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Abstract

Interpreting the solution of a Principal Component Analysis of a three-way array is

greatly simpli®ed when the core array has a large number of zero elements. The pos-

sibility of achieving this has recently been explored by rotations to simplicity or to

simple targets on the one hand, and by mathematical analysis on the other. In the

present paper, it is shown that a p � q� 2 array, with p > q P 2, can almost surely be

transformed to have all but 2q elements zero. It is also shown that arrays of that form

have three-way rank p at most. This has direct implications for the typical rank of

p � q� 2 arrays, also when p� q. When p P 2q, the typical rank is 2q; when q < p < 2q
it is p, and when p� q, the rank is typically (almost surely) p or p + 1. These typical rank

results pertain to the decomposition of real valued three-way arrays in terms of real

valued rank one arrays, and do not apply in the complex setting, where the typical rank

of p � q� 2 arrays is also min[p,2q] when p > q, but it is p when p� q. Ó 1999 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Three-mode principal component analysis [21,13] represents a three-way
data array by means of component matrices for each of the three modes (viz.
individuals, variables and occasions) and a three-way array called ``the core'',
describing the interactions between these components. Speci®cally, when X is
an I � J � K data array, then the three-mode principal component analysis
model is

x̂ijk �
Xp

a�1

Xq

b�1

Xr

c�1

aiabjbckcgabc;

where x̂ijk denotes the estimate for the element (i, j,k) of X; A, B, and C (with
elements aia; bib, and ckc) are component matrices of orders I � p; J � q and
K � r, respectively, and G is a p � q� r three-way array denoted as the core,
with elements

gabc; i � 1; . . . ; I ; j � 1; . . . ; J ; k � 1; . . . ;K;

a � 1; . . . ; p; b � 1; . . . ; q; and c � 1; . . . ; r:

The matrices A, B, and C can be considered component score or loading
matrices for the A-, B- and C-mode-entries, respectively. The elements of the
core indicate how components from di�erent modes interact. Three-mode
principal component analysis consists of ®tting the above model to a data array
by minimizing the sum of squared residuals

PI
i�1

PJ
j�1

PK
k�1 xijk ÿ x̂ijk

ÿ �2
over

A, B, C, and G.
As already noted by Tucker [21], the three-mode principal component

analysis model is not uniquely determined: Nonsingular transformations of the
component matrices A, B, and C do not a�ect the model provided that they are
compensated for in the core. Speci®cally, the component matrices ~A � A�S0�ÿ1

,
~B � B�T0�ÿ1

, and ~C � C�U0�ÿ1
and the core ~G the elements of which are

de®ned as

~gijk �
Xp

a�1

Xq

b�1

Xr

c�1

saitbjuckgabc; i � 1; . . . ; p; j � 1; . . . ; q; k � 1; . . . ; r;

give the same model estimates for X̂ as do A, B, C, and G. As a consequence,
when we have obtained a solution, we may always transform this in three
directions to get a, in some respects, more attractive solution.

Until recently, a major obstacle to practical applications of three-mode
principal component analysis has been the lack of a procedure for enhancing
simplicity of the core array. Simplifying the core array in three-mode PCA by
nonsingular transformations has become a topic of increasing interest, see
Refs. [8±11,19]. Experience with some of these procedures has revealed that
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nonsingular transformations of p � q� r �p P q P r� core arrays, when
p� qrÿ1, can produce a vast majority of zeroes. A direct, noniterative ex-
pression for the simplifying transformations has been given by Murakami et al.
[18]. This means that a high degree of simplicity can be obtained at once in the
restricted class of arrays with p� qrÿ1.

