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Using the Tolman–Oppenheimer–Volkoff equation and the equation of state of zero temperature ultra-
relativistic Fermi gas based on generalized uncertainty principle (GUP), the quantum gravitational effects
on the cores of compact stars are discussed. Our results show that 2m(r)/r varies with r. Quantum
gravity plays an important role in the region r ∼ 103r0, where r0 ∼ β0lp , lp is the Planck length and
β0 is a dimensionless parameter accounting for quantum gravity effects. Furthermore, near the center
of compact stars, we find that the metric components are gtt ∼ r4 and grr = [1 − r2/(6r2

0)]−1. All these
effects are different from those obtained from classical gravity. These results can be applied to neutron
stars or denser ones like quark stars. The observed masses of neutron stars (� 2M�) indicate that β0 can
not exceed 1037, not as good as the upper bound β0 < 1034 from simple electroweak consideration. This
means that incorporating either quantum gravity effects or nuclear interactions, one obtains almost the
same mass limits of neutron stars.

Crown Copyright © 2012 Published by Elsevier B.V. Open access under CC BY license.
The configuration of a spherically symmetric static star, com-
posed of perfect fluids, is determined by the Tolman–Oppen-
heimer–Volkoff (TOV) equation (in c.g.s. units) [1,2]

dP

dr
= −(

ρ + P/c2) Gm(r) + 4πGr3 P/c2

r[r − 2Gm(r)/c2] , (1)

with

dm(r)

dr
= 4πr2ρ(r), (2)

where c is the velocity of light. G is the gravitational constant.
P and ρ are respectively the pressure and the macroscopic energy
density measured in proper coordinates. Supplied with an equation
of state and appropriate boundary conditions, Eq. (1) and Eq. (2)
determine P (r), m(r) and ρ(r). If the pressure and gravitational
potential is everywhere small, i.e., P (r) � ρc2, 2Gm(r)/c2r � 1,
the TOV equation reduces to the fundamental equation of Newto-
nian astrophysics

dP

dr
= −ρ(r)

Gm(r)

r2
. (3)

Most of the low density compact stars like white dwarfs are well
described by Newtonian gravity. For compact stars like neutron
stars and other exotic compact stars, general relativity plays an
important role [3]. The ideal neutron star is the simplest model
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in which nuclear interactions are ignored and the pressure of cold
degenerate neutrons contends against the gravitational collapse [2].
There are basically two ways to improve the model of compact
stars. The first one is to discuss more realistic structures of neutron
stars and other Fermi stars in theoretical and observational per-
spectives [4–11,18,19]. In these works, various types of equation
of state (EOS) are introduced to represent strongly interacting com-
ponents and nuclear interactions. Nuclear interactions significantly
lift the maximum mass of neutron stars from the Oppenheimer
limit 0.7M� to 2M� . A more detailed discussion and references
therein refer to [11]. Another direction is to introduce f (R) the-
ory or quantum gravity effects into the models [12–17]. This way
is of interest when addressing high density and high pressure cold
Fermi stars. This is the purpose of this Letter. As a first step in this
direction, we adopt the ideal model without nuclear interactions
and the TOV equation.

In the absence of a full theory of quantum gravity, effective
models are useful tools to gain some features from quantum the-
ory of gravity. One of the most important models is the generalized
uncertainty principle (GUP), derived from the modified fundamen-
tal commutation relation [20–26]

[x, p] = ih̄
(
1 + βp2), (4)

where β = β0l2p/h̄2 = β0/c2M2
p , l2p = Gh̄/c3, M2

p = h̄c/G . h̄ = h/2π
is the Planck constant and β0 is a dimensionless parameter. With
this modified commutator, one can easily derive the generalized
uncertainty principle (GUP)

�x�p � h̄ [
1 + β(�p)2], (5)
2
ense.
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which in turn gives the absolutely smallest uncertainty in posi-
tions, i.e., the minimum measurable length

�x � �min = h̄
√

β = √
β0lp . (6)

Note that the model in (4) considers only the minimal uncertainty
in position. In this case, the quantum mechanics structure under-
lying the GUP has been studied in full detail [23]. The statistics
of ideal gases based on GUP has been discussed by many authors
[29–33]. In our recent work, we have studied a system composed
of zero temperature ultra-relativistic Fermi gas based on GUP [33].
The Newtonian equation with uniform pressure was employed to
discuss stellar structures. The proper particle number, energy den-
sity and pressure for an ultra-relativistic system were given in [33]

N

V
= 8π

(hc)3
E3

H f (κ), (7)

ρ = 8π

c2(hc)3
E4

H h(κ), (8)

P = 8π

(hc)3
E4

H g(κ), (9)

where E H = c/
√

β = M pc2/
√

β0 denotes the Hagedorn energy, in-

troduced in [33] and κ = εF

√
β

c2 = εF /E H . Moreover

h(κ) ≡ 1

4

κ4

(1 + κ2)2
, (10)

f (κ) ≡ 1

8

[
κ(κ2 − 1)

(1 + κ2)2
+ tan−1(κ)

]
, (11)

g(κ) ≡ κ f (κ) − h(κ). (12)

It is worth noting that when κ increases, the proper pressure
blows up, while the proper energy density and the proper number
density are both bounded. This is a manifestation of the minimal
length.

