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A theory of bounded polynomial approlvimation is obtained on the theme of 
the Riemann mapping theorem. 

Bounded nonnegative measures, with compact support, on the Bore1 subsets 
of the complex plane are considered in the weak topology induced by the 
continuous functions. Two such measures p and v  are said to be equivalent if 
the identity 

jf(4 444 = jf(4 w4 

holds for every polynomial f(z). I f  p is any such measure, the closure of the set 
of such measures which are absolutely continuous with respect to p and which 
are equivalent to p is a compact convex set. By the Krein-Milman theorem [l], 
the set is the closed convex span of its extreme points. A characterization of 
extremal measures is an underlying principle in connection with the Stone- 
Weierstrass theorem [2]. The element p is an extreme point if, and only if, the 
functions of the form f(z) + g(z) for polynomials f(z) and g(z) are dense in 
U(p). Of particular interest are extremal measures for which these same func- 
tions are dense in Lm(p) in its weak topology induced by U(p). In this case ,J 
is the only element of the convex set. 

I f  p and Y are bounded nonnegative measures with compact support, define p 
to be less than or equal to v  if p is equivalent to Y and if the inequality 

holds for every polynomial f(z). 

THEOREM 1. If p and v  are bounded nonnegative measures with compact support, 
then ,LL is less than or equal to v  $, and only if, the inequalit> 

holds for every continuous function h(z) of z which is subharmonic in the com- 
plex plane. The inequality then holds for every function h(z) which is subhar- 
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manic in the complex plane, and the least upper bound of h(x) with respect to p 
is less than or equal to the least upper bound of h(z) with respect to V. A weakly 
continuous homomorphism exists of the weak closure of the pclynomials in 
Lm(v) into the weak closure of the polynomials in L”(p) which is the identity 
on polynomials. The transformation is bounded by one. 

An acquaintance with the theory [3] of square summable power series is 
presumed. Define %?(a) to be the set of power seriesf(z) = C a,zn with complex 
coefficients such that 

llfll’ = 2 I Q9z I2 < 03. 

Then U(Z) is a Hilbert space which contains the polynomials as a dense vector 
subspace. The elements of the space are convergent power series in the unit disk. 
The analytic function represented by an element of the space has a measurable 
boundary function on the unit circle. The identity 

llfll” = l1 If(expWW12 dt 

holds for every elementf(a) of the space. A characterization [4] of the space is 
used. 

THEorim 2. Let TV be a bounded nonnegative measure, with compact support 

not equal to the set containing only the point h, such that the linear functional on 
polynomials defined by f(a) into f(h) is weakly continuous in L”(u). Assume that 
the weak closure of the functions of the form f  (z) + g(z) for polynomials f  (z) and 
g(z) contains all of L”(p) and that no nonconstant real element of La(p) belongs to 

the weak closure of the polynomials. Then a function 4(z) of z exists, which is 
bounded and analytic in the unit disk, which has distinct values at distinct points of 
the disk, and which has value h at the origin, such that the transformation f  (z) into 
f  (#(z)) is an isometry of the weak closure of the polynomials in L”(u) onto the 

space of functions which are bounded and ana&& in the unit disk. An element 
W(x) of U(z) exists such that the transformation f(z) into W(z) f  (4(z)) is an 
isometry of the closure of the polynomials in L*(p) onto ‘3?(z). The support of u is the 
boundary of the region onto which (G maps the unit disk. The ,a-measure of every 
Bore1 set S is equal to 

I 
1 W(exp(2tit))l* dt 

with integration over the real numbers t module one such that g(exp(2nit)) belongs 
to s. 

An elementary approximation theorem is obtained by methods taken from 
the theory of approximation on a line [5]. 
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THEOREM 3. If  p is a bounded nonnegative measure with compact support and if 
the linear functional on polynomials defined by f (z) into f (w) is weakly continuous 
in L”(p) for no complex number ZC, then the polynomials are weakly dense in L”(p). 

An orthogonal decomposition is used to study more general measures. 

THEOREM 4. Let p be a bounded nonnegative measure with compact support 

such that the linear functional on polynomials defined by f(z) into f(A) is weakly 
continuous in L”(p) for a complex number A. Assume that the functions of the form 

f (4 + iw f . P I_ 0) o vnomials f(z) and g(z) are weakly dense in L”(p). Then p = 
ol + ,t3 for mutually singular nonnegative measures CL and /3 with these properties: 
An element of L*(p) belongs to the weak closure of the polynomials if, and only if, 
it belongs to the weak closure of the polynomials in L=(o) and in Lx@). No non- 
constant real element of L”(a) belongs to the weak closure of the polynomials. The 

linear functional on polynomials defined by f(z) into f(X) is weakly continuous in 
L”(a). The linear functional on polynomials defined by f(z) into f(w) is weakl-y 

continuous in L%-(a) and in L”@) for no complex number w. 

A structure theory follows for measures satisfying the density condition. 

THEOREM 5. Let p be a bounded nonnegative measure with compact support 

such that the functions of the form f  (2) + g(z) for polynomials f(z) and g(z) are 
weakly dense in L”(p). Then a countable number of mutually singular nonnegative 
measures CL,, exist with these properties: The measure TV -- 1 p,, is singular with 
respect to pn for every index n. An element of L”(p) belongs to the weak closure of the 

polynomials if, and only z$ it belongs to the weak closure of the polynomials in La&) 
for every index n. For every index n, the set of complex numbers w such that the linear 
functional onpolynomials dejined by f  (2) into f  ( w is weakly continuous inL”&,,) is a ) 
bounded simply connected region R, of zero p-measure. The regions Q, are disjoint. 

A formulation of the balayage principle [4] is used. 

THEOREM 6. Let a be a bounded nonnegative measure with compact support 
such that the functions of the form f(z) + g(z) fol polynomials f(z) and g(z) are 
weakly dense in L’(a) and no nonconstant real element of L=(a) belongs to the weak 
closure of the polynomials. Assume that the set of complex numbers w such that the 
linear functional on polynomials defined by f(z) into f(w) is weakly continuous in 
L”(o) is a bounded simply connected region Q. Let Q* be the set onto which a 
Riemann mapping function 4 for 8 maps the closure of the unit disk. If  a is a 
bounded nonnegative measure and if the complement of .Q* has zero a-measure, then a 
unique bounded nonnegative measure p exists whiclt is absolutely continuous with 
respect to o and which is equivalent to 01, and 01 is less than or equal to /% 

A computation of inequalities [4] holds for measures satisfying the density 
condition. 
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THEOREM 7. Let t.~ and v  be bounded nonnegative measures with compact sup- 
port. Assume that the functions of the form f(z) + g(z) for polynomials f(z) and 

g(z) are weakly dense in L”(v), that no nonconstant real element of L”(v) belongs 
to the weak closure of the polynomials, and that the set of complex numbers w such 
that the linear functional on polynomials dejned by f (2) into f(w) is weakly con- 

tinuous in L”(v) is a bounded simply connected region Q. Let Q* be the set onto 
which a Riemann mapping function #for Q maps the closure of the unit disk. Then 
p is less than or equal to v  if, and only if, TV. is equivalent to v  and the complement of 
.Q* has zero p-measure. 