In the present paper, another class of arrays is treated for which high sim-
plicity is feasible: The set of p � q� 2 arrays with p > q. A method will be given
to transform these arrays into a form of simultaneous quasi-diagonality.
Speci®cally, the two p � q slices (p > q) X1 and X2 of the p � q� 2 array X
(denoting any three-way array from now on) are transformed into Y1 and Y2,
respectively, such that Y1 has Iq (the q� q identity matrix) in the ®rst q rows
and zeroes elsewhere, and Y2 has Iq in the last q rows, and zeroes elsewhere.
The transformation relies on nonsingular matrices S�p � p� and T�q� q� such
that

S0X1T � Y1 �
Iq

O

� �
and S0X2T � Y2 �

O

Iq

� �
: �1�

A remarkable feature of (1) is that the transformations consist only of a
premultiplication of the slices by a p � p matrix S0 and postmultiplication
by a q� q matrix T: Multiplication in the third direction (which means
taking linear combinations of X1 and X2) is conspicuously absent. The
proposed method of simplifying p � q� 2 arrays will be shown to work
almost surely.

The simplicity result of the present paper has important implications for the
rank of three-way arrays [14,16]. To de®ne the rank of a three-way array,
Kruskal used the concept of a rank one array. A three-way array is of rank one
when it is the outer product of three vectors [16, p. 8]. Equivalently, a p � q� r
array is of rank one when its r slices are proportional to the same p � q matrix
of rank one. When proportionality to the same rank one matrix holds for the
slices in one direction, it also holds in the other two directions. The rank of a
three-way array X is de®ned as the smallest number of rank-one arrays that
generate X as their sum. Equivalently, the rank of a three-way array is the
smallest value of s for which the slices X1; . . . ;Xr of the array can be decom-
posed as Xj � ADjB

0; j � 1; . . . ; r; for some p � s matrix A, some q� s matrix
B, and some diagonal s� s matrix Dj; j � 1; . . . ; r. This decomposition is well-
known as the CANDECOMP/PARAFAC decomposition in s dimensions
[3,6]. In other words, the smallest dimensionality that allows a CANDE-
COMP/PARAFAC decomposition equals the three-way rank of the data
array.

In ordinary matrix algebra, the maximum rank of a p � q matrix (p > q) is q,
and the maximum rank is also the typical rank of the matrix, that is, the rank a
matrix has almost surely. Speci®cally, when the elements of the p � q matrix
are sampled from a continuous distribution, the matrix will have rank q almost
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surely (with probability one), so its typical rank is q. In three-way analysis,
however, typical rank and maximum rank no longer coincide. For instance,
Kruskal [15] has reported that a 2� 2� 2 array has maximum rank 3, but the
rank is typically (almost surely) either 2 or 3. For a 4� 3� 2 array, the
maximum rank is ®ve, yet such arrays have rank 4 almost surely [15, p. 26].

The problem of how to determine either the maximum rank or the typical
rank of a p � q� r array �p P q P r� from p, q, and r has not been solved.
Apart from some miscellaneous results (e.g., see [16, p. 10] and [5, pp. 214,
215]) hardly anything has been achieved for cases with r > 2. However, for the
special case of p � q� 2 arrays, p P q P 2, two results of some generality have
been established. Kruskal ([16, p. 10] also see [7]) has given an explicit
expression for the maximum rank of p � q� 2 arrays. When p P q P 2,

max rankfp; q; 2g � q�min�q; floor�p=2��;

where ¯oor(x) is the largest integer equal to or below x. For instance, max rank
{4,3,2} is 5; max rank {5,4,2} is 6, and max rank {6,5,2} is 8.

The second result to be mentioned here pertains to the typical rank, for cases
where r� 2 and p� q. Generalizing earlier work by Kruskal [16], Ten Berge
[20] has shown that p � p � 2 arrays �p P 2� have rank p with some probability
P, 0 < P < 1, and a rank higher than p with some probability 1ÿP. In the
present paper, a more general result for the typical rank of p � q� 2 arrays will
be established: The issue of typical rank will be solved for all p � q� 2 arrays,
those with p� q included.

