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Hyperinvasive genotypes of Neisseria meningitidis in France
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ABSTRACT

Clinical isolates of Neisseria meningitidis from cases of meningococcal disease, collected between January
2000 and December 2004, were identified and typed at the French National Reference Centre.
A representative subset of 546 isolates from among 2882 isolates was further genotyped by multilocus
sequence typing to determine their genetic lineages (clonal complexes) and the degree of diversification
among different clonal complexes. Representative isolates of the main clonal complexes were tested for
their virulence in mice and for proapoptotic effects on human epithelial cells. High genetic diversity in
some genetic lineages (ST-32 and ST-41 ⁄ 44) was correlated with heterogeneity in virulence in mice and
proapoptotic effects on human epithelial cells. In contrast, the homogeneous genetic structure of isolates
of the ST-11 clonal complex, regardless of their serogroup, correlated positively with a fatal outcome of
the infection, increased virulence in mice and increased proapoptotic effects on human epithelial cells.
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INTRODUCTION

Neisseria meningitidis is found most frequently as a
commensal bacterium of the human nasopharynx,
but can occasionally cause a life-threatening
invasive infection [1]. It is estimated that 10% of
adults are asymptomatic carriers, although
carriage rates can be affected by temporal, geo-
graphical and seasonal factors [2]. The annual
incidence of invasive meningococcal infections in
different countries of Europe varied between
<1 ⁄ 100 000 population and up to 14.3 and
4.9 ⁄ 100 000 in 1999 and 2004, respectively [3].

Meningococcal isolates can be grouped, accord-
ing to polymorphisms in seven housekeeping
genes, into clonal complexes that comprise closely
related isolates varying by no more than two loci
[4]. Hyperinvasive isolates are found in a limited
number of clonal complexes, although carriage
isolates are very diverse [5–7]. New variants in
the meningococcal population appear continu-
ously following frequent horizontal exchanges of

DNA [8]. Enhanced transmission and the acqui-
sition of variants may increase the genetic heter-
ogeneity of carriage isolates [9].

Meningococcal invasion depends on the ability
of the bacterium to colonise and multiply in its
host, and also on its ability to invade sterile sites,
e.g., the blood and cerebrospinal fluid, leading to
meningococcaemia and meningitis, respectively
[10,11]. Induction of apoptosis of cells of the
epithelial barriers may be an important feature
involved in bacterial virulence and invasiveness,
and it has been suggested that this feature
correlates with the severity of the disease
[12,13]. However, bacterial modifications that
enhance virulence may not influence transmissi-
bility ⁄ acquisition (ecological fitness). The small
number of genetic lineages associated with inva-
sive meningococcal infections may reflect the fact
that the disease is not part of the transmission
cycle, but is an epidemiological dead-end, as
bacteria that have invaded the blood or the
cerebrospinal fluid are no longer transmitted
[10,11]. Indeed, isolates that express the pheno-
types of invasive isolates are rare in the overall
meningococcal population.

It is not clear why invasive isolates are clus-
tered in a few clonal complexes and what limits
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their diversification. Therefore, isolates of major
clonal complexes are often considered to be
hyper-virulent, mainly on the basis of their
involvement in epidemics with high fatality rates,
but without any evidence of a specific genetic
profile of virulence and pathogenicity, despite the
availability of fully sequenced genomes [14].
Therefore, the aims of the present study were to
analyse the genetic structure and diversification
of a large collection of clinical isolates from
invasive meningococcal infections in France,
spanning a 5-year period, and to analyse the
functional impact of the genetic structure and
diversification of isolates of each main clonal
complex on their virulence in mice and on the
induction of apoptosis of human epithelial cells.

MATERIALS AND METHODS

Characterisation of bacterial isolates

Isolates from cases of invasive meningococcal infection in
France are sent systematically to the National Reference Centre
for Meningococci for full characterisation and typing. Epide-
miological and clinical data, including whether there was an
immediate fatal outcome (<24 h after admission), are also
recorded. Bacteria were grown on plates of GCB medium with
Kellogg supplements [15]. Serogroups were determined by
agglutination using specific in-house rabbit antibodies to
N. meningitidis serogroups A, B, C, Y and W135. Phenotypes
(serogroup:serotype:serosubtype) were determined as
described previously [16].

Isolates were genotyped by multilocus sequence typing
(MLST) as described previously [4,17]. Alleles, sequence
types (STs) and clonal complexes were assigned using the
Neisseria MLST database (http://pubmlst.org/neisseria).
Cluster analysis was performed using the BURST algorithm
as described previously [18] (http://www.mlst.net). The
BURST algorithm clusters isolates if they differ by no more
than two loci, and then defines an ancestral ST (founder ST)
in each cluster; it also defines STs varying by a single locus
(single-locus variants; SLVs), STs varying by two loci (dou-
ble-locus variants; DLVs) and satellite STs that vary by more
than two loci, but which are still linked indirectly because
they are no more than two loci different from the other SLVs
or DLVs.