Nontrivial inequalities do not occur in the presence of a density condition on 
polynomials. 

THEOREM 8. If  p and v  are bounded nonnegative measures with compact support 
such that p is less than or equal to v  and if the polynomials are weakly dense in L”(v), 
then p and v  are equal. 

Inequalities are well-behaved in orthogonal decompositions. 

THEOREM 9. Let TV and v  be bounded nonnegative measures with compact support. 
Assume that v  = 1 v,, for mutually singular nonnegative measures v, such that an 
element of Lm(v) belongs to the weak closure of the polynomials if, and only if, it 

belongs to the weak closure of the polynomials in La(v,J for every index n. Then p is 
less than or equal to v  if, and only tf, p = x p,, f  or mutually singular nonnegative 
measures p,, such that IL,, is less than or equal to Y, for every index n. 

Some consequences of inequalities follow. 

THEOREhl 10. Let p and v  be bounded nonnegative measures with compact 
support such that TV is less than or equal to v. Then a weakly continuous transformation 
exists of the weak closure in L=(v) of th e f  uric ions t of the form f  (2) + g(z) for 
polynomials f  (z) andg(x) into the weak closure in L”(p) of these functions which is 

the identity on these functions. The transformation is bounded by one. 

A uniqueness theorem is also noted. 

THEOREM 11. L t e p and v  be bounded nonnegative measures with compact 
support such that t.~ is less than or equal to v  and such that the functions of the form 
f(z) + g(z) for polynomials f  (z) and g(z) are zveakly dense in L=(V). Then ,A and v  
are equal if the interior of the set of complex numbers w such that the linear functional 
on polynomials defined by f(z) into f  ( 7) u is weakly continuous in L=(V) has zero 
p-measure. 

A semi-lattice structure is present in the partial ordering of measures. 
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THEOREM 12. If  to and v  are equivalent bounded nonnegative measures with 
compact support, then a least bounded nonnegative measure a with compact support 
exists which is greater than or equal to TV and to V. 

The measures satisfying the density condition are closed under decreasing 
limits. 

THEOREM 13. For each positive integer n, let TV,, be a bounded nonnegative 
measure with compact support such that the functions of the form f  (z) + g(z) for 

polynomials j(z) and g(z) are weakly dense in Lg.(~,,). Assume that t.~~+~ is less 
than or equal to pLn for every index n. Then a greatest bounded nonnegative measure 
TV with compact support esists which is less than or equal to CL,, for every index n. 
The functions of the form j(z) + g(z) for polynomials j(z) and g(z) are weakly 

dense in L”(p). 

An example is constructed of a measure for which the density condition is 
satisfied. 

THEOREM 14. Let TV be a bounded nonnegative measure which is supported in 
the closure of the unit disk and which is less than or equal to some bounded nonnegative 
measure which is absolutely continuous with respect to Lebesgue measure on the unit 
circle. Let h(z) be a function which is bounded and analytic in the unit disk but 

which is not bounded by one. Let u be the bounded nonnegative measure defined on a 
Bore1 set S by taking a(S) equal to the p-measure of the set of points w in the closure 
of the unit disk such that h(w) belongs to S. If  cr is absolutely continuous with respect 

to Lebesgue measure on the unit circle, then the junctions of the form f(z) + g(z) 
for polynomials f  (z) and g(z) are weakly dense in L”(p). 

A domination principle follows. 

THEOREM 15. If p is a bounded nonnegative measure with compact support, 

then a minimal bounded nonnegative measure a with compact support exists, which is 
greater than or equal to lo, such that the junctions of the form f  (2) + g(z) for poly- 
nomials f  (z) and g(z) are weakly dense in L”(u). A weakly continuous isomorphism 

e.xists of the weak closure of the polynomials in L”(u) onto the weak closure of the 
polynomials in Lx(p) which takes every polynomial into itself. The transformation 
is an isometry for the norm metrics and a homeomorphism for the weak topologies. 
The linear functional on polynomials defined by j (z) into j (w) is weakly continuous 
in L”(p) for a complex number w if, and only ;S, it is weakly continuous in L”(u). 

The minimal measure is unique. Its construction is placed in the context 
of the Stone-Weierstrass theorem. 

THEOREM 16. If p is a bounded nonnegative measure with compact support, 
then the closure of the set of bounded nonnegative measures which are absolutely 
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continuous with respect to t.~ and which are equivalent to TV contains agreatest element 

u. The functions of the form f  (x) + g( z or o ) f  p t’y nom&f(z) and g(z) are weakly 

dense in L”(u). 

The domination principle is also well-behaved with respect to harmonic 
functions. 

THEOREM 17. Let p be a bounded nonnegative measure with compact support 
and let CJ be the greatest element in the closure of the set of bounded nonnegative 

measures which are absolutely continuous with respect to p and which are equivalent 
to t.~. A weakly continuous transformation exists of the weak closure in L”(u) of the 
functions of the form f  (ss) + g(z) for polynomials f  (.z) and g(z) into the weak closure 
in L”(p) of these functions which is the identity on these functions. The transforma- 

tion is an isometry for the norm metrics and a homeomorphism for the weak topo- 
logies. 

An approximation theorem follows from the domination principle. 

THEOREM 18. If t.~ is a bounded nonnegative measure with compact support, 
then the functions of the form f  (z) + g(z) for polynomials f  (x) and g(z) are weakly 

dense in L”(~.L) if, and only if, no interior point of the set of complex numbers w 
such that the linear functional on polynomials defined by f(z) into f  (zu) is weakly 
continuous in L”(p) beZongs to the support of TV. 

Another approximation theorem follows. 

THEOREM 19. Assume that TV is a bounded nonnegative measure with compact 
support such that no nonconstant real element of Lm(p) belongs to the weak closure 
of the polynomials. Let II(Z) be a nonconstant element of the weak closure of the 
polynomials in L”Q and let v  be the bounded nonnegative measure defined for 

every Bore1 set S by taking v(S) to be the p-measure of the set of complex numbers w 
such that h(w) belongs to S. Then the functions of the form f  (.z) + g(z) for poly- 
nomials f  (2) and g(z) are weakly dense in L”(tL> if they are weakly dense in Loo(v). 

The domination principle also has consequences for the ideal structure of the 
weak closure of the polynomials in L”(p). 

