maximal normal subgroups, and so it is the union of its proper normal subgroups. Since H is not an FC-group, there exists a finite chain
\[H = G_0 < G_1 < \cdots < G_t = G \]
such that G_i is a maximal subgroup of G_{i+1} for each $i < t$, and hence $G = \langle H, x_1, \ldots, x_t \rangle$ for suitable elements x_1, \ldots, x_t of G. The subgroup $\langle x_1, \ldots, x_t \rangle$ is contained in a proper normal subgroup of G, so that by Lemma 3.6 there exists a proper normal FC-subgroup K of G with finite exponent containing x_1, \ldots, x_t, and so $G = HK$. If X is any proper subgroup of G containing K, the intersection $H \cap X$ is an FC-group and $X = (H \cap X)K$ has a descending series whose factors either are finite or abelian. Application of Theorem 2.2 yields that X is either an FC-group or a Černikov group. In the latter case the subgroup K must be finite, and so X is an FC-group. Therefore every proper subgroup of G containing K
is an FC-group. Since G is a perfect group having no proper subgroups of finite index, the subgroup H cannot be a Černikov group, and it follows from a result of Belyaev (see [4, 10]) that H is a perfect p-group for some prime p. In order to prove that K can be chosen minimal with respect to the above condition, it is clearly enough to show that for every descending chain

$$K_1 > K_2 > \cdots > K_n > \cdots$$

of G-invariant subgroups of K such that $G = HK_n$ for all n, we also have $G = HK_0$, where

$$K_0 = \bigcap_{n \in \mathbb{N}} K_n.$$

In fact, since $K = (H \cap K)K_n$, the factor group K/K_n is a p-group for every n, and so also K/K_0 is a p-group. Then G/K_0 is a p-group, so that G/K_0 has finite index in G/K_n for all $i < t$, and hence HK_0 has finite index in G. Therefore $G = HK_0$.

Assume now that K is a minimal normal subgroup of G, so that it follows from Theorem 2.7 that K is either an infinite abelian group of prime exponent q or a direct product of infinitely many finite simple nonabelian groups. Suppose first that K has an element of order p. As K is infinite, G is not a p-group, so that in this case K cannot be abelian, and hence by Lemma 3.7 the Sylow p-subgroups of K fall into infinitely many conjugacy classes under the action of K. Let $(L_n)_{n \in \mathbb{N}}$ be a sequence of pairwise non-conjugate Sylow p-subgroups of K. Since the factor group G/K is countable (see [18, Lemma 8.14]), application of Lemma 3.11 yields that for each positive integer n there exists a Sylow p-subgroup P_n of G such that $P_n \cap K = L_n$ and $G = P_nK$. Assume that $P_n \supset P_m$ for some element g of G, and write $g = ux$ where $u \in P_n$ and $x \in K$. Then $P_n = P_m$, and hence

$$L_n^x = (K \cap P_n)^x = K \cap P_n^x = K \cap P_m = L_m,$$

so that $m = n$ and the subgroups P_n ($n \in \mathbb{N}$) are pairwise non-conjugate in G. Suppose finally that K has no elements of order p, so that in particular $H \cap K = 1$. Since the core H_G of H is contained in every Sylow p-subgroup of G, replacing G by G/H_G it can be assumed that H does not contain non-trivial normal subgroups of G. It follows from Theorem 2.7 that the p-group H is hyperabelian, so that it contains a non-trivial abelian normal subgroup A of exponent p. Suppose that A is finite. Then A is contained in $Z(H)$ since H is perfect. Moreover, AK is an FC-group, and so $[K, A]$ must be a finite normal subgroup of G. In particular, $[K, A]$ is properly contained in K, so that $[K, A] = 1$ and A is normal in G. This
contradiction shows that A is infinite. Clearly $C_A(K)$ is normal in G, so that $C_A(K) = 1$, and application of Lemma 3.10 yields that the complements of K in the FC-group AK fall into infinitely many conjugacy classes. Let $(X^\gamma_n)_{n \in \mathbb{N}}$ be a sequence of pairwise non-conjugate complements of K in AK. It follows from Lemma 3.8 that for each positive integer n there exists a complement H_n of K in G such that $X_1^\gamma = H_n$, and clearly every H_n is a Sylow p-subgroup of G. Assume that $H_n^g = H_m$ for some element g of G, and let $g = hx$, where $h \in H_n$ and $x \in K$. Then $H_n^x = H_m$, and hence

$$X_n^\gamma = (H_n \cap AK)^x = H_n^x \cap AK = H_m \cap AK = X_m.$$

Therefore $m = n$, and the subgroups H_n ($n \in \mathbb{N}$) are pairwise non-conjugate in G. The lemma is proved.

It is now possible to prove the main result of this section.

Theorem 3.13. Let G be a locally graded group. Then G has finitely many conjugacy classes of non-FC subgroups if and only if it satisfies one of the following conditions:

(a) G is an FC-group.

(b) G is a Černikov group whose finite residual J has no infinite proper $\langle x \rangle$-invariant subgroups for every element x of $G \setminus C_G(J)$.