The organization of this paper is as follows. First, we deal with transfor-
mations to simplicity of p � q� 2 arrays with p > q. Rank-preserving trans-
formations will be used that bring these arrays into the simple form described
in (1). Next, the transformations will be shown to exist almost surely and it
will be explained that the three-way array Y, consisting of the slices Y1 and Y2

of the form given in (1), has rank min[p,2q]. The implication is that, almost
surely, the p � q� 2 arrays have rank p when q < p < 2q, and rank 2q when
p P 2q.

Finally, we turn to p � p � 2 arrays. Although a transformation analogous
to (1) is not generally available here, any such array is easily extended to a
�p � 1� � p � 2 array by adding a random slice to the array. Applying the
typical rank result, obtained for cases with p > q, to the extended array, we can
show that the p � p � 2 arrays have rank p or p + 1, almost surely.

The net result is twofold. First, we may, for all practical purposes, use the
typical rank instead of the (often much higher) maximum rank (see KruskalÕs
formula given above) for p � q� 2 arrays. This implies, for instance, that al-
most every p � q� 2 array has a CANDECOMP/PARAFAC decomposition
in min[p,2q] dimensions. In addition, we generalize the result on rank volumes
for p � p � 2 arrays. Instead of knowing that, almost surely, the rank is p or
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larger than p, this paper establishes that the rank is either p or p+1, almost
surely.

It should be pointed out that the present paper is exclusively concerned with
the decomposition of real valued arrays in terms of real valued parameters.
Generalized approaches, involving complex values, have been the subject of
investigation in computational complexity theory, e.g., see [22,1,2].

2. Transformation to simplicity when p > q

When p P 2q, obtaining simplicity as in (1) is trivial: When the 2q columns
of X1 and X2 are linearly independent, we can simply insert pÿ 2q columns in
between X1 and X2 to construct a nonsingular p � p matrix. Premultiplying X1

and X2 with the inverse of that matrix already yields Y1 and Y2 in agreement
with (1). It is also evident that usually the rank is at least 2q, because every
column of Y1 and Y2 has to be in the column space of a p � s matrix A, see the
previous section, to obtain a CANDECOMP/PARAFAC decomposition in s
dimensions. The rank is also at most 2q, because we may trivially take
A� [Y1êY2], B� [IqêIq], and let D1 and D2 have Iq in their upper left and lower
right hand corners, respectively, and zeroes elsewhere, to get a tautological
CANDECOMP/PARAFAC decomposition. Accordingly, when p P 2q, the
typical rank is trivially 2q. So we shall only have to determine S and T for the
case q < p < 2q.

We start with the observation that every nonzero row of Y1 repeats itself as
a row of Y2. Hence, when S and T satisfy (1) for a given pair {X1,X2}, every
nonzero row of S0X1 � Y1Tÿ1 is also a row of S0X2 � Y2Tÿ1. Speci®cally, we
have, for i � 1; . . . ; q, that

s0iX1 � s0pÿq�iX2; �2�

where sj is column j of S. Also, the ®rst pÿq rows of S0X2 must vanish, and so
do the last pÿq rows of S0X1, which implies that, for i � 1; . . . ; p ÿ q;

s0iX2 � 00; �3�
and for i � q� 1; . . . ; p;

s0iX1 � 00: �4�
It should be noted that, when the relations (2)±(4), hold and S is nonsingular,
S0X1 usually has rank q, and we get T at once as T � �X01SS0X1�ÿ1

X01SY1.
Accordingly, our main concern is with ®nding a nonsingular matrix S, the
columns of which satisfy (2)±(4).