Seven selected isolates from each of the main clonal
complexes, representing the most frequent phenotypes, were
studied in virulence and proapoptotic assays. The isolates were
as follows: isolates of clonal complex ST-8 were LNP19935
(C:2a:P1.2,5), LNP21089 (C:2b:P1.2), LNP21317 (C:2b:P1.5,2),
LNP21359 (C:2b:P1.2), LNP21661 (C:2b:P1.5,2), LNP21716
(C:2b:NST) and LNP21846 (B:2b:NST); isolates of clonal com-
plex ST-11 were LNP17592 (W135:2a:P1.5,2), LNP19008
(C:2a:P1.5,2), LNP20342 (B:2a:P1.5), LNP20553 (C:2a:P1.5),
LNP21515 (C:2a:P1.5), LNP21678 (C:2a:P1.5) and LNP21996
(B:2a:P1.5); isolates of clonal complex ST-32 were LNP19263
(B:15:P1.7), LNP19785 (B:14:P1.15), LNP19830 (B:4:P1.7,1),
LNP20404 (B:14:P1.7,16), LNP21362 (B:14:P1.7,16), LNP21743
(B:4:NST) and LNP21866 (B:14:P1.7,16); and isolates of clonal

complex ST-41 ⁄ 44 were LNP20927 (B:4:P1.4), LNP21521
(B:4:P1.4), LNP21680 (B:NT:NST), LNP21756 (C:NT:NST),
LNP21784 (B:15:P1.4), LNP21806 (B:14:NST) and LNP21861
(B:4:P1.4).

Virulence in mice

The virulence of the different isolates from the main clonal
complexes was tested in a mouse model of sequential
influenza A virus (IAV)–N. meningitidis infection [19]. In brief,
female BALB ⁄ c mice aged 6 weeks (Janvier, Le Genet-Saint-
Isle, France) were infected by intra-nasal administration of a
50-lL suspension containing 250 plaque-forming units of the
IAV strain A ⁄ Scotland ⁄H3N2 ⁄ 23 ⁄ 74, leading to transient
pneumonia followed by spontaneous recovery and complete
viral clearance within 10 days [19]. The mice were superin-
fected intra-nasally on day 7 with 1–5 · 107 CFU ⁄mouse of
each meningococcal isolate. Bacterial counts were determined
in the lungs and blood of three mice ⁄ experiment at 24 h
after meningococcal challenge by plating blood or lung
homogenate samples on GCB medium. Data were analysed
using the chi-square test, Student’s t-test and analysis of
variance (ANOVA), with p £0.05 considered to be statistically
significant.

Induction of apoptosis of epithelial cells

Hec1-B epithelial cells were seeded in flat-bottomed 96-well
tissue culture plates (Techno Plastic Products, Trasadingen,
Switzerland) at a density of 5 · 105 cells ⁄mL (100 lL ⁄well) and
incubated overnight at 37�C. The cells were then washed three
times with phosphate-buffered saline and replenished with
fresh medium. The cells were then infected with 100 lL of
bacterial suspension at a multiplicity of infection of 10:1.
Negative (non-infected cells) and positive (staurosporin-treated
cells at a final concentration of 1 lM) controls were included in
each experiment. Incubation was continued for 1, 4, 9 or 24 h at
37�C. The cells were then washed gently and stained using
ApoPercentage (Biocolor Ltd, Newtownabbey, UK) according
to the manufacturer’s recommendations. Results were expres-
sed as the mean A550 values of assays performed in triplicate.

RESULTS

Meningococcal genotypes

In total, 2882 clinical isolates were received by the
National Reference Centre for Meningococci
between January 2000 and December 2004; of
these, 546 (19%) were randomly selected to form
the study set for analysing the genetic structure of
the meningococcal population. The serogroup
distribution among the total population (2882
isolates) of invasive isolates and the study set
was equivalent, with 53% and 56% belonging to
serogroup B, 33% and 30% to serogroup C, 10%
and 9% to serogroup W135, and 3% and 3% to
serogroup Y, respectively. It is worth noting that
several isolates of serogroupW135, corresponding
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to the Hajj-linked outbreak in 2000 [20], were
included in the study set.

MLST identified 152 different STs among the
546 study set isolates. The STs were clustered into
15 clonal complexes, accounting for 506 (92.7%)
isolates, with the remaining 40 (7.3%) isolates
belonging to 26 STs that could not be assigned
to any known clonal complex. The five most
frequent clonal complexes were ST-11 (n = 183,
33.5%), ST-41 ⁄ 44 (n = 143, 26.2%), ST-32 (n = 55,
10%), ST-8 (n = 46, 8.4%) and ST-269 (n = 31,
5.7%). The ten remaining clonal complexes each
occurred at a frequency of <1.5%.

