
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 49, 149-167 (1994)

Hardness vs Randomness*

N O A M N I S A N t A N D AvI W I G D E R S O N $

Institute of Computer Science,
Hebrew University of Jerusalem, Israel

Received February 27, 1989; revised September 26, 1993

We present a simple new construction of a pseudorandom bit generator. It stretches a short
string of truly random bits into a long string that looks random to any algorithm from a com-
plexity class C (e.g., P, NC, PSPACE, ...) using an arbitrary function that is hard for C. This
construction reveals an equivalence between the problem of proving lower bounds and the
problem of generating good pseudorandom sequences. Our construction has many consequen-
ces. The most direct one is that efficient deterministic simulation of randomized algorithms is
possible under much weaker assumptions than previously known. The efficiency of the simula-
tions depends on the strength of the assumptions, and may achieve P = BPP. We believe
that our results are very strong evidence that the gap between randomized and deterministic
complexity is not large. Using the known lower bounds for constant depth circuits, our
construction yields an unconditionally proven pseudorandom generator for constant depth
circuits. As an application of this generator we characterize the power of NP with a random
oracle. © 1994 Academic Press, Inc.

1. INTRODUCTION

The fundamenta l idea of t rading hardness for r andomness is due to Shamir [Sh] ,
who suggested that the RSA funct ion can be used to construct good p seudo random
sequences. The first secure p seudo random bi t -generator was buil t by Blum and
Micali [B1M], who used the intractabi l iy of the discrete logar i thm function. These
ideas were generalized by Yao [Ya] , who showed that any one-way pe rmuta t ion

can be used to construct generators that foor every po lynomia l time computa t ion .
This result gave the first explicit ha rdness - r andomness trade-off: if no poly-size cir-
cuit can invert the one-way permuta t ion , then R P ~ (~ > o D T I M E (2 n ") • Yao's result
was recently generalized by Impagliazzo, Levin, and Luby J I LL] who succeeded in
const ruct ing a p seudorandom generator based on an arbi t rary one-way function.

In all these papers, the generator uses the one-way funct ion f essentially as
follows: F r o m a r a n d o m string X0 (the seed), it computes a sequence {Xi} by
Xi+ l = f (X i) . The ou tpu t bits bi depend on this sequence. The heart of the argu-
ment is then showing that a small circuit that is no t fooled by the bit sequence {b~ }

• Presented at the 29th IEEE Conference on Foundations of Computer Science, October 24-26, 1988.
t This work was done while the first author was a student in the University of California at Berkeley.

Supported by Israel National Academy of Science Grant No. 328071, by the Alon Fellowship, and
by NSF Grant CCR8612563.

149
0022-0000/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

150 NISAN AND WIGDERSON

can be used to compute J ° 1, contradicting its assumed hardness. A deterministic
simulation of a randomized algorithm then proceeds by trying all possible seeds Xo.

These pseudorandom generators can all be computed by polynomial time Turing
machines, and in fact this requirement is usually considered part of the definition
of pseudorandom generators. While this requirement is needed for various cryp-
tographic applications, it is not needed for "simulaton of randomized algorithms"
purposes, which are the focus of interest in this paper. We thus propose to separate
the requirements regarding the running time of the generator from the requirements
regarding the "pseudorandomness" (security) of its output. In this paper we will
thus use the term "pseudorandom generator" for any function whose output "looks
random" (to some class of algorithms). Of course, for our pseudorandom
generators to be of any interest we will separately need to show that they can be
computed "sufficiently fast."

All of the pseudorandom generators mentioned above share the following
limitations:

(1) They require a strong unproven assumption. (The existence of a one-way
function, an assumption which is even stronger than P ~ NP.)

(2) They are sequential and cannot be applied to an arbitrary complexity
class. The only known parallel pseudorandom generator [RT] is based on a very
specific function. There is no known construction of pseudorandom generators for
NC that is based on a general complexity assumption about NC.

We propose here a new construction of a generator which avoids both problems.
This generator does not run in polynomial time, but it can be computed sufficiently
fast for our simulation purposes. The generator can be based on the hardness of
approximation of an arbitrary function in E X P T I M E and is completely parallel
and thus can be applied to other complexity classes. (To "approximate a function"
means to agree with it on a large fraction of inputs--exact definitions appear in
Section 2.1). Simply, each output bit bi of the generator is computed by applying
f t o a subset Si of the bits in the seed X0. These subsets (up to exponentially many)
are explicitly described and have the prQperty that every pair of them is nearly
disjoint. Here this property is the heart of ensuring the quality of bits.

Perhaps the most important conceptual implication of this construction is that it
proves the equivalence between the problem of proving lower bounds for the size of
circuits approximating functions in EXPTIME, and the problem of constructing
pseudorandom generators which run "sufficiently fast."

THEOREM 1. For every function s, m ~ s(m) <<. 2 m the following are equivalent:

(1) For some c > 0 EXPTIME cannot be approximated by circuits o f size

s(mC).

(2) For some e > 0 there exists a pseudorandom generator {Gin :{0, 1} m---*
{0, 1} s(mc)} that runs in time exponential in m and its output looks random to any

circuit o f size s(mC).

HARDNESS VS RANDOMNESS 151

This theorem should be contrasted with the result of Impagliazzo, Levin, and
Luby JILL] showing the equivalence of proving the existence of one-way functions
and constructing pseudorandom generators which run in polynomial time. Our
construction requires weaker assumptions but yields less efficient pseudorandom
generators. This loss, however, does not have any effect when using pseudorandom
generators for the deterministic simulation of randomized algorithms.

This construction has many implications and we describe some of them in
Section 3.

Hardness-Randomness Trade-off We first show that efficient deterministic
simulation of randomized algorithms is possible under much weaker assumptions
than previously known. The efficiency of the simulation depends on the strength of
the assumption: a strong enough assumption implies that P - -BPP. An example of
this trade-off is:

THEOREM 3. I f E X P T I M E cannot be approximated by polynomial size circuits
then RP ~ n ~ > o D TIME(2 "°).