To solve these equations, it is convenient to express them in matrix
form. De®ne s�Vec(S), so s0 � �s01j . . . js0p�. Eqs. (2)±(4) are equivalent to
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orthogonality of s to the columns of a certain matrix. That matrix can be
constructed from X1 and X2, as follows. Let t� pÿq and let O be a p2 � qt
matrix of zeroes. De®ne W1 and W2 as the p2 ´ (pq + qt) matrices
W1 � [O êIp
X1] and W2� [Ip
X2 êO], where 
 is the Kronecker product, and
de®ne WºW2ÿW1. Observing that s0�Ip 
 Xj� � �s01Xjj . . . js0pXj�, j� 1,2, it is
readily veri®ed that (2)±(4) are equivalent to

s0W � 00; �5�
the ®rst qt equations in (5) representing (3), the last qt equations representing
(4), and the equations in between representing (2). Once a solution for (5) has
been found, we construct S, and when S is nonsingular, T is easily derived and
a solution of the form (1) will be obtained.

The null-space of W has at least dimension

d � p2 ÿ �pq� qt� � p2 ÿ q�2p ÿ q� � �p ÿ q�2 � t2:

When d� 1, the set of vectors orthogonal to the columns of W is of dimension
1, and s is determined up to a scalar. That scalar does not matter because it will
be compensated for by T. However, when d > 1, s can be any vector in the
d-dimensional null-space of W, which includes vectors that would generate a
singular matrix S, for instance, having a zero column. To obtain a solution for
s that entails a nonsingular S, when that is possible, we suggest taking s as the
unique vector

s � �Ip2 ÿW�W0W��W0�Vec�Ip�; �6�
where �W0W�� is the Moore±Penrose inverse of �W0W�. This choice has the
property, to be used below, that it yields S� Ip in the trivial case where X itself
is simple, i.e., when X � Y, regardless of p and q. This is Result 1.

Result 1. When X � Y, taking s according to (6) yields S� Ip.

Proof. Assume that X � Y. To show that s de®ned by (6) is equal to Vec(Ip), it
is su�cient to show that Vec(Ip)� �Ip2 ÿW�W0W��W0�Vec(Ip). Hence, de®ning
vp º Vec(Ip), it is su�cient to show that vp is orthogonal to the columns of W,
which is the same as showing that v0pW1 � v0pW2. The latter vectors have the
simple form �00qtjv0qj00qt�, where 00qt is a row vector of qt zeroes, and vq is Vec(Iq).
To verify this, write v0pW2, with X2�Y2, as v0p�Ip 
 X2jO� � v0p�Ip 
 Y2jO� �
�e01Y2j . . . je0pY2j00qt� � �00qtjf 01j . . . jf 0qj00qt� � �00qtjv0qj00qt�, where ei is column i of
Ip; i � 1; . . . ; p, and fj is column j of Iq; j � 1; . . . ; q. In an analogous fashion, it
can be shown that v0pW1 � �00qtjv0qj00qt�: �

A Matlab program [17] to solve for S and T using (6) is given in Appendix
A. With random data, it never fails to yield simplicity, with S and T non-
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singular. However, it is possible to contrive data where S will be singular. In
Section 3, it will be proven that, when X1 and X2 are randomly sampled
from a continuous distribution, the S constructed by (6) will indeed be
nonsingular.

3. Nonsingularity of S

To show that a singular solution for S will never be encountered in practice,
we shall use the following result:

Result 2. Let f(x) be a real valued analytic function defined on Rn. Suppose that
f(x) is not identically zero. Then the set {x: f(x)� 0} is of Lebesgue measure zero
in Rn.

Proof. See [4, Theorem 5.A.2]. �

From Result 2 the following corollary is immediate.

Corollary 1. Consider an analytic mapping F from Rn into the space of p � p
matrices. Let f(x) º det(F(x)). Then f(x) is an analytic real valued function.
Suppose that f(x) is not identically zero. Then, by virtue of Result 2, f(x) is non-
zero for almost every x in Rn and hence F(x) has rank p for almost every x in Rn.

In the present context, let F(X1,X2)�S, with s�Vec(S) de®ned by (6). This
is an analytic mapping from R2pq into the space of p ´ p matrices. Therefore, S
is almost surely nonsingular (Corollary 1) if, for at least one pair {X1,X2}, a
nonsingular matrix S satisfying (2)±(4) can be found. Result 1 guarantees the
existence of such a pair. We have thus proven Result 3.