(c) G contains a perfect normal p-subgroup H which is minimal-non-FC, the factor group G/H is finite, and every subgroup of G which does not contain H is an FC-group.

Proof. Suppose first that G has finitely many conjugacy classes of non-FC subgroups. If G is not an FC-group, it follows from Corollary 3.5 and Lemma 2.3 that G is a locally finite group satisfying both the minimal and the maximal condition on non-FC subgroups. Clearly G contains a normal subgroup M which is not an FC-group and is minimal with respect to this condition. Then the factor group G/M satisfies both the minimal and the maximal condition on subgroups, and hence it is finite. Assume that M has a proper homomorphic image which is either abelian or finite. Then M contains a proper characteristic subgroup M_0 such that M/M_0 is either abelian or residually finite. By the minimal choice of M the normal subgroup M_0 of G is an FC-group, and hence M has a descending series whose factors either are finite or abelian. Then M is a Černikov group by Theorem 2.2, so that G itself is a Černikov group. Let J be the finite residual of G, and let x be any element of $G \setminus C_G(J)$. Then the subgroup $\langle x, J \rangle$ is not an FC-group, and hence it contains a subgroup L which is minimal-non-FC. For each positive integer n let J_n be the nth term of the socle series of J. If J is not contained in L, then the subgroups LJ_n
determine infinitely many isomorphism classes of non-FC subgroups, a contradiction. Therefore J is the finite residual of L, so that J does not contain infinite proper L-invariant subgroups (see [5]), and in particular J has no infinite proper $\langle x \rangle$-invariant subgroups. Suppose now that G is not a Černikov group, so that M is perfect and has no proper subgroups of finite index. Let H be a minimal-non-FC subgroup of M. Application of Lemma 3.12 yields that H is a perfect p-group for some prime p and $M = HK$ for some normal FC-subgroup K of M which can be chosen minimal with respect to this condition. Assume that $K \neq 1$. Since G satisfies the maximal condition on non-FC subgroups, there exists a normal subgroup N of M properly contained in K such that HN is maximal, and of course N can also be chosen maximal with respect to this condition. Then K/N is a minimal normal subgroup of M/N. Obviously HN/N is also minimal-non-FC, so that it follows from Lemma 3.12 that there exist infinitely many conjugacy classes of Sylow p-subgroups of M/N supplementing K. In particular there exist infinitely many conjugacy classes of subgroups of M supplementing K, and all such subgroups are not FC-groups, a contradiction, as M has finitely many conjugacy classes of non-FC subgroups by Lemma 3.1. Therefore $K = 1$ and $H = M$ is a normal subgroup of finite index of G. Assume now that there exists a subgroup X of G which is not an FC-group and does not contain H, and choose X maximal with respect to these conditions. Since $H \cap X$ is an FC-group and $X/H \cap X$ is finite, the group X has a descending series whose factors are either finite or abelian, and it follows from Theorem 2.2 that X must be a Černikov group. Since $H \cap X$ is properly contained in a proper subgroup of H, there exists a subgroup V of H such that $H \cap X \subset V$ and the index $[V: H \cap X]$ is finite. Moreover, it is clear that V can be chosen to be X-invariant. Then VX is a subgroup of G which properly contains X and does not contain H. This last contradiction proves that every subgroup of G which does not contain H is an FC-group.

Conversely, it is clearly enough to show that in case (b) every subgroup X of G which does not contain J is an FC-group. If X is contained in $C_G(J)$, the subgroup X is central-by-finite and so FC. Suppose that X is not contained in $C_G(J)$. Then J does not contain infinite proper X-invariant subgroups, so that $X \cap J$ must be finite, and the subgroup X itself is finite.

Corollary 3.14. Let G be a locally graded group having finitely many conjugacy classes of non-FC subgroups. Then G has only finitely many non-FC subgroups.

Clearly conditions similar to those considered in this article can be investigated for other classes of groups defined by restrictions on conjugacy classes. Recall here that a group G is called a CC-group if
$G/C_G((x)^G)$ is a Černikov group for each element x of G. The structure of minimal-non-CC groups has recently been investigated in [3, 12, 8]. Here we note the following.

Theorem 3.15. Let G be a group having a descending series whose factors either are finite or abelian. The following statements are equivalent:

(a) G is a CC-group.
(b) G satisfies the minimal condition on non-CC subgroups.
(c) G has finitely many conjugacy classes of non-CC subgroups.

Proof. Suppose that the group G has finitely many conjugacy classes of non-CC subgroups. Then by Proposition 3.3 every finitely generated subgroup of G is a finite extension of a CC-group, and hence it is polycyclic-by-finite. The proof of Corollary 3.5 yields now that G satisfies the minimal condition on non-CC subgroups. Assume that G is not a CC-group, so that it contains a subgroup H which is not a CC-group, while all proper subgroups of H are CC-groups, contradicting the main theorem of [12]. Therefore G is a CC-group. $lacksquare$

References