The size of β0 signals when quantum gravity effects enter the
story. In [27], based on the precision measurement of Lamb shift,
an upper bound of β0 is given by β0 < 1036. A relatively rough but
stronger restriction is estimated in [28]. However, a better bound is
gained from simple electroweak consideration β0 < 1034. For β0 =
1034, we rewrite Eqs. (8) and (9) as

ρ = 5.24 × 1095 1

β2
0

h(κ) ∼ 1027h(κ)
(
kg m−3), (13)

P = 4.73 × 10112 1

β2
0

g(κ) ∼ 1044 g(κ) (Pascals). (14)

Comparing these with the normal nuclear density ρn = 2.7 ×
1017 kg m−3 and the pressure Pn ∼ 1034 Pascals, the highest pres-
sure recorded under laboratory controlled conditions, we can find
that in the vicinity of nuclear matter equilibrium density, quantum
gravitational effects are not important. However, for density higher
than the normal nuclear one, it is of interest to investigate the
cores of compact stars like neutron stars and other exotic compact
stars where quantum gravity may play a leading role. As first ap-
proximation, we consider only the degeneracy pressure regardless
of the interaction correction. On the other hand, to date, several
accurate masses determinations of neutron stars are available from
radio binary pulsars, as we will find that this may be used to con-
strain the magnitude of β0.

Two configurations of compact stars have been addressed
in [33], by applying the Newtonian limit equation (3) with uniform
density. One is that the star is almost composed of ultra-relativistic
particles. The other is that the major contribution to the mass is
from non-relativistic cold nuclei. However, to discuss the core of
ultra-compact stars like neutron stars, one should use TOV equa-
tions. Setting r = r0r̃, m = m0m̃, P = P0 P̃ and

ρ = m0

4πr3
0

ρ̃ ≡ ρ0ρ̃, P0 = ρ0c2,
Gm0

c2r0
≡ 1, (15)

the TOV equations (1) and (2) are reduced to the following dimen-
sionless ones

dP̃

dr̃
= −(ρ̃ + P̃ )

m̃ + r̃3 P̃

r̃(r̃ − 2m̃)
, (16)

dm̃

dr̃
= r̃2ρ̃. (17)

When there is no introduction of quantum gravity, for a sys-
tem almost composed of ultra-relativistic fermions, the equation
of state is P̃ = ρ̃/3. An exact solution is given in [34]

2m̃(r̃)

r̃
= 3

7
, P̃ (r̃) = 1

14
r̃−2. (18)

The pressure is not zero on the surface of the star. This does not
meet the physical boundary conditions. However, the point is that
it is an analytic solution describing the central region of compact
stars with divergent pressure in the center [2]. Note that the length
scale r0 in Eq. (15) is uncertain. Thus r, m, ρ and P can be of any
size.

From Eq. (18), the pressure is divergent in the center. There-
fore, influences from quantum gravity should be included in
the discussion. Obviously, near the surface, particles are non-
relativistic while in the region around the center, particles are
ultra-relativistic [2]. This determines the equations of state and
boundary conditions.

In the vicinity of r = 0, the equation of state is given by Eq. (7),
Eq. (8) and Eq. (9). Under the limit κ → 0, it is straightforward to
recover P = ρ/3c2. Defining r = r0r̃, m = m0m̃ with

r−2
0 ≡ 4πG

c4

8π

(hc)3
E4

H , (19)

m0 ≡ 4πr3
0

8π

c2(hc)3
E4

H = 1.93 × 10−8β0 (kg), (20)

P0 = ρ0c2, ρ0 = 8π

c2(hc)3
E4

H , (21)

where r0 is the minimum radius in [33]

r0 =
√

π

4
β0lp =

√
π

4

√
β0�min = 1.43 × 10−35β0 (m). (22)