Result 3. A p ´ q ´ 2 array �p > q P 2� can be brought into the simple form (4) by
nonsingular matrices S and T almost surely.

4. The rank of simpli®ed arrays

Having explored the generic possibility of solving (1), we are now in a po-
sition to determine the typical rank of such arrays. This will be accomplished
by using the Vandermonde matrix V of order p. That matrix is the p � p
matrix, the ith column of which, for i � 1; . . . ; p, contains the integers 1; . . . ; p,
raised to the power iÿ 1. The Vandermonde matrix is nonsingular. When we
select the ®rst q columns of V, and the last q columns of V, respectively, two
matrices arise with proportionality in each of the p rows, which means that the

J.M.F. Ten Berge, H.A.L. Kiers / Linear Algebra Appl. 294 (1999) 169±179 175



three-way array consisting of these two matrices has visibly rank p at most, see
the example to be given shortly. This reasoning is at the heart of Result 4.

Result 4. When X� [X1êX2] can be transformed to Y� [Y1êY2] as in (1), the rank
of X is min[p,2q].

Proof. Premultiply Y with the Vandermonde matrix V of order p. Clearly, VY1

contains the ®rst q columns of V, and VY2 contains the last q columns of V. It
is readily veri®ed that row i of VY1 is �i0jij . . . jiqÿ1� and row i of VY2 is
[itêit�1ê. . .êipÿ1]. Clearly, the latter row is it times the former. It follows that each
row of V[Y1êY2], interpreted as a horizontal slice of the corresponding three-
way array, can be accounted for by a rank one array. Therefore, the rank of
that array is at most p. The rank is also at least p (unless p > 2q), because Y

contains p linearly independent columns. So when Y has the form in (1) with
p < 2q, it has rank p. Because Y arose from nonsingular transformations of X;
X has also rank p. When p P 2q, the rank is obviously 2q. �

As an example, consider the 4� 3� 2 case. Let X1 and X2 be matrices of
order 4 ´ 3, transformed to the simple form

Y � �Y1jY2� �

1 0 0

0 1 0

0 0 1

0 0 0

26664
0 0 0

1 0 0

0 1 0

0 0 1

���������

37775 with V �

1 1 1 1

1 2 4 8

1 3 9 27

1 4 16 64

26664
37775:

Then

VY1 �

1 1 1

1 2 4

1 3 9

1 4 16

26664
37775 and VY2 �

1 1 1

2 4 8

3 9 27

4 16 64

26664
37775:

Clearly, each row of VY1 is proportional to the corresponding row of VY2,
which shows that the array Y has at most rank 4.

Combining Results 3 and 4, and noting that the transformation to simplicity
preserves the rank of the array involved, we have proven

Result 5. A p � q� 2 array (2 6 q < p 6 2q) has typical rank p.

For p� 3, the typical rank coincides with the maximum rank, see KruskalÕs
formula, but for p > 3, the maximum rank is attained with probability zero,
because all rank values above p � 1 will have probability zero. For instance,
the 6 ´ 5 ´ 2 array has maximum rank 8, and typical rank 6; the 10� 8� 2
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array has maximum rank 13 and typical rank 10. Having dealt with cases
where p > q, it remains to consider the cases with p� q.

5. The typical rank of p� p� 2 arrays

Above, we have used the transformation to simplicity as a means to arrive at
the typical rank when p > q. For p � p � 2 arrays, the transformation to
simplicity is not generally available. However, we can settle the issue of typical
rank for the latter arrays at once, by using Result 5 in a di�erent context.

Result 6. Almost surely, the rank of a p ´ p ´ 2 array is either p or p + 1.