THEOREM 20. Let p be a bounded nonnegative measure with compact support 
such that no nonconstant real element of Lw~) belongs to the weak closure of the 
polynomials. Then every nonzero weakly closed ideal in the weak closure of the 
polynomials in Lw&) contains an element B(z) such that multiplication by B(z) is 
an isometry of the weak closure of the polynomials in La(~) onto the ideal. 

Further applications of the domination principle to the problem of uniform 
polynomial approximation on compact subsets of the plane are obtained by 
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Keith Schwingendorf in his thesis [6]. The author expresses his thanks to him 

and to Richard Penney for assistance in routing errors from the manuscript. 

Proof of Theorem 1. Assume that the inequality 

holds for every continuous subharmonic function h(z). Since the real part of a 
polynomial is harmonic, the inequality holds whenever h(z) = Ref(z) for a 
polynomial f(z). Since the same inequality holds with f(z) replaced by h f(z) 
for a complex number X, p and v  are equivalent. Since 

h(z) = max(log 1 f  (z)I , log 6) 

is a continuous subharmonic function of z for every polynomial f (a) and every 
positive number E, p is less than or equal to v. 

Assume instead that p is less than or equal to v. I f  h(z) is a function of z which 
is subharmonic in the complex plane, let o be a bounded nonnegative measure 

with compact support such that the function 

h(z) - / log 1 z - W I da(w) 

is harmonic in some disk containing the supports of TV and of v. Choose a sequence 
of polynomials fn( ) z w h ose real parts converge uniformly to that function in the 
disk. The identity 

holds for every index n because p and v are assumed to be equivalent. The 

identity 

jj log I z - w  I d+J) 444 = j [ log I z-- w  I 4-44 Ww) 

holds because the integrand is bounded above by a function which is nonnegative 
and integrable. Since the same identity holds with p replaced by V, the hypothesis 
that p is less than or equal to v  implies that 

IS log I z - 20 j da(w) d&) < J/ log 1 x - w I do(w) dv(z). 

The inequality 

now follows by uniform convergence of the approximating polynomials. 
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If h(z) is a subharmonic function of z, the inequality 

holds for every positive number p because exp(ph(z)) is a subharmonic function 
of a. By the arbitrariness of p, the least upper bound of h(z) with respect to p 

is less than or equal to the least upper bound of h(z) with respect to v. 
Since the modulus of a polynomial is a subharmonic function, the identity 

transformation on polynomials is bounded by one from the metric of L”(V) 
into the metric of Lm(p). Since the transformation is bounded by one from the 
metric of L'(V) into the metric of L’(p) for the same reason, the transformation 
is continuous from the weak topology of L”(v) into the weak topology of L=(p). 

The theorem follows. 

Proof of Theorem 2. Consider first the special case in which the linear 

functional on polynomials defined by f(z) into f(A) is continuous in Lp(p). Let 
K(h, z) be the unique element ofL*(p) in the closure of the polynomials such that 
the identit\ 

holds for every polynomial f(z). Then 

K(h, A) = J 1 K(h, z)l” d/L(z) > 0. 

Let v  be the bounded nonnegative measure defined by 

v(S) = s, K(h, ix) K(h, X)-l iql, z) f&(z) 
for every Bore1 set 5’. Then v  is absolutely continuous with respect to f~ and it is 
equivalent to the measure with mass one concentrated at A. Since the functions 
of the formf(z) + g(z) for polynomialsf(z) and g(z) are weakly dense in L”(p), 

they are weakly dense in P(v). 
.?lrgue by contradiction, assuming that Y is a point mass concentrated at A. 

Then the point X carries a positive p-mass and K(h, z) vanishes away from that 
point. It will be shown that K(A, 2) belongs to the weak closure of the poly- 
nomials in L”(p). This is done by showing that K(h, z) belongs to the closure of 
the polynomials in Lp(& for every bounded nonnegative measure pr , which is 
absolutely continuous with respect to 1-1, such that the inequality p(S) < ~~(5’) 
holds for every Bore1 set S. Then the linear functional on polynomials defined by 

f(z) into f(h) is continuous in E&r). Define &(A, z) and vi for pr in the same 
way that K(A, z) and v  were defined for CL. Then v  and ~i are equivalent bounded 
nonnegative measures which are absolutely continuous with respect to p. Since 
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the functions of the formf(z) + j(z) for polynomialsf(z) and g(z) are assumed 
weakly dense in L”(p), v  and v1 are equal. It follows that K(A, z) and K,(h, a) are 
linearly dependent. By the arbitrariness of y, , K(h, z) belongs to the weak 

closure of the polynomials in L”b). Since K(A, 2) is a real element of f,Q), it 
is equivalent to a constant with respect to p by hypothesis. It follows that p is a 
point mass concentrated at A. Since this is contrary to hypothesis, v  cannot be a 
point mass concentrated at A. 

By Theorem 3 of [4], a function $( z o z exists, which is bounded and analytic ) f  
in the unit disk, which has distinct values at distinct points of the disk, and which 
has value X at the origin, such that the v-measure of every Bore1 set S is the 
Lebesgue measure of the set of real numbers t module one such that $(esp(Zxit)) 

belongs to S. The boundary value function is defined as in the theory of square 
summable power series [3]. The transformationf(z) intof(#(z)) is an isometry 

of the closure of the polynomials in L’(V) onto U(z). Let W(z) be the element of 
‘X(z) given by 

W(z) = K(h, A)l’yqh, I+)). 

Let p = 01 + /3 where in is a nonnegative measure which is absolutely continuous 
with respect to v  and p is a nonnegative measure which is singular with respect 
to Y. Then the transformationf(x) into W(z)f(#(z)) is an isometry of the closure 

of the polynomials in L?(a) onto Y?(z). Since K(h, .z) belongs to the closure of the 
polynomials inL*(p), the element x of P(p) which is one almost everywhere with 
respect to 131 and zero almost everywhere with respect to fi belongs to the closure 
of the polynomials in Lo(p). 

It will be shown that x belongs to the weak closure of the polynomials inL=(p). 

This is done by showing that it belongs to the closure of the polynomials in 
E+i) for every bounded nonnegative measure p1 , which is absolutely continuous 
with respect to I*, such that the inequality p(S) .< pl(S) holds for every Bore1 
set S. Then the functions of the formf(z) + g(z) for polynomialsf(z) and g(z) 

are weakly dense in L=(pr) and the linear functional on polynomials defined by 
f(z) intof(X) is continuous inL2(&. Define K,(h, z), vt , and Wi(.z) for pi in the 
same way that K(h, z), V, and W(z) are defined for CL. Then v  and 1~~ are equivalent 
bounded nonnegative measures which are absolutely continuous with respect to 
I*. Since the functions of the formf(z) + g(z) for polynomialsf(z) and g(z) are 
weakly dense in .Cz(p), 1’ and vr are equal. It follows that x belongs to the weak 
closure of the polynomials in L*(pt). 