Since r0 in Eq. (19) comes from Eqs. (1), (2), (8) and (9), r0 repre-
sents the proper length. The expressions (21) and (22) show that
the system cannot be arbitrary scale, determined entirely by β0.
This indicates that our discussion is focused on the central region
of compact stars. Substituting the above expressions for P and ρ
(Eq. (8) and Eq. (9)) into Eq. (16) and Eq. (17), one gets

dm̃(r̃)

dr̃
= r̃2h(κ), (23)

dκ(r̃)

dr̃
= −κ(r̃)[m̃(r̃) + r̃3 g(κ)]

r̃[r̃ − 2m̃(r̃)] . (24)

Since the density is regular in the center, one has m(0) = 0 as
a boundary condition. After setting κ0 ≡ κ(0) as another bound-
ary condition, Eq. (23) and Eq. (24) are integrated numerically in
Tables 1–5.

In Tables 1–3, we perform the integration with different κ(r̃).
Four conclusions can be drawn from these tables:
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Table 1
Integration from κ0 to κ(r̃) = 0.1. The value of 2m̃(r̃)/r̃ is insensitive to initial
condition κ0. 2m̃(r̃)/r̃ has relatively large deviation from 0.429 since at r̃ = 97.7
quantum gravity has evident effects.

κ0 κ(r̃) m(r̃) r̃ 2m̃(r̃)/r̃

1000.0 0.1 21.88 97.70 0.448
100.0 21.87 97.70 0.448

50.0 21.85 97.70 0.447
20.0 21.79 97.60 0.446
10.0 21.71 97.60 0.445

8.0 21.65 97.50 0.444
5.0 21.53 97.50 0.442
3.0 21.29 97.40 0.437
1.0 19.72 95.20 0.414
0.5 18.36 87.90 0.418

Table 2
Integration from κ0 to κ(r̃) = 0.01. The different initial value κ0 has almost no
effect on 2m̃(r̃)/r̃. r̃ is large enough to overwhelm quantum gravity influences.

κ0 κ(r̃) m̃(r̃) r̃ 2m̃(r̃)/r̃

1000.0 0.01 1985.47 9250.70 0.429
100.0 1985.48 9250.80 0.429

50.0 1985.51 9251.00 0.429
20.0 1985.61 9251.60 0.429
10.0 1985.76 9252.50 0.429

8.0 1985.86 9253.00 0.429
5.0 1986.14 9254.40 0.429
3.0 1986.72 9257.20 0.429
1.0 1988.16 9269.70 0.429
0.5 1981.62 9265.40 0.428
0.1 2016.18 9405.60 0.429

Table 3
Integration from κ0 to κ(r̃) = 0.001. The numerical results completely match the
asymptotic solution of Eq. (25).

κ0 κ(r̃) m̃(r̃) r̃ 2m̃(r̃)/r̃

1000.0 0.001 198372.71 925778.50 0.429
100.0 198372.88 925778.70 0.429

50.0 198373.07 925778.90 0.429
20.0 198373.65 925779.50 0.429
10.0 198374.58 925780.30 0.429

5.0 198376.38 925781.40 0.429
1.0 198393.76 925802.80 0.429
0.1 198516.29 925868.20 0.429
0.01 201594.58 940268.10 0.429

• Different from the results obtained in classical gravity, 2m̃(r̃)/r̃
varies with r̃ but not a constant 3/7. For example, with κ(r̃) =
0.1 in Table 1, the deviation of 2m̃(r̃)/r̃ is about 4%.

• 2m̃(r̃)/r̃ is not sensitive to different initial value κ0.
• For large κ(r̃) or small r̃, quantum gravity contribution is

important to the value of 2m̃(r̃)/r̃. As κ(r̃) decreases, or r̃
increases, the configuration approaches the classical one ob-
tained in [34], with a constant 2m̃(r̃)/r̃ = 3/7.

• Quantum gravity plays an important role in the region r ∼
103r0.

Some analytic solutions can be obtained in extreme cases as fol-
lows.

• Under κ → 0, it is easy to see that h(κ) ∼ κ4/4, g(κ) ∼ κ4/12.
Then from Eq. (23) and Eq. (24), we obtain

2m̃(r̃)

r̃
= 3

7
, κ(r̃) =

(
6

7

)1/4

r̃−1/2,

P̃ (r̃) = 1

12
κ4 = 1

14
r̃−2, for large r̃. (25)

This solution is nothing but the classical one without quantum
gravity.
Table 4
Integration from κ0 to κ(r̃) = 20. The large value of κ corresponds to r → 0. 2m̃(r̃)/r̃
depends sensitively on r̃.