Comment. All our simulation results are stated for one-sided error classes, but
obviously hold for the two-sided analogs as well.

Since the assumptions required for our generator are so weak and natural, we
believe that this work provides overwhelming evidence that the gap between deter-
ministic and randomized complexity is not large.

In [Ya], the same consequence is obtained, assuming that one-way permutations
exist, an assumption which is stronger than NP c~ Co - N P cannot be approximated
by polynomial size circuits.

Randomized Parallel Computation. Reif and Tygar [RT-I considered simulation
of probabilistic parallel algorithms under intractability assumptions. They showed
how to parallelize the Blum-Micali type generator over a particular function
(inverse mod p), and thus get a pseudorandom generator for N C assuming that this
function (which is in P) cannot be approximated by NC circuits. Under this
assumption they obtain R N C ~ n~>0 DSPACE(n~). As our construction is parallel,
we can obtain:

THEOREM 3. I f P S P A C E cannot be approximated by NC circuits then R N C c
As > o DSPACE(n~) .

Randomized Constant Depth Circuits. Ajtai and Wigderson [AW] studied the
simulation of probabilistic constant-depth circuits, since for them lower bounds
exist. They devised a complicated generator, based on the proof methods of the
parity lower bound that gave the first nontrivial simulation result proven without
any assumptions: R A C ° c N~>0 DSPACE(n~). Our construction enables us to use
directly the best parity lower bound [Hal and obtain the stronger result:

THEOREM 5. R A C ° c Uc DSPACE((log n)C).

152 NISAN AND WIGDERSON

This result is not based on any unproven assumptions. The only other complexity
class for which pseudorandom generators are unconditionally proven to exist is
logspace [BNS].

Random Oracles. The power of random oracles is an old subject of interest
[BG, BGS]. For a complexity class C, define almost-C = {L : L ~ C A for almost all
oracles A }.

Baker and Gill [BG] proved that almost-P = BPP, suggesting that B P P is the
right probabilistic analog of P. Babai [Ba] introduced the class A M (Arthur-
Merlin games) and proposed it as a probabilistic analog of NP. We justify this
intuition, answering an open question of Babai and Sipser (see [BM]).

THEOREM 6. A l m o s t - N P = A M .

The proof relies on a description of almos t -NP as a probabilistic, exponential
size, constant-depth circuit, and our generator. A similar consideration, together
with Sipser's result that B P P c P H [Sil], implies the surprising fact that random
oracles do not help the polynomial time hierarchy.

THEOREM 7. A l m o s t - P H - - PH.

B P P and the Polynomial Time Hierarchy. In [Sil] Sipser showed that B P P is
contained in the polynomial time hierarch. Gacs improved on this and showed that
B P P is actually contained in S2 c~ H2. Using our generator we give a completely
different, simple proof of this fact.

Time vs Space and Randomness vs Determinism. In [Si2] Sipser made the
striking observation that efficient deterministic simulation of probabilistic
algorithms is intimately related to efficient simulation of time by space (in a certain
weak sense).

Assuming that it is possible to explicitly, construct certain strong expanders,
he proved that either R P = P, or else some nontrivial space-efficient simulation
of time-bounded Turing machines is possible. (A space simulation which is
significantly better than the best unconditional bound of t(n)/log t(n) of Hopcroft,
Paul, and Valiant [HPV]). We use our generator to give a complexity different
proof of slightly weaker relation, but using no unproven assumption.

Note. Since this manuscript was originally written [BFNW] have strengthened
some of the results appearing here.

2. THE GENERATOR

In this section we state and prove our results for pseudorandom generators that
look random to small circuits, and thus also to time-bounded Turing machines.
All the definitions and theorems we give have natural analogues regarding

HARDNESS VS RANDOMNESS 153

pseudorandom generators for other complexity classes such as depth-bounded
circuits, etc. It is rather straightforward to make the required changes, and we leave
it to the interested reader.

2.1. Definitions
Informally speaking, a pseudorandom generator is an "easy to compute" function

which converts a "few" random bits to "many" pseudorandom bits that "look ran-
dom" to any "small" circuit. Each one of the quoted words is really a parameter,
and we may obtain pseudorandom generators of different qualities according to
the choice of parameter. For example, the standard definitions are: "easy to
compute" = polynomial time; "few" = n ~ (for some 0 < e < 1); "many" = n; "look
r andom"= subpolynomial difference in acceptance probability; and "small"= any
polynomial. We wish to present a more general trade-off, and obtain slightly
sharper results than these particular choices of parameters alow. Although all these
parametes can be freely traded off by our results, it will be extremely messy to state
everything in its full generality. We will thus restrict ourselves to two parameters
that will have multiple purposes. The choice was made to be most natural from the
"simulation of randomized algorithms" point of view.

The first parameter we have is "the quality of the output," this will refer to three
things: the number of bits produced by the generator, the maximum size of the
circuit to the generator "fools," and the reciprocal of difference in accepting
probability allowed. In general, in order to simulate a certain randomized
algorithm, we will require a generator with quality of output being approximately
the running time of the algorithm.

The second parameter is "the price" of the generator, this will refer to both the
number of input bits needed and to the logarithm of the running time of the
generator. In general, the deterministic time required for simulation will be
exponential in the "price" of the generator.

DEFINITION. G = {G, : {0, 1}z(")~ {0, 1}"}, denoted by G:l--,n, is called a
pseudorandom generator if for any circuit C of size n:

IPr[C(y) = 1] - P r [C(G(x))= 1]1 < 1/n,

where y is chosen uniformly in {0, 1} n, and x in {0, 1}(

We say G is a quick pseudorandom generator if it runs in deterministic time
exponential in its input size, G e DTIME(2°(tl).