By the arbitrariness of pr , x is a real element of L”(p) in the weak closure of 
the polynomials. By hypothesis, x is equivalent to a constant with respect to p. 
It follows that p is absolutely continuous with respect to v. So the transformation 
f(z) into W(z)f($(z)) is an isometry of the closure of the polynomials in L*(p) 
onto U(z). The transformation f(z) into 

Wexp(24) fC&xpWW 
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is an isometry of L*@) onto the space of square integrable periodic functions of 
period one. The p-measure of a Bore1 set S is equal to 

s / W(exp(2tit))12 dt 

with integration over the real numbers t modulo one such that #(exp(2&)) 
belongs to S. Another consequence of the arbitrariness of p1 is that the trans- 
formationf(z) intof(#( .a )) IS an isometry of the weak closure of the polynomials 
in L”(p) onto the space of functions which are bounded and analytic in the unit 
disk. 

This completes the proof of the theorem when the linear functional on poly- 
nomials defined by f(z) into f(h) is continuous in L’(p). Now consider the case 
in which it is only assumed weakly continuous in La(p). Then it is continuous in 
L*(V) for a bounded nonnegative measure v which is absolutely continuous with 
respect to p, such that p is absolutely continuous with respect to Y. 

Since the functions of the form f(z) + g(z) for polynomials f(z) and g(z) are 
assumed weakly dense in L”b), they are weakly dense in Lm(v). Since no non- 
constant real element of L”(p) exists in the weak closure of the polynomials, no 
nonconstant real element ofL=(v) exists in the real closure of the polynomials. By 
the case of the theorem previouslv considered, the choice of the measure v can 
be made equivalent to the measure with mass one concentrated at h. As before, 
a function #(a) of z exists, which is bounded and analytic in the unit disk, which 
has distinct values at distinct points of the disk, and which has value h at the 
origin, such that the v-measure of every Bore1 set S is the Lebesgue measure of 
the set of real numbers t modulo one such that #(exp(2nit)) belongs to S. The 
theorem now follows. 

Proof of Theorem 3. Consider any bounded measure V, which is absolutely 
continuous with respect to p, such that the identity 

I f(z) dv(z) = 0 

holds for every polynomial f  (a). Then the integral 

1 (z - w)-1 dv(z) 

is absolutely convergent for all complex numbers w outside of some set of zero 
plane measure, and it represents a locally integrable function with respect to this 
measure. For each such complex number w, the identity 

j (2 - w)-1 f  (x) dv(z) = f  (w) j (z - w)-’ dv(z) 
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holds for every polynomial f(z) because [f(z) - f(w)]/(z - w) is a polynomial 
in 2. The left side defines a linear functional on polynomials which is weakly 
continuous in L”(p). Since the linear functional on polynomials defined by f(z) 
into f(z~) is not weakly continuous in L’(p), 

J 
- (z - w-1 d(z) = 0. 

It follows that 

J 
1 

log 1 Z - 20 j dV(Z) 

is harmonic in the complex plane and that v(S) = 0 for every Bore1 set S. The 

theorem follows. 

Proof of Theorem 4. By the proof of Theorem 3, a unique bounded non- 

negative measure Y exists, which is absolutely continuous with respect to p and 
which is equivalent to the measure with mass one concentrated at the point A. 
By the proof of Theorem 2, p = 01+ ,9 for nonnegative measures 01 and /3 such 

that CII is absolutely continuous with respect to V, such that /3 is singular with 
respect to Y, and such that the element x ofL?(p) which is one almost everywhere 
with respect to CY and zero almost everywhere with respect to /3 belongs to the 
weak closure of the polynomials in L”(p). Since the weak closure of the poly- 
nomials in L”(p) is an algebra, an element of L=(p) belongs to the weak closure 

of the polynomials if, and only if, it belongs to the weak closure of the poly- 
nomials in L”(a) and in L”(p). By the proof of Theorem 2, v  is absolutelv 
continuous with respect to a. 

If  h(x) is a real element of L=(a) in the weak closure of the polynomials, then it 
is a real element of Lm(v) in the weak closure of the polynomials. I f  v  is not the 

measure with mass one concentrated at A, define 4(z) for v  as in the proof of 
Theorem 2. By Theorem 3 of [4], A($( z )) IS an element of 9?‘(z) with real boundar! 

values almost everywhere on the unit circle. Since h($(z)) has real values in the 
unit disk, it is a constant. It follows that /Z(Z) is a constant. 

Argue by contradiction assuming that the linear functional on polynomials 
defined by f  (2) into .f(zu) is weakly continuous in L’(ul) and in L”(p) for some 
complex number W. Then the linear functional is weakly continuous in L”(p). 
By the proof of Theorem 2, a unique bounded nonnegative measure 0 exists 
which is absolutely continuous with respect to p and which is equivalent to the 
measure with mass one concentrated at zc. For the same reasons, a unique 
bounded nonnegative measure v  exists which is absolutely continuous with 
respect to cx and which is equivalent to the measure with mass one concentrated 
at zu. It follows that o is equal to v  and is absolutely continuous with respect to a. 
By a similar argument, CT is absolutely continuous with respect to 6. A contra- 
diction is obtained because N and /3 are mutually singular and CJ is nonzero. 
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Proof of Theorem 5. The theorem follows from Theorems 2, 3, and 4 by 

an inductive argument. 

Proof of Theorem 6. By Theorem 2, an element p)(z) of LW(p) exists in the 

weak closure of the polynomials such that p(#(z)) = z almost everywhere with 
respect to Lebesgue measure on the unit circle. The identity also holds in the 
unit disk if v(z) is defined in Q by continuity of function values for polynomials. 

Since Z/J(Z) has distinct values at distinct points of the unit disk, the identity 
#(e(z)) = x also holds in 9. Since the p-measure of every Bore1 set S is the 
Lebesgue measure of the set of real numbers t module one such that #(exp(2Gt)) 

belongs to S, the identity also holds almost everywhere with respect to p. The 
balayage construction is now made as in the proof of Theorem 5 of [4]. 