κ0 κ(r̃) m̃(r̃) r̃ 2m̃(r̃)/r̃

1000.0 20 2.85 × 10−2 0.700 8.15 × 10−2

500.0 2.77 × 10−2 0.693 7.99 × 10−2

200.0 2.52 × 10−2 0.672 7.51 × 10−2

100.0 2.14 × 10−2 0.636 6.72 × 10−2

50.0 1.41 × 10−2 0.554 5.10 × 10−2

30.0 0.60 × 10−2 0.417 2.89 × 10−2

• Under r → 0 and κ → ∞, Eq. (23) and Eq. (24) can be replaced
by asymptotic expressions

dm̃(r̃)

dr̃
= 1

4
r̃2, (26)

dκ(r̃)

dr̃
= −κ(r̃)[m̃(r̃) + r̃3 π

16κ(r̃)]
r̃[r̃ − 2m̃(r̃)] . (27)

The solution of these equations is

m̃(r̃) = r̃3

12
, κ(r̃) = 32

π

1

r̃2
,

P (r̃) = 2

r̃2
, for r̃ → 0. (28)

The solution (28) represents the situation where quantum gravity
dominates. This happens near the center of ultra-compact stars.
One can see that it is quite different from the solution of classical
gravity. Table 4 is the numerical result integrated for large κ(r̃),
well consistent with the asymptotic solution (28).

For a spherically symmetric static compact star, the metric is
given by [3]

grr ≡ A(r) =
(

1 − 2Gm(r)

rc2

)−1

=
(

1 − 2m̃(r̃)

r̃

)−1

. (29)

gtt ≡ −B(r),
1

B

dB

dr
= 2G

c2r2

[
m(r) + 4πr3 P

c2

][
1 − 2Gm

c2r

]−1

.

(30)

Then for r → 0, from (28), we have

A(r) = 1

1 − r̃2/6
, B(r) ∼ r̃4. (31)

One may compare (31) with the classical results

A(r) = 7

4
, B(r) ∼ r̃1/2. (32)

In Table 5, Eq. (23) and Eq. (24) are integrated with a large ini-
tial κ0. It is interesting that 2m̃/r̃ reaches a maximum value 0.734
in the vicinity of r = 3.00r0. Our calculation shows that near the
center, 2m̃/r̃ = r̃2/6 which indicates that 2m̃/r̃ increases with r̃. On
the other hand, as r̃ → ∞, 2m̃/r̃ → 3/7. Therefore, the maximum
of 2m̃/r̃ at r = 3.00r0 is a turning point, where quantum gravity
effect starts to dwindle. From Table 5, one also finds that grr has
a small range of fluctuation. A minimum (1 − 0.279)−1 = 1.39 is
achieved at r 
 12.5r0. This minimum is about one-third of the
maximum (1−0.734)−1 = 3.76 at r 
 3.00r0. We do not have good
explanation for this fluctuation. It may be caused by the effective-
ness of our model. Finally, grr tends to the constant 7/4 at large r̃
as expected. The profile of 2m̃/r̃ versus r̃ is plotted in Fig. 1. One
can see that the upper limit, 8/9 on the surface of a spherically
symmetric static star, is well satisfied.

Table 6 shows the integrations from κ0 = 10 to the nuclear den-
sity ρn 
 1017 kg/m3 for different β0. The fifth line represents the
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Table 5
Integration with a fixed κ0 = 1000. 2m̃/r̃ reaches its maximum value 0.734 in the
vicinity of r = 3.00r0. 2m̃/r̃ has a small range of fluctuation and achieves a min-
imum value 0.279 at r 
 12.5r0. Eventually, 2m̃/r̃ tends to the constant 7/4 at
large r̃.

κ0 κ(r̃) m̃(r̃) r̃ 2m̃(r̃)/r̃

1000.0 100.0 2.32×10−3 0.303 1.53 × 10−2

50.0 7.05×10−3 0.439 3.21 × 10−2

20.0 2.85×10−2 0.700 8.14 × 10−2

10.0 7.87×10−2 0.984 0.160
5.0 0.205 1.365 0.301
1.0 0.983 2.706 0.727
0.8 1.100 3.001 0.734
0.7 1.169 3.220 0.726
0.5 1.344 4.052 0.663
0.3 1.825 8.091 0.451
0.25 2.359 12.465 0.279
0.2 4.062 22.801 0.356
0.1 21.880 97.689 0.448
0.01 1985.47 9250.70 0.429

Fig. 1. For a fixed κ0 = 1000, 2m/r versus the radius r = r0 r̃. As r̃ → 0, 2m/r ∼ r2.
2m/r has a maximum around r̃ = 3. 2m/r acquires the asymptotic value 0.429 at
large r. The dashed line represents 2m/r = 0.429 while the dotted line represents
2m/r = 8/9, the upper limit of 2m/r on the surface of a spherically symmetric static
star.