We will also define an extender, a pseudorandom generator that only generates
one extra bit:

DEFINITION. G={Gl: {0, 1} l~{0 , 1} t+l} is called an n-extender if for any
circuit C, of size n:

IPr[C(y) = 13 - P r [C(G(x))= 1]l ~< l/n,

where y is chosen uniformly in {0, 1} '+1, and x in {0, 1}(

154 NISAN AND WIGDERSON

We say G is a quick extender if it runs in deterministic time exponential in its
input size, G E DTIME(2°(O).

The major difference between our definition and the "normal" definition is the
requirement regarding the running time of the algorithm: normally the pseudoran-
dora generator is required to run in polynomial time, we allow it to run in time
exponential in its input size. This relaxation allows us to construct pseudorandom
generators under much weaker conditions than the ones required for polynomial
time pseudorandom generators, but our pseudorandom generators are as good for
the purpose of simulating randomized algorithms as polynomial time ones. The
following lemma is the natural generalization of Yao's [Ya] lemma showing how
to use pseudorandom generators to simulate randomized algorithms:

L~MMA 2.1. I f there exists a quick pseudorandom generator G: l(n) ~ n then for
any time constructible bound t = t(n): RTIME(t) c DTIME(2°(I(t2))).

Proof The simulation can be partioned into two stages. First, the original
randomized algorithm which uses O(t) random bits is simulated by a random
algorithm which uses l(t 2) random bits but runs in time 2 °(t(t:)). This is done simply
by feeding the original algorithm pseudorandom sequences obtained by the
generator instead of truly random bits. Since the output of the pseudorandom
generator looks random to any circuit of size t 2 and since any algorithm running
in time t can be simulated by a circuit of size t 2, the output of the generator will
look random to the original algorithm. Thus the probability of acceptance of this
randomized algorithm will be almost the same as of the original one.

In the second stage we simulate this randomized algorithm deterministieally, by
trying all the possible random seeds and taking a majority vote. The number of
different seeds is 2 t(t2~, and for each one a computation of complexity 2 °(l(t2~) is
done. |

2.2. Hardness

The assumption under which we construct a generator is the existence of a
"hard" function. By "hard" we need not only that the function cannot be computed
by small circuits but also that it cannot be approximated by small circuits. There are
basically two parameters to consider: the size of the circuit and the closeness of
approximation.

DEFINITION. Let f : {0, 1 } ' ~ {0, 1} be a boolean function. We say that f is
(e, S}-hard if for any circuit C of size S,

IPr [C(x) =f (x)] - 1/21 < e/2,

where x is chosen uniformly at random in {0, 1 }n.

Yao [Ya] shows how the closeness of approximation can be amplified by xor-ing
multiple copies o f f A full proof of this lemma may be found in [-BH].

HARDNESS VS RANDOMNESS 1 5 5

LEMMA 2.2 (Yao). Let f l fk all be (~, S)-hard. Then for any 6 >0, the function
f (x l . " Xk) deft'ned by

k
f (x l "" " Xk)= ~, f i (x i) (mod 2)

i = l

is (~k -k- (~, C]2(l - - e)2S)-hard.

The kind of hardness we will require in our assumption is the following:

DEFINITION. Let f = { O , 1}*~{O, 1} be a boolean function. We say that f
cannot be approximated by circuits of size s(n) if for some constant k, all large
enough n, and all circuits C. of size s(n):

Pr [Cn(x) ¢ f (x)] > n-k,

where x is chosen uniformly in {0, 1 }n.

This is a rather weak requirement, as it only requires that small circuits
attempting to compute f have a non-negligible fraction of error. Yao's xor-lemma
allows amplification of such hardness to the sort of hardness which we will use in
our construction. We will want that no small circuit can obtain any non-negligible
advantage in computing f

DEFINITION. Let f : {0, 1 } * ~ {0, 1} be a boolean function, and let fm be the
restriction o f f to strings of length m. The hardness o f f at m, Hf (m) is defined to
the maximum integer h m such that fm is (1/hm, hm)-hard.

The following lemma is an immediate application of Yao's 1emma.

COROLLARY 2.3. Let s(m) be any function such that m <<, s(m) <~ 2m; i f there ex&ts
a function f in EXPTIME that cannot be approximated by circuits o f size s(m), then
for some c > 0 there exists a function f ' in EXPTIME that has hardness
Hf,(m) >1 s(mC).

2.3. The Main Lemma

Given a "hard" function, it is intuitively easy to generate one pseudorandom bit
from it since the value of the function must look random to any small circuit. The
problem is to generate more than one pseudorandom bit. In order to do this we will
compute the function on many different, nearly disjoint subsets of bits.

DEFINITION. A collection of sets {$1 Sn}, where S ; c {1 l} is called a
(k, m)-design if:

156 NISAN AND WIGDERSON

(1) For al l i ,

[Si[= m;

(2) For all i ~ j ,

IS~Sjl ~k.

A n x l 0-1 matrix is called a (k, m)-design if the collection of its n rows,
interpreted as subsets of {1..l}, is a (k, m)-design.

DEFINITION. Let A be a n x l 0-1 matrix, let f be a boolean function, and let
x = (xl" . .x t) be a boolean string. Denote by fA(X) the n bit vector of bits com-
puted by applying the function f to the subsets of the x's denoted by the n different
rows of A.

Our generator expands the seed x to the pseudorandom stringfA (x). The quality
of the bits is assured by the following lemma.

LEMMA 2.4. Let m, n, l be boolean integers; let f be a boolean function,
f : {0, 1}m~ {0, 1 }, such that Hf(m) ~ n2; and let A be a boolean n x l matrix which
is a (logn, m) design. Then G : l - ~ n given by G(x)=fA(x) is a pseudorandom
generator.

Proof We will assume that G is not a pseudorandom generator and derive a
contradiction to the hardness assumption. If G is not a pseudorandom generator
then, w.l.o.g., for some circuit C, of size n,

Pr [C(y) = 1] - P r [C(G(x))= 1] > l/n,

where x is chosen uniformly in {0, 1}' and y is chosen uniformly in {0, 1} n. We
first show, as in [-GM, Ya], that this implies that one of the bits offA (x) ban be
predicted from the previous ones.