The percentages of immediate fatal cases (i.e.,
death occurring in <24 h of admission) in the two
sets were equivalent (8.8% and 9%, respectively,
p 0.908). However, immediate fatality was signif-
icantly higher for cases involving clonal complex
ST-11, which had a case fatality rate of 16%,
compared to 7.1% for the entire population of
isolates.

Phenotypic and genotypic diversification within
clonal complexes

The diversification of isolates within each of the
four main clonal complexes was scored by calcu-
lating the percentage of SLVs, DLVs and satellite
variants. Clonal complex ST-11 showed the least
diversification, with only 10.4% of STs (mostly
SLVs) differing from the founder ST. The propor-
tion of diversified isolates (SLVs and DLVs)
among the isolates of clonal complex ST-11 was
significantly lower than that among the other
isolates (p <0.0001). In contrast, isolates of clonal
complexes ST-32 and ST-41 ⁄ 44 were more diver-
sified than isolates of clonal complex ST-11
(p <0.001). The percentages of SLV, DLV and
satellites were 39.5%, 19.7% and 5.7%, respec-
tively, for ST-32, and were 23.6%, 10.8% and
15.3%, respectively, for ST-41 ⁄ 44. In clonal com-
plex ST-8, 48% of isolates were variants, but these
were mostly SLVs, with only 16% DLVs and no
satellite variants.

Each of the four major clonal complexes (ST-11,
ST-41 ⁄ 44, ST-32 and ST-8) contained a predomi-
nant serogroup (C, B, B and C, respectively).
However, clonal complex ST-11, which was
mostly serogroup C, also harboured a signifi-
cantly high proportion of serogroups B and W135
(28.4%, p <0.00001). In contrast, the highly diver-
sified clonal complex ST-32 comprised only sero-

group B isolates. The other highly diversified
clonal complex ST-41 ⁄ 44 comprised mainly sero-
group B isolates, with only 4.2% of the isolates
belonging to other serogroups.

Impact of clonal complex diversification on
virulence in mice

All of the meningococcal isolates tested induced
pneumonia with subsequent bacteraemia in the
mouse model of sequential IAV–N. meningitidis
respiratory challenge. Isolates from the less diver-
sified clonal complexes (ST-11 and, to a lesser
extent, ST-8) generated higher bacterial loads in
lungs at 24 h after infection (p <0.001 and p <0.05,
respectively) (Table 1). Equivalent CFU counts
were observed in the blood for all isolates.
Bacterial counts in lungs for the ST-11 isolates,
regardless of their serogroup (B, C or W135), were
homogeneous, as indicated by the narrow 95% CI
(Table 1). The W135 ST-11 isolate corresponded to
the Hajj outbreak [20]. In contrast, isolates of ST-8,
ST-32 and ST-41 ⁄ 44, belonging to serogroups C, B
and B, respectively, showed variable CFU counts
in lungs, depending on the challenge strain, with
wider 95% CIs (Table 1).

Induction of apoptosis

Isolates from each of the four major clonal com-
plexes, ST-11 (n = 5), ST-41 ⁄ 44 (n = 5), ST-32
(n = 4) and ST-8 (n = 4), were analysed for their
ability to induce apoptosis at 1, 4, 9 and 24 h after
infection. All ST-11 isolates induced apoptosis,
particularly at 24 h after infection. In contrast, only
some isolates belonging to the other STs (ST-8,
ST-32 and ST-41 ⁄ 44) were able to induce
apoptosis (Fig. 1).

These findings correlated with the differences
in immediate fatality associated with the isolates
belonging to the different clonal complexes, with
25 of 49 immediately fatal cases being caused by

Table 1. Virulence in mice of isolates from the main clonal
complexes

Clonal complex Blooda (95% CI) Lungsa (95% CI)

ST-11 1.74 ± 0.21 (1.43–1.86) 6.98 ± 0.71 (6.14–7.50)
ST-41 ⁄ 44 1.31 ± 0.45 (1.06–1.96) 4.05 ± 0.95 (3.17–5.33)
ST-32 1.73 ± 0.45 (1.28–2.11) 3.92 ± 0.95 (3.17–5.21)
ST-8 1.67 ± 0.61 (1.49–3.03) 6.39 ± 0.0.98 (5.19–7.0)

ST, sequence type.
aGeometric mean of log10 CFU ⁄mL ± SE of samples collected at 24 h after infection
from four mice ⁄ isolate, following challenge with seven different isolates of each
clonal complex.
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isolates of clonal complex ST-11 (p 0.026). In
contrast, no significant correlation was revealed
between serogroup and an immediate fatal out-
come.

