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Abstract

A graph that can be constructed from isolated vertices by the operations of union and complement is
decomposable. Every decomposable graph is Laplacian integral. i.e., its Laplacian spectrum consists entirely
of integers. An indecomposable graph is not decomposable. The main purpose of this note is to demonstrate
the existence of infinitely many indecomposable Laplacian integral graphs.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

If G = (V , E) and H = (W, F ) are graphs on disjoint sets of vertices, their union is the graph
G ⊕ H = (V ∪ W, E ∪ F). The complement of G is the graph Gc = (V , V (2)\E), i.e., the graph
with vertex set V = V (G) such that vertices u and v are adjacent in Gc if and only if they are not
adjacent in G. If the order of G is o(V ) = n, the Laplacian of G is L(G) = D(G) − A(G), where
D(G) is the diagonal matrix of vertex degrees and A(G) is the adjacency matrix. Denote the
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Laplacian spectrum of G by s(G) = (λ1, λ2, . . . , λn), where λ1 � λ2 � · · · � λn = 0. Graph G

is Laplacian integral if s(G) consists entirely of integers. Because L(G) + L(Gc) = nIn − Jn,
where In is the identity matrix and Jn the n-by-n matrix each of whose entries is 1

s(Gc) = (n − λn−1, . . . , n − λ2, n − λ1, 0). (1)

It follows that G is Laplacian integral if and only if Gc is Laplacian integral.
Graphs that can be constructed from isolated vertices by means of unions and complements

are called decomposable by some, and cographs by others. Because L(G ⊕ H) is the (matrix)
direct sum of L(G) and L(H), it follows from Eq. (1) that decomposable graphs are Laplacian
integral. Indeed, of the 57 connected, Laplacian integral graphs on n � 6 vertices, only two
complementary pairs (four graphs) on six vertices are indecomposable (not decomposable). The
relative scarcity of indecomposable Laplacian integral graphs of small order, coupled with their
conspicuous absence from the Laplacian literature (see, e.g. [9–12]) led the second author, in
his June 2007 course for the Lisbon Summer School on Algebra and Combinatorics, to wonder
about the existence of infinite families of indecomposable Laplacian integral graphs. In fact, such
families are not hard to find.

2. Decomposable graphs

A graph is decomposable if and only if its complement is decomposable. Moreover, with the
exception of K1 (the one-vertex complete graph) , the complement of a connected decomposable
graph is necessarily disconnected. Thus, apart from K1, no decomposable graph is self-comple-
mentary (isomorphic to its complement). Can a self-complementary graph be Laplacian integral?
Yes, and then some!

Graphs with the same Laplacian spectrum are said to be isospectral. We are indebted to Hae-
mers and Spence [6,7] for sharing the nonisomorphic, self-complementary graphs G1 and G2
in Fig. 1. Because s(G1) = (7, 63, 33, 2, 0) = s(G2), with superscripts indicating eigenvalue
multiplicities, these graphs are not only Laplacian integral, but isospectral.

Perhaps the nicest characterization is that a graph is decomposable if and only if it does
not contain an induced subgraph isomorphic to the four-vertex path P4 [15, p. 184]. Using this
criterion, the bipartite graph G3 in Fig. 2 is easily seen to be indecomposable. Because

s(G3) = (6, 5, 42, 32, 22, 1, 0), (2)

it is also Laplacian integral.
The join of graphs G and H is defined by

GV H = (Gc ⊕ Hc)c.

Fig. 1. Isospectral, self-complementary, Laplacian integral graphs.
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Fig. 2. The graph G3.

An alternative definition of decomposable graphs is that they can be constructed from isolated
vertices by means of unions and joins. Thus, e.g., the complete bipartite graph Kr,s = Kc

r V Kc
s =

(Kr ⊕ Ks)
c. Recipes for constructing decomposable graphs can be simpler to express using

join notation, e.g., in the case of G4 = [(K1 ⊕ K1)V (K1 ⊕ K1,2)] ⊕ K2 ⊕ [K1V (K1 ⊕ K2)]. It
follows from Eqs. (1) and (2) that

s(G4) = (6, 5, 42, 32, 22, 1, 03) = s(G3 ⊕ Kc
2).

Because G4 is decomposable but not bipartite, while G3 ⊕ Kc
2 is bipartite but not decomposable,

we obtain the following.

Proposition 2.1. Neither decomposability nor chromatic number can be determined from the
Laplacian spectrum alone.

A similar example can be found in [13].

3. Infinite families of indecomposable, Laplacian integral graphs

Let B = Jr ⊕ [Jr+1 − Ir+1] where, recall, Jr is the r-by-r matrix each of whose entries is 1,
and In is the n-by-n identity matrix. If C = J2r+1 − B, then

A =
(

0 C

C 0

)

is the adjacency matrix of an (r + 1)-regular bipartite graph Hr with Laplacian matrix L(Hr) =
(r + 1)I4r+2 − A and spectrum s(Hr) = (2r + 2, 2r + 1, [r + 2]r , [r + 1]2r−2, rr , 1, 0) . For
example, H1 ∼= C6 and s(H1) = (4, 32, 12, 0); H2 ∼= G3, the graph illustrated in Fig. 2 whose
spectrum is given in Eq. (2). The general Hr , illustrated in Fig. 3, might be described as two
copies of the complete bipartite graph Kr,r+1 joined together with an (r + 1)-matching of the
larger parts.

Fig. 3. The graph Hr .