For any i, 0 ~<i~< n, we define a distribution E, on {0, 1} n as follows: the first i
bits are chosen to be the first i bits o f f . (x) , where x is chosen uniformly over l bit
strings, and the other n - i bits are chosen uniformly at random. Define

p, = Pr [C(z) = 13,

where z is chosen according to the distribution E,. Since P0 - P n > l/n, it is clear
that for some i, Pi-1 - p i > 1In z. Using this fact we will build a circuit that predicts
the ith bit.

Define a circuit D, which takes as input the first i - 1 bits offA(x), Yl Y,-~,
and predicts the ith bit, yi. D is a probabilistic circuit. It first flips n - i + 1 random

HARDNESS VS RANDOMNESS 157

bits, r~ rn. O n input y = (Yl, ...,Yi 1), it computes C (y l , . . . ,Y~- I , r~ rn). If
this evaluates to 1 then D will return ri as the answer, otherwise it will return the
complement of r~. As in [Y a] it can be shown that

1 1
Pr l-Dn (Y l , "", Y i - 1) = Yi] -- ~ > n-7,

where the probabil i ty is taken over all choices of x and of the r a n d o m bits that D
uses. At this point an averaging argument shows that it is possible to set the private
r andom bits that D uses to constants and to achieve a deterministic circuit D ' while
preserving the bias.

By now we have constructed a circuit that predicts Yi from the bits Yl Ye-1.
To achieve a contradict ion to the hardness assumption we will now transform this
circuit into a circuit that predicts y~ from the bits x l , ..., x~. W.l.o.g. we can assume
that y; depends on xl xm, i.e.,

Yi = f (x a . . . x m).

Since y~ does not depend on the other bits of x, we can rewrite

Pr [D , (y l , . . . ,Yi ~) = Y ,] ,

where x is chosen at random, as the average over all possible choices of xm + a -. .x~
of the same expression, where only Xl " ' 'Xm are chosen at random. It follows that
for some part icular choice of values cm + 1 "'" c~ for Xm + 1 "'" Xt, setting xj = ej for all
m < j ~< l preserves the prediction probability.

At this point, however, each one of the bits y; , Y~- 1 depends only on at mos t
log n of the bits x l Xm. This is SO since the intersection of the set of xk's defined
by Yi and by yj is bounded f rom above by log n for each i vaj. N o w we can compute
each yi as a C N F (or D N F) formula of a linear (in n) size over the bits it uses. This
gives us a circuit D " (X l , ..., Xm) that predicts y~ which is f (x l , ..., xm). It is easy to
check that the size of D " is at mos t n 2 and the bias achieved is more than n -2,
which contradicts the assumpt ion that HF(m) > n 2. |

2.4. Construct ion o f N e a r l y Dis jo in t Se t s

This section describes the actual construct ion of the designs that are used by the
p seudorandom generator. In the construct ion of the generator, we are given a
"hard" function f with a certain "hardness," Hu, and we wish to use it to generate
a p seudorandom generator G : l ~ n. Our aim is to minimize l, that is, to obtain a
p seudorandom generator that uses the smallest number o f r a n d o m bits. I f we look
at the requirements of Lemma 2.4, we see that we will require a (log n, m)-design,
where m must satisfy HF(m) >~n 2. This basically determines a min imum possible
value for m. The following lemma shows that l need no t be much larger than m.

158 NISAN AND V¢IGDERSON

LEMMA 2.5. For all integers n and m, such that log n <~ m <<. n, there exists an n x I
matrix which is a (log n, m)-design, where l = O(m2). Moreover, the matrix can be
computed by a Turing machine running in space O(log n).

Proof We need to construct n different subsets of { 1 .-- l} of size m with small
intersection. Assume, w.l.o.g., that m is a prime power, and let l = m 2. (If m is not
a prime power, pick, e.g., the smallest power of 2 which is greater than m; this can
at most double the value of m.) Consider the numbers in the range { 1-- . I} as pairs
of elements in GF(m), i.e., we construct subsets of {(a , b)] a , b E GF(m)}. Given
any polynomial q on GF(m), we define a set Sq= {(a , q(a)) [a~ GF(m)}. The sets
we take are all of this form, where q ranges over polynomials of degree at most
log n. The following facts can now be easily verified:

(1) The size of each set is exactly m.

(2) Any two sets intersect in at most log n points.

(3) There are at least n different sets (the number of polynomials over GF(m)
of degree at most log n is m l °gn+ l >~n).

It should be noted that all that is needed to construct these sets effectively is
simple arithmetic in GF(m) and, since m has a length of O(log n) bits, everything
can be easily computed by a log-space bounded Turing machine. |

I t can be shown that the previous design is optimal up to a factor of log n; i.e.,
for given m and n, l is within a log factor of the design with the smallest value of
I. For most values of m this small added factor is not so important; however, for
small values of m we may wish to do better. One way to achieve a better design for
small values of m is to consider mulivariate polynomials over finite fields. These
multinomials may define sets in a similar manner as in the previous design, and for
small values of m, l can be reduced up to about m log m. We leave the details to
the interested reader.

A case of special interest is m -- O(log n). In this case it is possible to reduce l also
to O(log n). We do not have an explicit construction for this; however, we note that
such a design can be computed in polynomial time.

LEMMA 2.6. For all integers n and m, where m = C log n, there exists a n x l
matrix which is a (log n, m)-design, where 1 = O(C 2 log n). Moreover, the matrix can
be computed by a Turing machine running in time polynomial in n.