values κ corresponding to the nuclear density. The last two lines
give the masses (in solar mass units) and radii, when the stellar
surface density is taken as the nuclear density. From the second
conclusion drawn from Table 1 to Table 3, the results are insen-
sitive to κ0 provided κ0 � 5. Therefore, the currently observed
masses of neutron stars (� 2M�) indicates β0 can not be greater
than 1037. This conclusion compatible with that from precision
measurements of Lamb shift. In another words, when incorporat-
ing the influence of quantum gravity, one obtains the same mass
limit of neutron stars as that from considering nuclear interac-
tions.

Table 7 shows the integrations from κ0 = 10 to κ = 0.01 for dif-
ferent β0. In this region, quantum gravity plays an important role.
The last line lists ρ(κ = 0.01) for different β0, with reference to
Eq. (10) and Eq. (13). In the region where the density is less than
ρ(0.01), quantum gravity effects almost have no effect. For β0 = 1,
the volume in which quantum gravitational effects are important
is in fact minuscule. Therefore, the observation of quantum gravity
effects depends only on the size of β0. The precise determination
of the neutron star masses determines only the upper limit of β0.

In summery, we discussed the structure of ultra-compact star
cores by a simple effective quantum gravity model. The model,
GUP, introduces a new equation of state, determined by Eqs. (7),
(8) and (9). By plugging the equation of state into TOV equations,
we found some different features from previous works in litera-
ture.

Since quantum gravitational effects play an important role only
in high density, we considered configurations in which a star is
almost composed of ultra relativistic particles. The asymptotic so-
lutions near the center are given by (28) and (31). The complete
picture is given by numerical calculation. Quantum gravitational
effects play a leading role only in a relatively small range ∼103r0 =
103√β0�min. Outside this region, the solutions are determined by
Eqs. (18) and (32). Our discussion can be applied to neutron stars,
for example. An upper bound of β0 < 1037 was also achieved in Ta-
ble 6. However, this bound is larger than β0 < 1036, obtained from
the precision measurement of Lamb shift. On the other hand, sim-
ple electroweak estimation gives a better bound β0 < 1034 than
both of them. There are two ways to model compact stars. One
is including the nuclear interactions and another is to incorporate
quantum gravity effects. It is of interest that our results show that
the two ways give the same mass limit of neutron stars. It would
be of importance in the future work to combine both methods to-
gether in modelling compact stars. We hope the refined models
can further narrow the range of β0.
Table 6
Integration from κ0 = 10 to the nuclear density ρn 
 1017 kg/m3 for different β0. The fifth line shows the values κ corresponding to the
nuclear density. The last two lines give the masses (in solar mass units) and radii, when the stellar surface density is taken as the nuclear
density. The precise mass determinations of neutron stars that have masses not larger than 2M� indicates β0 can not be greater than 1037.

β0 1037 1035 1033

ρ = 5.24 × 1095 1
β2

0
h(κ) 5.24 × 1021h(κ) 5.24 × 1025h(κ) 5.24 × 1029h(κ)

m0 = 1.93 × 10−8β0 1.93 × 1029 kg 1.93 × 1027 kg 1.93 × 1025 kg
r0 = 1.43 × 10−35β0 1.43 × 102 m 1.43 × 100 m 1.43 × 10−2 m
ρn 
 1017 kg/m3 0.1 0.01 0.001
M/M� 2.11 1.93 1.93
R 1.40 × 104 m 1.32 × 104 m 1.32 × 104 m

Table 7
Integration from κ0 = 10 to κ = 0.01 for different β0. In this region, quantum gravity plays an important role. The last line lists ρ(κ = 0.01)

for different β0, with reference to Eq. (10) and Eq. (13). In the region where the density is less than ρ(0.01), quantum gravity effects is
negligible.

β0 1037 1036 1035 1034

m0 1.93 × 1029 kg 1.93 × 1028 kg 1.93 × 1027 kg 1.93 × 1026 kg
r0 1.43 × 102 m 1.43 × 101 m 1.43 × 100 m 1.43 × 10−1 m
M = 1985.76m0 3.83 × 1032 kg 3.83 × 1031 kg 3.83 × 1030 kg 3.83 × 1029 kg
R = 9252.50r0 1.32 × 106 m 1.32 × 105 m 1.32 × 104 m 1.32 × 103 m
ρ(0.01) 1.31 × 1012 kg/m3 1.31 × 1014 kg/m3 1.31 × 1016 kg/m3 1.31 × 1018 kg/m3
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