1568 R. Grone, R. Merris / Linear Algebra and its Applications 428 (2008) 1565–1570

Theorem 3.1. {Hr : r � 1} is an infinite family of indecomposable, (r + 1)-regular, bipartite,
Lapiacian integral graphs.

Proof. The result follows from the previous discussion and the abundance of induced P4’s visible
in Fig. 3. �

Corollary 3.2. {Hc
r : r � 1} is an infinite family of nonbipartite, 3r-regular, indecomposable,

Laplacian integral graphs.

Corollary 3.3. {Hr : r � 1} and {Hc
r : r � 1} are infinite families of bipartite regular and regular

adjacency integral graphs, respectively.

Proof. The adjacency spectrum of an r-regular graph is a translation (by r) of its Laplacian
spectrum. �

The Cartesian product of graphs (elsewhere called “product” [8, p. 22], or even “sum” [4, p.
65], [2]) is defined as follows: If G = (V , E) and H = (W, F ) are graphs on n and k vertices,
respectively, then G � H is the graph with vertex set V × W such that (v1, w1) is adjacent to
(v2, w2) if and only if (i) v1 = v2 and w1w2 ∈ F , or (ii) v1v2 ∈ E and w1 = w2. The graph
K3 � K2, isomorphic to the complement of C6, is shown in Fig. 4.

If A = (aij ) is a k-by-k matrix, and B = (bij ) is n-by-n, the Kronecker product A ⊗ B is the
kn-by-kn partitioned matrix with (i, j)-block equal to aijB, 1 � i, j � k [14, p.138].

If s(G) = (λ1, λ2, . . . λn), and s(H) = (μ1, μ2, . . . μk) then, because L(G � H) = Ik ⊗
L(G) + L(H) ⊗ In, it follows that the eigenvalues of L(G � H ) are λi + μj , 1 � i � n, 1 �
j � k [4, p. 70]; [14, p. 149]. Thus, from s(K3) = (32, 0) and s(K2) = (2, 0), it follows that
s(K3 � K2) = (52, 32, 2, 0). More generally,

s(Kn � K2) = ([n + 2]n−1, nn−1, 2, 0). (3)

Lemma 3.4. If G is a connected graph on n �3 vertices, then G � K2 is indecomposable.

Proof. Suppose G = (V , E), where V = {v1v2, . . . , vn}. Let H = (W, F ) be isomorphic to G

and let f : V → W be an isomorphism. Then G � K2 ∼= (V ∪ W, E ∪ F ∪ {vif (vi) : 1 � i �
n}) , i.e.,G � K2 is the graph obtained fromG ⊕ H by adding new edges joiningvi andf (vi), 1 �
i � n.

It remains to observe that if x and y are neighbors of some vertex z of G, then the subgraph of
G � K2 induced on {x, z, f (z), f (y)} is isomorphic to P4. �

Theorem 3.5. If G is a connected Lapiacian integral graph on n � 3 vertices, then G � K2 is
an indecomposable Lapiacian integral graph.

Fig. 4. K3 � K2 ∼= Cc
6.
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Fig. 5. G5 = K2,3 � K2.

Proof. Indecomposability follows from the Lemma.
If s(G) = (λ1, λ2, . . . , λn) then, s(G � K2) consists of the elements of the multiset {λi + 2 :

1 � i � n} ∪ {λi : 1 � i � n} arranged in nonincreasing order. �

Corollary 3.6. If G is a connected decomposable graph on n � 3 vertices, then G � K2 is a
connected indecomposable Lapiacian integral graph.

Proof. Decomposable graphs are Lapiacian integral. �

4. Concluding remarks

Consider the graph G5 = K2,3 � K2 illustrated in Fig. 5. Because K2,3 ∼= (K2 ⊕ K3)
c it

follows from Eq. (1) that s(K2,3) = (5, 3, 22, 0), hence

s(G5) = (7, 52, 42, 3, 23, 0).

Comparing with G3 from Fig. 2 and s(G3) = (6, 5, 42, 32, 22, 1, 0) from Eq. (2), and following
Kirkland [9,10], it is natural to wonder whether the intermediate graph H (obtained by deleting
one of the looping edges in Fig. 5) is Laplacian integral. Computations show that, to two decimal
places, s(H) = (6.65, 5, 43, 3, 22, 1.35, 0).

The Cartesian product K3 � K2 and its complement, C6, account for one pair of indecompos-
able Lapiacian integral graphs on n = 6 vertices; K1,2 � K2 and its complement account for the
other.

The graphs G1 and G2 in Fig. 1 are neither decomposable nor “factorable” as Cartesian
products of smaller graphs. On the other hand, K3 � K3 is a 4-regular, self-complementary,
Laplacian integral graph on nine vertices, one of two such graphs given in [1].

Finally, Gc
4 � K2 and (G3 ⊕ Kc

2)c � K2 are isospectral, indecomposable Laplacian integral
graphs.
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[5] D. Cvetković, S.K. Simić, D. Stevanović, 4-Regular integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser.
Mat. 9 (1998) 89–102.

[16] A.J. Schwenk, Exactly thirteen connected cubic graphs have integral spectra, Theory and Applications of Graphs,
Springer, Berlin, 1974, pp. 153–172.

[17] Douglas B. West, Introduction to Graph Theory, second ed., Prentice-Hall, Upper Saddle River, NJ, 2001.


	Introduction
	Decomposable graphs
	Infinite families of indecomposable, Laplacian integral graphs
	Concluding remarks
	References
	Further readings