Proof The Turing machine will greedily choose subsets of {1 l} of ear-
dinality m, which intersect each of the previously chosen sets at less than log n
points. A simple counting argument shows that it is always possible to choose such
a set, whatever the previous sets that were chosen are, as long as there are at most
n such sets. (A random subset of size m is expected to intersect a single given set
of size m in m2/l points; the probability that the intersection is more than, say, twice
as large can be bounded by 1/n using Chernoff bounds.) The running time is
polynomial since we are looking at subsets of O(log n) elements. |

HARDNESS VS RANDOMNESS 159

2.5. Main Theorem

The main theorem that we obtain is a necessary and sufficient condition for the
existence of quick pseudorandom generators.

THEOREM 1. For every function s, 1 <. s(1) <~ 2 l, the following are equivalent:

(1) For some e > 0 some function in E X P T I M E cannot be approximated by
circuits of size s(lC).

(2) For some c > 0 there exists a function in E X P T I M E with hardness s(lC).

(3) For some c > 0 there exists a quick s(lC)-extender G : l--* l + 1.

(4) For some c > 0 there exists a quick pseudorandom generator G : l--* s(lC).

Note. We assume here that (s(1))C<.s(l c) (as is true for most functions of
interest as size bounds), otherwise the expression s(l c) should be changed every-
where to s(lC) c.

Proof (1) ~ (2) is Corollary 2.3.

(4) ~ (3) is trivial.

(3) --+ (1) 1 Let G = {Gl} be an extender as in (3). Consider the problem o f " I s
y in the range of G ?". It can be easily seen that this can be computed in exponential
time; however, no circuit of size s(l ~) can compute it since that circuit would dis-
tinguish between the output of G and between truly random strings. If G happens to
be 1-1 then it is also clear that no circuit of size s(l c) can even approximate this
language. However, if G is not 1-1 then in order to obtain a function which cannot
even be approximated we will require the following fact which developed from the
work on random-self-reducability: If every function in E X P T I M E can be
approximated to within 1In 2 by circuits of size s(n) then every function in E X P T I M E
can be computed exactly by circuits of size s(n)poly(n). The proof of this fact proceeds
by taking the multi-linear extension of the function, and using the random-self-
reducability of the extension to correct errors. See [B F N W] for details and references.

The main part of the proof is, of course, that (2) ~ (4). Let f be a function
in E X P T I M E with hardness s(U). We build a quick pseudorandom generator
G : l ~ n, for n = s(mC/4): For every n let A, be the matrix guaranteed by Lemma 2.5
for m = 11/2. Note that this is an n x l matrix which is a (log n, m)-design. Note also
that, by our choice of parameters, H f (m) > n 2. Thus, by Lemma 2.4, the function
G , (x) = f A , (x) is a pseudorandom generator. G = {Gn } is a quick pseudorandom
generator simply since f is in EXPTIME. |

This theorem should be contrasted with the known results regarding the condi-
tions under which polynomial time computable pseudorandom generators exist.
Impagliazzo, Levin, and Luby J I L L] prove the following theorem:

* Our original paper contained an error in the proof of this implication (which is the converse of the
main result). The error was pointed out to us by Oded Goldreich. The correction appearing here uses
an idea from [BFNW].

160 NISAN AND W-IGDERSON

THEOREM [-ILL]. The following are equivalent (for any 1 > e > 0):

(1) There exists a one-way function.

(2) There exists a polynomial time computable pseudorandom generator
G : n * ~ n .

The existence of polynomial time computable pseudorandom generators seems to
be a stronger statement and to require apparently stronger assumptions than the
existence of "quick" pseudorandom generators.

3. MAIN COROLLARIES

3.1. Sequential Computations

The major application of the generator is to allow better deterministic simulation
of randomized algorithms. We now state the results that we obtain regarding the
deterministic simulation of BPP algorithms.

THEOREM 2.

(1)
(2)
(3)

then,

(1)
(2)
(3)

I f there ex&ts a function computable in DTIME(2°(n)),

that cannot be approximated by polynomial size circuits,

that cannot be approximated by circuits of s&e 2 ~° for some e > O,

with hardness 2 ~n for some e > O,

BPP ~ (-]~ > o D TIME(2n~),

BPP ~ DTIME(20°gn)~) for some constant c,

BPP = P,

respectively.

Note. Here we mean that for i = 1, 2, 3, assumption i implies conclusion i.

Proof Using Theorem 1, (1) implies the existence of a quick pseudorandom
generator G : n ~ n for every e > 0 , and (2) implies the existence of a quick
pseudorandom generator G : (log n)C~ n for some c > 0. (3) implies the existence of
a quick pseudorandom generator G : C l o g n ~ n for some c > 0. This can be seen
by modifying the proof of Theorem 1 as to use the design specified in Lemma 2.6
instead of the "generic" design (Lemma 2.5). The simulation results follow by
Lemma 2.1. |

3.2. Parallel Computation

The construction of the generator was very general, it only depended on the
existence of a function that was hard for the class for which the generated is
intended. Thus we can obtain similar simulation results for other complexity classes
under analogous assumptions. We will now state the major simulation results that
we obtain for parallel computation.

HARDNESS VS RANDOMNESS 161

THEOREM 3.

then

I f there exists a function in PSPACE that

(1) cannot be approximated by NC circuits or

(2) cannot be approximated by circuits of depth n ~ (for some constant ~ > 0),

(1) R N C ~ N~>oDSPACE(n~),

(2) RNC c DSPACE(polylog),

respectively.

Note. Here we mean that for i = 1, 2, assumption i implies conclusion i.

Proof. The proof is the straightforward adaptation of our pseudorandom
generator to the parallel case. The important point is that the generator itself is
parallel and, indeed, in the proof of the main lemma, the depth of the circuit C
increases only slightly. |

3.3. Constant Depth Circuits

A special case of interest is the class of constant depth circuits. Since for this class
lower bounds are known, we can use our construction to obtain pseudorandom
generators for constant depth circuits that do not require any unproven assump-
tion. These results appear also in a previous paper of ours IN] with more complete
proofs and some extensions.