Proof of Theorem 7. If  the complement of Q* has zero p-measure, then p 

is less than or equal to Y by Theorem 6. 
Assume that p is less than or equal to V. By Theorem 1, a weakly continuous 

homomorphism exists of the weak closure of the polynomials in Lm(v) into the 

weak closure of the polynomials in L”(p) which takes every polynomial into 
itself. Let B(z) be the element of L”(p) which corresponds to the element F(Z) 
of L”(v). Since CJJ(Z) has absolute value one almost everywhere with respect to V, 

O(z) is bounded by one almost everywhere with respect to p by Theorem 1. Let c 
be the unique bounded nonnegative measure, supported in the closure of the 
unit disk, such that the identity 

holds for all nonnegative integers m and n. Then the identity 

j f  (4 a4 w4 = jf (44) ‘F(W) 444 

holds for all functions f  (a) and g(z) of .z which are bounded and analytic in the 
unit disk. In particular, the identity 

holds for all nonnegative integers m and n. But #(O(z)) as a function of z in 
L”(p) is the homomorphic image of $(~(a)) as a function of z in L=(V). Since 
#(p)(z)) = z by the proof of Theorem 6 and since the homomorphism the identity 
on polynomials #(f?(z)) = x as a function of z inL=(p). It follows that the identity 

holds for all polynomials f  (z) and g(z). By the Stone-feierstrass theorem, the 
identity holds for all continuous functions f(z) and g(z). It follows that the 

409/66/1-6 
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p-measure of every Bore1 set S is equal to the u-measure of the set of points w in 
the closure of the unit disk such that $(w) belongs to S. So the complement of Q* 
has zero p-measure. 

Proof of Theorem 8. By Theorem 1, a weakly continuous homomorphism 
exists of the weak closure of the polynomials in L”(V) into the weak closure of the 

polynomials in L”(p) which takes every polynomial into itself. Since the poly- 
nomials are assumed to be weakly dense in L”(Y), the homomorphism is every- 
where defined in L’(V). The elements x of LX(p) or of L%(V) which are 

characteristic functions of Bore1 sets are those for which the identity x* = x 
holds. So the homomorphism takes the characteristic functions of Bore1 sets 
into characteristic functions of Bore1 sets. Since the homomorphism is bounded 
by one, the induced mapping of sets does not increase measures. The induced 

mapping of sets also preserves unions and intersections and commutes with 
sequential monotone limits. Since TV and v  have equal total masses and since the 

homomorphism is the identity on constants, the induced mapping of sets is 
measure preserving. A Bore1 measurable function O(Z) of complex z exists such 
that the transformation takes set -4 into set B where B is the set of numbers w 
such that 0(w) belongs to A. It follows that the homomorphism is of the form 

f(z) into f(B(.s)). Since the homomorphism is the identity on polynomials, 
6’(z) can be chosen equal to a. The theorem follows. 

Proof of Theorem 9. The measure p is clearly less than or equal to the measure 
v  if it is of the form p = x pll with CL,, less than or equal to V, for every index n. 
Assume that p is less than or equal to V. For each index n, let p, be the element 
of L”(V) which is one almost everywhere with respect to Y, and which is zero 
almost everywhere with respect to vk for every index k other than n. The hypo- 
theses imply that fin belongs to the weak closure of the polynomials in L”(V). BJ 

Theorem 1, a weakly continuous homomorphism exists of the weak closure of 
the polynomials in L’(V) into the weak closure of the polynomials in LZ(p) 
which is the identity on polynomials. As in the proof of Theorem 8, the image an 
of /3,, is the characteristic function of a Bore1 set for every n. Let pn be the non- 

negative measure defined by 

for every Bore1 set S. It follows from Theorem 1 that p,, is less than or equal to 

vn . Since V, and +,. are singular when n and k are unequal, /3,& = 0 almost 
everywhere with respect to V. Since (Y,CQ = 0 almost everywhere with respect to 
TV, pn and pls are singular. Since 

in the weak topology of L”(V), and since the homomorphism is the identity on 
constants, 

1 =pn 
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in the weak topology of L.%(p). It follows that 

Proof of Theorem 10. Consider first the case in which the functions of the 
form f(z) + g(z) for polynomials f ( ) z and g(z) are weakly dense in Lm(v). By 
Theorem 5, a countable number of mutually singular nonnegative measures Y, 

exists, which satisfy the hypotheses of Theorem2, such that the measure v  - C v, 
is singular with respect to every measure vn and such that an element of L”(V) 
belongs to the weak closure of the polynomials if, and only if, it belongs to the 

weak closure of the polynomials in La(v,) for every n. By Theorems 7 and 8, 
bounded nonnegative measures p*n with compact support exist such that CL,, 
is less than or equal to v, for every n and such that TV - 1 p*n = Y - C v~. 

By Theorem 2, the set of complex numbers w such that the linear functional on 
polynomials defined by f (2) into f ( w IS weakly continuous in La(v,J is a bounded ) . 
simply connected region Q, . I f  Q f  is the set onto which a Riemann mapping 

function &, for 9, maps the closure of the unit disk, then the complement of Szz 
has zero pn-measure by Theorem 7. Because of Theorem 2, a weakly continuous 
isometry h(z) into h(#,(z)) exists of the weak closure in Loo(v,) of the functions 
of the form f(s) + g(z) for polynomials f (z) and g(z) onto the set of functions 
which are bounded and harmonic in the unit disk. It follows that a weakly 

continuous transformation exists of the weak closure in Lic(v,) of the functions 
of the form f(s) + g(z) for polynomials f (z) and g(x) into the weak closure in 

LLc(p,J of the same functions which is the identity on these functions. Also the 
transformation is bounded by one. The theorem follows in the case that v 

satisfies the density condition. 

The proof of the theorem in the general case is made using Theorems 16 and 
17. Although the present theorem is used in the proof of these later theorems, it 
is so only in the special case already established. 

By Theorem 16, a greatest element u exists in the closure of the set of bounded 
nonnegative measures which are absolutely continuous with respect to v and 
which are equivalent to v. The functions of the form f (z) + Z(Z) for polynomials 
f(z) and g(s) are weakly dense in L.“(a). By Theorem 17, a weakly continuous 
isometry exists of the weak closure in L=(u) of the functions of the form 

f (4 + a z > f or P 1Y o nomials f (z) and g(z) into the weak closure in L5(v) of these 
functions which is the identity on these functions. The theorem now follows by 
composition from the special case already established. 

Proof of Theorem 11. By Theorem 5, mutually singular nonnegative measures 
v, exist, which satisfy the hypotheses of Theorem 2, such that v  - C V, is 
singular with respect to Y, for every index n and such that an element of Lo 
belongs to the weak closure of the polynomials if, and only if, it belongs to the 

weak closure of the polynomials in Lm(v,) for every n. By Theorems 8 and 9, 
bounded nonnegative measures pn with compact support exist such that pn 
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is less than or equal to I’,~ for every 71 and such that p - C pn = p - z V, . 
By Theorem 2, the set of complex numbers w such that the linear functional on 
polynomials defined byf’(a) intof( w is weakly continuous inL”(v,,) is a bounded ) 
simply connected region Q, . I f  w belongs to Qn , then the linear functional on 
polynomials defined by f(z) into ~(zL’) is weakly continuous in L=(V). Since Q, 
has zero p-measure by hypothesis, it has zero y,-measure. Let C: be the set onto 

which a Riemann mapping function for Q, maps the closure of the unit disk. 
By Theorem 7, the complement of S2: has zero prl-measure. Since pll and Ye are 

equal by the proof of Theorem 7, p and v  are equal. 