DISCUSSION

A few genotypes of N. meningitidis are known to
be prominent in invasive infections [6,21]. Trans-
missibility and virulence are not linked, since
invasive infection is a dead end in the natural
evolutionary life-cycle of N. meningitidis [10]. The
continuous genetic evolution caused by horizon-
tal transfer of DNA and allelic recombination
would lead to genotypic and phenotypic diversi-
fication of transmissible isolates [22,23]. This can
be tested using functional and genomic analysis
by sequencing the same regions in these isolates.
Such an approach may be more informative than
completely sequencing the genome of just a few
isolates [24].

The present study set of 546 isolates, selected
from among 2882 invasive isolates, was represen-
tative of the entire population of invasive N. men-
ingitidis strains in France during the period 2000–
2004. The most striking findings were the high
number of isolates belonging to clonal complex
ST-11, and the low level of diversification within
this complex, with only 10.4% of isolates differing
from the founder ST. However, this low level of
diversification should be further confirmed by

analysing polymorphism in a larger set of genes
(i.e., more than the seven housekeeping gene
fragments used in the MLST analysis). The low
level of diversity observed might indicate the
recent emergence of this clonal complex, unlike
the other, probably older, clonal complexes (ST-8,
ST-32, ST-41 ⁄ 44 and ST-269) that contain more
SLVs, DLVs and satellite variants, as determined
using the BURST algorithm. The epidemiological
data are consistent with this hypothesis, since the
meningococcal outbreaks observed during the
study period were caused by isolates of clonal
complex ST-11 belonging to serogroups C and
W135 [25,26].

Virulence assays using isolates belonging to
clonal complex ST-11 generated homogeneous
results in mice in comparison with isolates from
the other clonal complexes tested, irrespective of
their serogroup. Several studies have suggested
that apoptosis can be manipulated by infectious
microorganisms [13]. Inducing apoptosis during
sepsis has also been suggested to correlate with
the severity of the disease [13]. All ST-11 isolates
tested were able to induce apoptosis in Hec-1-B
epithelial cells, but this induction was heteroge-
neous in isolates belonging to other genetic
lineages.

These data emphasise the importance of molec-
ular typing of N. meningitidis isolates in predict-
ing meningococcal virulence, as opposed to
simply determining the serogroup. A serogroup
C to serogroup B capsule switch in clinical isolates
belonging to clonal complex ST-11 has recently
been reported, with conserved virulence [27].
Moreover, isolates belonging to this clonal com-
plex were associated more significantly with an
immediate fatal outcome than were isolates
belonging to the other invasive clonal complexes
in the present study set. Immediate fatality may
be a clinical marker of hyper-virulence of menin-
gococcal isolates. An association between fatal
meningococcal disease and meningococcal clonal
complex ST-11 has also been observed in N. men-
ingitidis isolates from culture-confirmed cases of
meningococcal disease in England and Wales
between 1993 and 2000 [28]. Similar findings have
been reported for Streptococcus pneumoniae, in
which both genotype and capsular type deter-
mine pathogenic behaviour [29].

The present results obtained with a large collec-
tion of invasive isolates raise questions concerning
the basis for the concept of ‘hyper-virulence’ in

0.75

0.50

O
D

55
0

0.25

0.00

ST-11
– +

Controls ST-41/44 ST-32 ST-8

Fig. 1. Ability of representative isolates from the four most
frequent clonal complexes to induce apoptosis of Hec-1-B
cells at 24 h after infection. Negative controls (white bar)
were uninfected cells and positive controls (black bar)
were cells treated with staurosporin at a final concentra-
tion of 1 lM. Experiments were performed in triplicate and
the results are expressed as geometric means of absorbance
values at 550 nm (OD550) ± standard deviation (bars).
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N. meningitidis. Such a concept can hardly be
applied to a bacterium that is normally found in
healthy carriers and for which no structural basis
of pathogenicity has been revealed by full genome
sequencing [14]. Moreover, carriage isolates seem
to differ genetically and phenotypically from
invasive isolates [6]. Epidemic hyperinvasive
isolates have been shown to be present only rarely
among carriers [5] However, the present study
suggests that some virulence-associated criteria
can be assigned to the main invasive meningo-
coccal genotypes. Isolates of the ST-11 clonal
complex were genetically homogeneous, virulent
in mice (Table 1) and induced apoptosis (Fig. 1),
regardless of their serogroup, and can clearly be
considered to be hyper-virulent, even in an
exposed immunocompetent host, following acqui-
sition. This was less obvious for ST-8, and not at all
obvious for ST-32 and ST-41 ⁄ 44, which were
represented by isolates that were heterogeneous
in terms of virulence in mice and that were less
proapoptotic. In such cases, expression of menin-
gococcal virulence may depend to a greater degree
on an increased susceptibility of the exposed host,
either because of genetic defects [1] or because of
associated co-factors of meningococcal infection,
e.g., influenza [19].
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