Our generator is based on the known lower bounds for constant depth circuits
computing the parity function. We will use directly the strongest bounds known
due to Hastad [Ha] .

Tr~OREM (Hastad). For any family { Cn } of circuits of depth d and size at most
2 n~/~d+l~, and for all large enough n,

[Pr[C,(x) = parity(x)] - 1/21 ~< 2 "l/~d+'),

when x is chosen uniformly over all n-bit strings.

Applying to this our construction we obtain

THEOREM 4. For any integer d, there exists a family of functions: {Gn : {0, 1 } t ~
{0, 1}n}, where l= O((log n) 2d+6) such that

(1) { Gn } can be computed by a log-space uniform family of circuits of polyno-
mial size and d + 4 depth.

(2) For any family { C, } of circuits of polynomial size and depth d, for any
polynomial p(n) and for all large enough n,

1
]Pr[Cn(y) = 1] -Pr [Cn(Gn(x))= 1]l <~p(n)'

where y is chosen uniformly in {0, 1 }" and x is chosen uniformly in {0, 1 }(

571/49/2-2

162 NISAN AND WIGDERSON

Proof Again Gn =fA,, where f is the parity function, and An is the design
described in Section 2.3 for m = (log n) d+3. Note that: (1) the generator can be
computed by polynomial size circuits of depth d+ 4, since it is just the parity of sets
of bits of cardinality (log n)a+3; (2) all the considerations in the proof of correct-
ness of the generator apply also to constant depth circuits. In particular the depth
of the circuit C in the proof of Lemma 2.4 increases only by one. |

We can now state the simulation results we obtain for randomized constant
depth circuits. Denote by R A C ° (B P A C °) the set of languages that can be
recognized by a uniform family of probabilistic constant depth, polynomial size
circuits, with one-sided error (two-sided error bounded away from one-half by
some polynomially small fraction).

THEOREM 5. B P A C °, R A C ° c Uc D S P A C E ((l o g n) c) and B P A C °, R A C °
U c DTIME(2°°gn)C) •

Denote by # DNF the problem of counting the number of satisfying assignments
to a DNF formula, and by Approx-# DNF the problem of computing a number
which is within a factor of 2 (or even 1 +n k) from the correct value. Clearly
D N F is # P complete. However, our results imply that:

COROLLARY 3.1. Approx- # DNF ~ DTIME(2(I°g')~4).

Proof Karp and Luby [KLu] give a probabilistic algorithm for Approx-
DNF that with high probability outputs a number which is within a factor of 2
of the number of satisfying assignments. It is not difficult to see that this algorithm
can be implemented by a random-AC ° circuit of depth 4. The output of our gener-
ator may be used by this circuit instead of truly random bits without significantly
changing the probability that the output of the circuit is in any fixed range. (Since
otherwise we could add a comparator to the circuits and obtain a one-bit constant
depth circuit that distinguished between random and pseudorandom strings.) |

3.4. Random Oracles

The existence of our pseudorandom generator for constant depth circuits has
implications concerning the power of random oracles for classes in the polynomial
time hierarchy. Let C be any complexity class (e.g., P, NP). As in [BM] we define
the class almost-C to be the set of languages L such that

P r [L ~ C A] = 1,

where A is an oracle chosen at random. The class almost-C can be thought of as
a natural probabilistic analogue of the class C.

The following theorem is well known [Ku, BG] and underscores the importance
of BPP as the random analogue of P:

TI-mOREM. BPP = almost-P.

Babai [Ba] introduced the class AM. An AM Turing machine is a machine that
may use both randomization and nondeterminism, but in this order only: first flip

HARDNESS VS RANDOMNESS 163

as many random bits as necessary and then use nondeterminism. The machine is
said to accept a language L if for every string in L the probability that there exists
an accepting computation is at least ~, and for every string not in L the probability
is at most ½ (the probability is over all random coin flips, and the existence is over
all nondeterministic choices). The class AM is the set of languages accepted by
some AM machine that runs in polynomial time. The randomization stage of the
computation is called the "Arthur" stage and the second stage, the nondeterministic
one is called the "Merlin" stage. For exact definitions as well as motivation refer to
[Ba, BaM]; also see [GS] .

[BaM, GS] raised the question of whether A M = a l m o s t - N P ? This would
strengthen the feeling that A M is the probabilistic analogue of NP. Our results
imply that this is indeed the case.

THEOREM 6. A M = almost-NP.

Proof We first show that A M c almost-NP. Given an A M machine we can first
reduce the probability of error such that for a given e > 0, on any input of length
n, the machine errs with probability bounded by e4 -n. An NP machine equipped
with a random oracle can use the oracle to simulate the Arthur phase of the A M
machine. For any given input, this machine will accept with the same probability
as the A M machine. By summing the probabilities of error over all possible inputs
we get that the probability that this machine errs on any input is at most e. Since
e is arbitrary we get that A M c almost-NP.

We will now prove almost-NP c AM. We first prove the following fact:

FACT. I f L ~ almost-NP then there exists a specific nondeterministic oracle Turing
machine M that runs in polynomial time such that for an oracle A chosen at random:

P r I M a accepts L] ~> 2.

Proof (of fact). Since there are only contably many Turing machines, some fixed
Turing machine accepts the language L on a non-zero measure of oracles. By using
the Lebesgue density theorem, we see that it is possible to fix some finite prefix of
the oracle such that for oracles with this prefix the Turing machine accepts L with
probability at least ~. Finally, this prefix can be hard-wired into the Turing
machine. |

Up to this point we have only used the standard tools. The difficulty comes when
we try to simulate M (with a random oracle) by an A M machine. The difficulty lies
in the fact that the machine may access (non-deterministically) an exponential num-
ber of locations of the oracle, but A M computations can only supply a polynomial
number of random bits. We will use our generator to convert a polynomial number
of random bits to an exponential number of bits that "look" random to the
machine M.