Proof of Theorem 12. Since p and v  are bounded nonnegative measures with 
compact support, the functions 

f(z) == 1 log j z - 20 1 &L(W) and g(z) = I’ log / z - 20 I dV(ZC) 

are subharmonic in the complex plane, f(z) is harmonic in each connected 

component of the complement of the support of p, and g(z) is harmonic in each 
connected component of the complement of the support of V. But for every 
nonzero complex number W, the expression 

log / z - w / = log 1 m 1 + log / 1 - x/w 1 

is represented by a square summable power series in z/w. Since p and Y are 
equivalent, f(z) and g(z) agree in the complement of any disk about the origin 

which contains the supports of p and Y. By analytic continuation, f  (a) and g(a) 
agree in the unbounded component of the complement of the union of the sup- 

ports of p and v. It follows that 

44 = max(f (z), g(d) 

is a subharmonic function which agrees with f(z) and g(z), and hence is har- 
monic, in the unbounded component of the complement of the union of the 

supports of p and v. Let o be the unique bounded nonnegative measure with 
compact support such that 

h(x) - J log 1 z - m 1 f&(w) 

is harmonic in the complex plane. For large I w 1 , 

s log I z - w ( da(w) - log j z ( J do(w) 

and similarly for p and v. It follows that 

04 = J 1% I z - w 1 da(w). 

The measure o clearly has the required properties. 
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Proof of Theorem 13. By Theorems 7, 8, and 9, the supports of the measures 

pn are contained in a compact set. Since the measures are nonnegative and have 

the same total mass, they converge in some subsequence to a bounded non- 
negative measure p. An application of Theorem 1 will show that p is the greatest 
bounded nonnegative measure with compact support which is less than or 
equal to pLn for every index n. The uniqueness of p implies that it is the limit 

of the measures pn. 
Consider any complex number X such that the linear functional on poly- 

nomials defined by f  (z) into f  (A) is weakly continuous in L=(,u). By Theorem 1, 

the linear functional is weakly continuous in Lm(pn) for every n. It may be that X 
is a point of positive pn-mass and that the function which is one at h and zero 
elsewhere belongs to the weak closure of the polynomials in L=(p,). By Theo- 

rems 8 and 9, A is then a point of positive p-mass and the same function belongs 
to the weak closure of the polynomials in L=(V). Otherwise, by Theorems 7 and 
9, h belongs to the closure of the set of complex numbers w such that the 

linear functional on polynomials defined by f  (z) into f (w) is weakly continuous 
in La&). By Theorem 2, the connected component Q, of the set determined 
by h is simply connected. A function t&(z) of z exists, which is bounded and 
analytic in the unit disk, which has distinct values at distinct points of the disk, 

and which has value X at the origin, such that Q, is the region onto which Gn 
maps the unit disk. Let xn be the characteristic function of the set S,* onto which 
#n maps the closure of the unit disk. Then &(.z) is the inverse of a function 
T&X) of z in Szz . I f  F~(.z) is extended so as to be zero outside of J’$, then 

both vn and xn belong to the weak closure of the polynomials in LK(p,). 
By Theorems 7 and 9, Qn+i is contained in Q, whenever Qntl is defined. 

Assume that 9, is defined for every n. By Theorem 1, v,, and xn belong to the 
weak closure of the polynomials in L”(p) f  or every 72. By dominated convergence, 

the function x = lim xn belongs to the weak closure of the polynomials in 
L=(p). It may be that x is the function which is one at h and zero elsewhere. 

Otherwise a function Z/J(Z) of z exists, which is bounded and analytic in the unit 
disk, which has distinct values at distinct points of the disk, and which has 
value h at the origin, such that (G( z is a limit of some subsequence of the func- ) 

tions #,(.z). The intersection of the regions Q,, is the region onto which Z/J maps 
the unit disk and x is the characteristic function of the set Q* onto which (CI maps 
the closure of the unit disk. Also $(z) is the inverse of a function F(Z) of z in 52*. 
I f  P)(Z) is extended to be zero outside of Q*, then y  = lim y, belongs to the weak 
closure of the polynomials in Lz(p). The point h belongs to Q. 

The desired density property of the measure p is now verified by a straight- 
forward argument. 

Proof of Theorem 14. By hypothesis, the measure p is less than or equal to 
some bounded nonnegative measure which is absolutely continuous with 
respect to Lebesgue measure on the unit circle. Since h(z) belongs to the weak 
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closure of the polynomials in the Lw space of such a measure, it belongs to the 

weak closure of the polvnomials in L”(p) by Theorems 1 and 7. If  ,A is not zero, 
then h(z) is not a constant. 

Consider any complex number zu in the unit disk at which the value of h(z) 
is not bounded by one. Then the linear functional on polynomials defined by 

f(a) into f(w) is unbounded in L=(p) because the powers of h(z) are bounded in 

the space and the powers of h(w) are unbounded numbers. This information is 
used to show that the function l/(x - W) belongs to the weak closure of the 
polynomials in L=(p). The function is bounded with respect to p because ZY does 

not belong to the support of the measure. Consider any bounded measure V, 
which is absolutely continuous with respect to p, such that the identity 

holds for every polynomial f(z). Since [f(z) - f(w)]/(z - w) is a polynomial 

whenever f(z) is a polynomial, the identity 

holds for every polynomial f(a). The left side of the identity defines a bounded 
linear functional on polynomials in the metric of L=(p). Since the linear func- 

tional on polynomials defined by f(z) into f(u) is unbounded in L”(p), 

s l/(x - w) dV(Z) = 0. 

By the arbitrariness of V, l/(z - w) belongs to the weak closure of the poly- 
nomials in L”(p). 