Proof. Every p � p � 2 array can be embedded in a �p � 1� � p � 2 array, by
adding one random row to X1 and another to X2. The resulting array is of
order �p � 1� � p � 2, and has therefore almost surely rank p + 1. Because
embedding cannot decrease the rank, the rank of a p � p � 2 array is at most
p + 1, almost surely. Also, the p � p � 2 array has at least rank p almost surely,
and it has rank p with positive probability [20]. It follows that, almost surely,
its rank is either p or p + 1, so its typical rank is {p, p + 1}. �

To appreciate the implications of Result 6, one may consider, for example,
the case p� q� 10. The maximal rank is 15, yet the typical rank is {10,11}.
Arrays of rank higher than 11 can be contrived, but arise with probability
zero.

6. Discussion

The proof of Result 4 has been derived from the transformation to sim-
plicity, followed by premultiplication by the Vandermonde matrix. However,
the row-wise proportionality of transformed versions of X1 and X2, essential
for the proof of Result 4, could also have been obtained from premultiplication
of X by a p � p matrix G, with rows g01; . . . ; g0p that can be found from solving
the equations g0i�iX1 ÿ X2� � 00; i � 1; . . . ; p. Along these lines, an alternative
proof for the typical rank of p � q� 2 arrays could have been developed.
However, we have used the transformation to simplicity, because simplicity
results are interesting in their own right.

The simplicity result of the present paper implies that a p � q� 2 array
(p > q) can usually be simpli®ed to have at least 2pqÿ 2q zero elements. Ac-
cordingly, at least 100� �p ÿ 1�=p % of the elements can arti®cially be set to
zero. This implies that a p � q� 2 core array in three-mode principal com-
ponent analysis, when p > q P 2, can be greatly simpli®ed. Also, we have here
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another demonstration, in addition to the one given by Murakami et al. [18], of
the high degree of overparameterization of three-mode PCA.

Starting from simplicity, results for the typical rank of p � q� 2 arrays have
been obtained, including the case where p� q. However, we have not discussed
the issue of simplicity for the latter type of arrays. Although transformations to
simplicity for these arrays do seem possible, their relation to three-way rank is
far from clear.

As we have noted before, the transformation to simplicity (1) does not in-
volve a mixing of the slices X1and X2. Conceivably, this third direction of
transformation will be needed to obtain simplicity for p � q� r arrays with
p P q P r P 3. Computer simulations indicate that, for such arrays, transfor-
mation to simplicity is not possible in general. The only exceptions encountered
so far are the case p� q� r� 3, where 18 of the 27 elements can usually be
transformed to be zero (also see [12]), and the cases where p� qrÿ 1, see [18].

A special point of interest, raised by an anonymous referee, is the com-
parison of typical rank of p � q� 2 arrays in the real setting, treated in the
paper, with that in the complex setting. Speci®cally, BuÈrgisser et al. [2, Exercise
20.4] report that, when p > q, the typical tensorial rank is min[p,2q], precisely as
it is in the real setting; when, however, p� q, the typical tensorial rank is p in
the complex setting whereas it is {p,p + 1} in the real setting.

Appendix A. A MATLAB program for simplicity as in (1)

% input: X� [X1 X2], of order p ´ 2q, and p > q.
% output: S, T, producing Y� [S0* X1*T S0*X2*T]
[p,qq]� size(X);q� qq/2;t� pÿq;X1�X(:,1:q);X2�X(:,q+1:qq);
O� zeroes(p*p,t*q);W1� [kron(eye(p),X2) O];W2� [O kron(eye(p),X1)];
W� [W1-W2]; v� [];E� eye(p);
for i� 1:p
v� [v;E(:,i)];
end
s� (eye(p*p)-W*pinv(W0*W)*W0)*v;S� zeroes(p,p);
for i� 1:p
S(:,i)� s(1+(i-1)*p:i*p);
end
H� S'*X1;T� inv(H(1:q,:));Y� S'*[X1*T X2*T]
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