Let the running time of M be n k. We can view he computation of M as a large
OR of size 2 nk of all the deterministic polynomial time computations occurring for

164 NISAN AND WIGDERSON

the different nondeterministic choices. Each of these computations can be converted
to a CNF formula of size 2 nk over the oracle entries. Altogether the computation of
M can be written as a depth-2 circuit of size at most 2 2nk over the oracle queries.

Our generator can produce from 2n l°k random bits 2 2nk bits that look random to
any depth-2 circuit of this size. So the simulation of M on a random oracle
proceeds as follows: Arthur will flip 2n l°k random bits and then M will be simulated
by Merlin; whenever M makes an oracle query, the answer will be generated from
the random bits according to the generator. Note that this is just a parity function
of some subset of the bits, which is clearly in P. Since the generator "fools" this cir-
cuit, the simulation will accept with approximately the same probability that M
accepts on a random oracle. |

Exactly the same technique suffices to show that for any computation in PH, the
polynomial time hierarchy [St, CKS], a random oracle can be substituted by an
"Arthur" phase. Applying to this the fact that B P P ~ 272 c~ H 2 (see next subsection)
allows simulation of the "Arthur" phase by one more alternation and thus we obtain:

THEOREM 7. almost -PH = PH.

3.5. B P P and the Polynomial Time Hierarchy

In ESil] Sipser showed that BPP could be simulated in the polynomial time
hierarchy. Gacs improved this result and showed that simulation is possible in
Z 2 c~ H2. In this section we give a new simple proof of this fact.

THEOREM 8 (Sipser and Gacs). B P P ~ 272 c~ H 2.

Proo f Because B P P is closed under complement it suffices to show that
B P P ~ 272. The main idea is that a pseudorandom generator that stretches O(log n)
random bits to n pseudorandom bits can be constructed in 272- To simulate B P P

then, a $2 machine will then run over all of the polynomially many possibilities of
the random seed.

To obtain such a pseudorando.m generator, using our construction, we only need
a function with exponential hardness (specifically we want a function on O(log n)
bits with hardness which is O(n2)). Such a function can be found in 272: A simple
counting argument shows that such a function exists (although non-uniformly), and
verifying that a function on O(log n) bits has, indeed, a high hardness can easily be
seen to be in Co-NP. (The function can be described by a polynomial-size table, and
the verification can be done by nondeterministically trying all circuits of size n2.)

Thus the simulation of B P P will proceed as follows: (1) Nondeterministically
guess a function on O(log n) bits with high hardness (first alternation). (2) Verify
that it is indeed hard (second alternation). (3) Use it as a basis for the pseudo-
random generator, using our construction. (4) Try all possible seeds. |

Actually, this proves a slightly stronger statement, namely that B P P c Z p P ue.
(Z P P NP is the class of languages that have polynomial time, randomized, zero error

algorithms, using an NP-complete oracle.)

HARDNESS VS RANDOMNESS 165

3.6. Randomness and Time vs Space

Our generator is based on the assumption that there exists a function in, say
DTIME(2") , that cannot be approximated by small circuits. In this section we show
that if this assumption does not hold then some nontrivial simulation of time by
space is possible.

This result shows that either randomized algorithms can be simulated deter-
ministicaUy with subexponential penalty, or that, in some sense, an algorithm that
runs in time T can be simulated in space T 1- ~ for some ~ > 0. This simulation is
significantly better than the best known simulation of time T in space T/log T due
to Hopcroft, Paul, and Valiant [HPV] . A result of a similar flavor, giving a trade-
off between simulation of randomness by determinism and of time by space, was
proved using different methods by Sipser [Si2] under an unproven assumption
regarding certain strong expanders.

Consider the following function F: On input (M, x, t) the output is a representa-
tion of what Turing machine M does on input x at time t. Where the representation
includes the state that the machine is in and the location of the heads. Moreover,
consider a language L which encodes this function F, and let L , be the restriction
of L to strings of length n.

Hypothesis H1 (e, n): There is a circuit of size 2 (1-~)n that computes L, .

We will show that if Hypothesis H1 is true then some non-trivial simulation of
time by space is possible, and if it is false then we can use our construction to
obtain a pseudo-random bit generator.

LEMMA 3.2. I f Hypothesis H1 (e, n) i s true for some e> 0 and all sufficiently
large n then for some constants C > 1 and e' > O, and for every function T(n) = ~ (Cn),
D TIM E(T(n)) = DSPACE(T ~- ~'(n)).

(This result is similar to results in [KLi] "translating" non-uniform upper
bounds to uniform ones.)

LEMMA 3.3. I f for every ~ > O, Hypothesis H1 (e, n) is false for all sufficiently
large n, then for every e > 0 and every c > O, there exists a polynomial time generator
that converts n ~ truly random bits to n bits that look random to any circuit of size n c.

Proof (of Lemma 3.2). We will show that (1) if for some ~>0, Hypothesis
H1 (e, n) is true for all n then L ~ D S P A C E (2 (l-`)n) and that (2) this implies the
lemma.

(1) A space-efficient algorithm for L is as follows: The machine tries all cir-
cuits of size 2 (1-~)n; for each one it checks whether this is indeed the circuit for Ln.
Once it finds the correct circuit, it uses it to look up the answer. Note that checking
whether the circuit is the correct one is easy, since it only needs to be consistent
between consecutive accesses to the same cell.

166 NISAN AND WIGDERSON

(2) Consider any Turing machine M running in DTIME(T(n)) , where
T(n)-~ 2 t(n). Whether the Turing machine accepts or not can be derived from the
value of F ((M , x, T (n))) which is encoded by Zm, where m is the size of the input
which in this case is n + t(n) + K, where K (a constant) is the length of the descrip-
tion of M. This can be computed in DSPACE(2 (1 ~)m). For proper choices of C
and d, (1 - e) m ~ < (l - g ') t(n), and the lemma follows. |

Note. Actually a stronger statement can be made, as under the assumption H1
the simulation mentioned can even be performed in X 2 - TIME(T(1- ')(n)) .