I f  01 and /3 are equivalent bounded nonnegative measures which are absolutely 
continuous with respect to CL, then the subharmonic functions 

s 
log 1 .a - w 1 dcx(W) and 

s 1% I z - w I 4%w) 

are equal and harmonic outside of the unit circle, and they agree on the unit 

circle. In any component 52 of the subset of the unit disk in which ( h(z)1 :> 1, 
these functions differ by a constant because of the identity 

s l/(z - w) da(w) = 
J 
* l&z - w) &3(w) 

which holds there. If  t,L is a Riemann mapping function for the simply connected 
region Q, then h(#(z)) is analytic and bounded in the unit disk, but it is not 
bounded by one, and it is bounded by one at all points of the unit circle such 
that 4(w) does not belong to the unit circle. It follows that the set of points w 
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on the unit circle such that 4(w) belongs to the unit circle has positive Lebesgue 
measure. The functions 

s log I #@I - w I w4 and 
s 1% I $w -- ZL’ I 4w 

are bounded and harmonic in the unit disk, and it is easily verified that their 
boundary values on the unit circle are consistent with the boundary values of 
4(z) on the unit circle. Since these functions differ by a constant in the unit disk, 
they differ by the same constant almost everywhere with respect to Lebesgue 
measure on the unit circle. Since the functions agree in a set of positive Lebesgue 
measure on the unit circle, they agree in the unit disk. By the arbitrariness of Sz, 
the identity 

J- log 1 Z - rlJ 1 dot(w) = j log I Z - w / d/3(w) 

holds at all points of the unit disk where / h(z)] > 1. 
By Theorem 12 a least bounded nonnegative measure y with compact support 

exists which is greater than or equal to ti and /I. By the proof of the theorem, the 
identity 

1 log I .z - w 1 da(w) = J log 1 .a - w 1 C+(w) 

holds at all points z of the unit disk for which 1 h(z)1 > I. The function 

s 
log 1 z - w 1 dy(w) - 1 log 1 .z - w 1 da(w) 

is nonnegative in the complex plane by the definition of inequality for measures. 
It is subharmonic in each connected component of the subset of the unit disk in 
which 1 h(z)/ < 1, and it is zero elsewhere in the unit disk, It follows that the 
function is subharmonic in the unit disk. Since the function is also zero in the 
complement of the unit disk, it is subharmonic in the complex plane. It follows 
that the measure y - 01 is nonnegative. Since 01 and y have the same total mass, 
they are equal. Since /3 and y are equal by a similar argument, CY and /I are equal. 
By the arbitrariness of the starting equivalent measures 01 and #?, the functions 
of the form f(z) + Z(Z) for polynomials f(z) and g(z) are weakly dense in 

L%)* 

Proof of Theorem 15. By Theorem 6, a bounded nonnegative measure o with 
compact support exists, which is greater than or equal to p, such that the func- 
tions of the formf(z) + &z) for polynomialsf(z) and S(Z) are weakly dense in 
L=(a). A minimal such measure u exists because of Theorem 13. In the remainder 
of the proof, it is assumed that a satisfies the hypotheses of Theorem 2. The 
general case then follows immediately from Theorems 3, 5, and 8. 

The set of complex numbers w such that the linear functional on polynomials 
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defined byf(z) intof(w) is weakly continuous inL’(a) is now a simply connected 

region. By Theorems 2 and 7, it can be assumed without loss of generality that 
this region is the unit disk. The weak closure of the polynomials in L”;(a) is now 
the set of functions which are bounded and analytic in the unit disk. The bound- 

ary value function theory [3] for square summable power series applies because 
cr is absolutely continuous with respect to Lebesgue measure on the unit circle. 
The weakly continuous homomorphism defined in Theorem 1, which takes the 

weak closure of the polynomials inL”(u) into the weak closure of the polynomials 
in La(p), is the identity transformation on functions bounded and analytic in the 
unit disk, given their boundary values on the unit circle. 

Argue by contradiction, assuming that a function h(z) exists, which is bounded 
and analytic in the unit disk but which is not bounded by one, whose norm in 

LK(p) is less than one. By the balayage construction, a bounded nonnegative 
measure v  exists, which is supported in the closure of the unit disk, which is less 
than or equal to CJ, which is greater than or equal to by, and which satisfies the 
hypotheses of Theorem 14 with respect to h(z). By Theorem 14, the functions 
of the form f(z) + g(z) for polynomials f(z) and g(z) are weakly dense in L’(V). 

A contradiction is obtained because 1’ is not equal to u. 
Since every function which is bounded and analytic in the unit disk has the 

same norm in LX(p) as in L%(U), the functions which are bounded and analytic 

in the unit disk form a norm closed subspace of L”(p). Since the subspace 
contains the polynomials as a weakly dense subspace, it coincides with the weak 
closure of the polynomials inL”(p). Since the identity transformation on bounded 
analytic functions is weakly continuous from L”(o) into L”(p) and since the unit 
ball inLa(o) is weakly compact, the transformation is a homeomorphism for the 

weak topologies. It follows that the linear functional on polynomials defined by 
f(z) intof(zu) is weakly continuous inL.“(pj for every point zu in the unit disk. 

Proof of Theorem 16. Define the measure u for p as in Theorem 15. The 
theorem is proved by showing that u belongs to the closure of the set of measures 

which are absolutely continuous with respect to p and which are equivalent to 
II. By Theorems 2, 5, 7, 8, and 9, it is sufficient to give a proof in the case that u 
is absolutely continuous with respect to Lebesgue measure on the unit circle. 

By Theorem 15, the linear functional on polynomials which assigns the rz-th 
coefficient of the power series expansion is weakly continuous in L”(p) and is 
bounded by one for every nonnegative integer n. It follows that a nonnegative 
measure Y, exists, which is absolutely continuous with respect to TV and has total 
mass one, such that the linear functional is bounded by one in Ll(v,). The 

bounded nonnegative measure v  defined by 

v  = 1 v,,(n + 1)’ 

is absolutely continuous with respect to p. The linear functional on polynomials 
which assigns the n-th coefficient of the power series expansion is bounded by 
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(n + 1)” in U(V) f  or every nonnegative integer n. So the linear functional on 

polynomials defined byf(z) intof(w) is bounded inLl(v) for every point w in the 

unit disk, and it is bounded independently of w for w in any compact subset 
of the unit disk. Since it is also bounded in L?(V), a unique element K(w, Z) of 
L’(V) exists in the closure of the polynomials such that the identity 

f(w) = jr(z) qw, 2) dv(z) 

holds for every polynomial f(z). It follows that 

K(w, w) = 
i 

1 K(w, z)I’ dv(z) > 0 

and that the identity 

f(w) = jf(a) qw, z) K(w, w)-1 fqw, 2) dv(z) 

holds for every polynomialf(z). The inequality 

K(~, w) 1f(~)12 G j 1f(4 K(~, z)~2 dv(4 

follows by the Schwarz inequality. Equality holds only when 

[f@) - f(w)1 wu, z) = 0 
almost everywhere with respect to V. 

For each bounded nonnegative measure a! with compact support, a bounded 

nonnegative measure /3 with compact support is defined by 

p(S) = U(S) - LX(S n 0) + Is/L K(w, z) K(w, w)-1 K(w, Z) f&(w) do 

for every Bore1 set S, where A denotes the unit disk. The identity 

j 44 4%4 = j 44 w4 - jA 44 W) 

+ jAjS &) K(wt 4 k’( w, w)-1 Iqw, .z) dv(n) da(w) 

holds for every continuous function h(z). It follows that CL and /3 are equivalent. 
The inequality 

j Ifc412w4 < j IfW a4 

holds for every polynomial f(z). Equality holds if, and only if, [f(z) - 
f(w)] K(w, Z) vanishes as a function of z almost everywhere with respect to v  
outside of a set of numbers w of zero a-measure. If  01 is less than or equal to o, 
then so is /3. 

The transformation 01 into /3 so defined is continuous and takes measures 
which are absolutely continuous with respect to p into measures which are 
absolutely continuous with respect to p. The closed invariant subset generated 
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by p under the action of the transformation contains a unique fixed point y, 
and y  belongs to the closure of the set of measures which are absolutely con- 

tinuous with respect to p and which are equivalent to p. The expression K(w, Z) 
vanishes away from u’ as a function of z almost everywhere with respect to v  

outside of a set of numbers u! of zero y-measure. 
Argue by contradiction, assuming that a point h in the unit disk exists such 

that K(X, Z) vanishes away from h as a function of z almost everywhere with 

respect to V. Then (.z ~ h) K(h, Z) belongs to the closure of the polynomials in 
L’(V) and vanishes almost everywhere with respect to V. Since the linear func- 

tional on polynomials defined by f(z) into f(w) is continuous in LZ(v) at all 
points 70 of the unit disk, (7~ - A) K(h, w) vanishes at all points w of the unit 
disk. A contradiction of the positivity of K(h, X) is now obtained because K(h, W) 
is a continuous function of w in the unit disk. 

Since y  is less than or equal to u and since the unit disk has zero y-measure, 
y  and u are equal by Theorem 11. 

Proof of Theorem 17. By Theorems 2, 5, 7, 8, 9, and 16, it is sufficient to 

give a proof in the case that 0 is absolutely continuous with respect to Lebesgue 
measure on the unit circle. Then the weak closure inL.“(a) of the set of functions 
of the formf(x) + g(z) for polynomialsf(z) andg(z) is the set of functions which 
are bounded and harmonic in the unit disk, given their boundary values on the 
unit circle. The bound of the harmonic function in the disk coincides with its 

bound with respect to 0. The weakly continuous transformation of L”(a) into 
L=(p) defined in Theorem 10 is the identity transformation on functions which 

are bounded and harmonic in the unit disk. As in Theorem 10, the transforma- 
tion is weakly continuous and does not increase norms. It follows from Theorem 
16 that the transformation is an isometry. As in the proof of Theorem 1.5, the 

transformation is a homeomorphism of L.‘( CI onto the weak closure in L’(p) ) 
of the functions of the form f(z) + g(z) for polynomials f(z) and g(z). 

Proof of Theorem 18. If  the functions of the formf(z) + E(Z) for polynomials 
f(z) and g(z) are weakly dense in L-(p), then by the proof of Theorem 3 of [4] 
no interior point of the set of comples numbers ZG such that the linear functional 
on polynomials defined by f(z) into f( w is weakly continuous in L”(p) belongs ) 
to the support of CL. Conversely, assume that the set contains no interior point 
in the support of II. Define the measure CJ for p as in Theorem 16. By Theorems 
15 and 16, the set of complex numbers w such that the linear functional on 
polynomials defined by f(z) into f( ZL’ 1s weakly continuous in LX(p) coincides ) 
with the set of complex numbers w for which the linear functional is weakly 
continuous inL”(o). By Theorem I 1, p and r~ are equal. The theorem now follows 
from Theorem 16. 

Proof of Theorem 19. The proof is an application of Theorem 18. Since the 
functions of the form f(z) + S(Z) for polynomials f(z) and g(z) are weakly 
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dense in L”(V), no interior point of the set of complex numbers w for which the 

linear functional on polynomials defined by f(x) into f(w) is weakly continuous 

in L”(V) belongs to the support of v. By Theorem 2, no interior point of the set of 
complex numbers w for which the linear functional is weakly continuous inLm(p) 
belongs to the support of CL. By Theorem 18, the functions of the formf(z) + c(z) 
for polynomialsf(z) and g(z) are weakly dense in L=(p). 

Proof of Theorem 20. By Theorems 15 and 16, it can be assumed without 
loss of generality that the functions of the formf(z) + g(z) for polynomialsf(z) 
and g(z) are weakly dense in L”(p). It is clearly sufficient to consider the case in 
which the measure TV is supported at more than one point. By Theorem 3, the 

linear functional on polynomials defined by f(z) into f(w) is weakly continuous 
inL.“(p) for some complex number w. By Theorem 2, a function #(z) of z exists, 

which is bounded and analytic in the unit disk and which has distinct values at 
distinct points of the disk, such that the transformation f(z) into f(#(z)) is an 
isomorphism of the weak closure of the polynomials in P(p) onto the algebra of 
functions which are bounded and analytic in the unit disk. 

Consider any bounded nonnegative measure v, which is absolutely continuous 
with respect to TV, such that the linear functional on polynomials defined by 
f(z) intof(w) is continuous inL2(v) for some complex number w. By Theorem 2, 
a square summable power series W(z) exists such that the transformationf(z) 

into w+ fM4) is an isometry of the closure of the polynomials in F(v) onto 
Y(z). Since the given ideal contains a nonzero element, the closure of the ideal 
in L2(v) maps onto a closed subspace of V(z) which is invariant under multi- 
plication by z. By the ideal theorem for square summable power series [3], an 

element B(z) exists in the weak closure of the polynomials in LQ) such that 
the closure of the ideal inL2(V) is the set of elements of the form B(z)!(z) for an 
element f(z) of the closure of the polynomials in L*(V). The function B(z) has 

absolute value one almost everywhere with respect to TV. Since it does not depend 
on v  and since the given ideal is weakly closed, it belongs to the ideal. The 
theorem follows. 

REFERENCES 

1. M. KREIN AND D. MILMAN, On extreme points of regular convex sets, Studia Math. 
9 (1940), 133-138. 

2. L. DE BRANGES, The Stone-Weierstrass theorem, Proc. Amer. Math. Sot. 10 (1959), 
822-824. 

3. L. DE BRANGES AND J. ROWYAK, “Square Summable Power Series,” Holt, Rinehart & 
Winston, New York, 1966. 

4. L. DE BRANCES AND D. TRUTT, Quantum Cesaro operators, Adwances in Math., to 
appear. 

5. L. DE BRANGE~, “Espaces Hilbertiens de Fonctions Enti&res,” Masson, Paris, 1972. 
6. K. SCHWINGFNDORF, “Uniform Polynomial Approximation,” Dissertation, Purdue 

University, 1978. 