Proof (of Lemma 3.3). First note that if H I (e, n) is false then every circuit of
size 2 n/2 errs on at least 2 -~n fraction of the inputs, since otherwise there would be
at most 2 (1-~n errors which could be corrected by a table. Next, Yao's xor lemma
(Lemma 2.2) allows amplification of the unpredictability by xoring disjoint copies
of L: for any constant c' (assuming that e is small enough), there exists a constant
d, so that by taking 2 a~n disjoint copies we obtain a function over N = n 2 d`"
variables such that every circuit of size, say, 2 n/4 cannot achieve bias of better than
N c,. Thus this new function has hardness H(N)>~N c'. This hardness suffices
(by Theorem 1) for constructing a pseudorandom generator as required by the
lemma. |

The exact statement of the theorem we obtain is, thus:

THEOREM 9. One of the two following possibilities holds:

(1) B P P c N~>oDTIME(2"~).

(2) There exist ~ > 0 and C > 1 such that, for any function T(n) = I2(C~), every
language in DTIME(T(n)) has an algorithm, such that for infinitely many n, runs in
S P A C E (actually even Z2-TIME) T(i - ' / (n) on all inputs of length n.

Proof If for every e > 0 Hypothesis H 1 (e, n) holds for only finitely many n then
Lemma 3.3 assures the existence of pseudorandom generators stretching n ~ bits to
n bits and, by Lemma 2.1(1), is true. Otherwise the algorithm in the proof of
Lemma 3.2 will work for some e > 0 and infinitely many n which implies (2). |

ACKNOWLEDGMENTS

We thank Laszlo Babai for suggesting AM= almost-NP? as an application of our result and Silvio
Micali for allowing us to steal the title of his Ph.D. thesis.

lAW]

[Ba]
[BG]

REFERENCES

M. AJTAI AND A. WIGDERSON, Deterministic simulation of Probabilistic constant depth
circuits, in "26th FOCS, 1985," pp. 11-19.
L. BAaAI, Trading group theory for randomness, in "17th STOC, 1975," pp. 421-429.
C. H. BENNET AND J. GILL, Relative to a random oracle A, pA¢ NpA# Co- NP A with
probability 1, SlAM J. Comput. 10 (1981).

HARDNESS VS RANDOMNESS 167

[BaM]

[BFNW]

[BH]

IBM]

[BNS]

[CKS]

[FLS]

[GM]

[GS]

[Ha]

[HPV]

JILL]

[KLi]

[KLu]

[Ku]
IN]

[RT]

[Sill

[Si2]

ESh]

[St3
[Ya]

L. BABAI AND S. MORAN, Arthur Merlin games: A randomized proof system, and a hierarchy
of complexity classes, J. Comput. System Sci. 36, No. 2 (1988), 254-276.
L. BABAI, L. FORTNOW, N. NISAN, AND A. WIGDERSON, BPP has weak subesponential
simulations unless EXPTIME has publishable proofs, in "Proceedings, Structures in Com-
plexity Theory, 1991."
R. BOPPANA AND R. HIRSCHFIELD, Pseudorandom generators and complexity classes, in
"Randomness and Computation" (S. Micali, Ed.), Vol. 5, pp. 1-26, Adv. in Comput. Res., JAI
Press, Greenwich, 1989.
M. BLUM AND S. MICALI, How to generate cryptographically strong sequences of pseudo
random bits, in "3rd FOCS, 1982," pp. 112-117.
L. BABAI, N. NISAN, AND M. SZEGEDV, Multiparty protocols and logspace hard pseudo-
random sequences in "21st STOC, 1989," pp. 1-11.
A. CHANDRA, O. KOZEN, AND L. STOCKMEYER, Alternation, J. Assoc. Comput. Mac& 28
(1981).
M. FURST, R. J. LIPTON, AND L. STOCKMEYER, Pseudo random number generation and space
complexity, Inform. and Control 64 (1985).
S. GOLDWASSER AND S. MICALI, Probabilistie encryption, J. Comput. System Sci. 28, No. 2
(1984).
S. GOLDWASSER AND M. SII'SER, Private coins vs public coins in interactive proof systems, in
"18th STOC, 1986," pp. 59-68.
J. HASTAD, "Computational Limitations for Small Depth Circuits," Ph.D. thesis, MIT Press,
Cambridge, MA, 1986.
J. HOPCROFT, W. PAUL, AND L. VALIANT, On time versus space and related problems, in
"16th FOCS, 1975."
R. IMAGLIAZZO, L. LEVIN, AND M. LUBY, Pseudorandom generators from any one-way
function in "21st STOC, 1989."
R. M. KARP AND R. LIPTON, Turing machines that thake advice, Enseign. Math. 28 (1982),
191-209.
R. M. KARP AND M. KuB¥, Monte-Carlo algorithms for enumeration and reliability
problems in "24th FOCS, 1983," pp. 56-64.
S. A. KURTZ, A note on randomized polynomial time, SIAM J. Comput. 16, No. 5 (1987).
N. NISAN, Pseudo random bits for constant depth circuits, Combinatorica 11, No. 1 (1991),
pp. 63-70.
J. H. REIF AND J. D. TYGAR, "Towards a Theory of Parallel Randomized Computation,
TR-07-84, Aiken Computation Lab., Harvard University, 1984.
M. SIPSER, A complexity theoretic approach to randomness, in "15th STOC, 1983,"
pp. 330-335.
M. SIPSER, "Expanders, Randomness, or Time vs Space," Structure in Complexity Theory,
Lecture notes in Computer Science, No. 223, Ed. G. Goos and J. Hartmanis, Eds.,
pp. 325-329, Springer-Verlag, New York/Berlin, 1986.
A. SHAMm, On the generation of cryptographically strong pseudo-random sequences, in "8 th
ICALP, Lecture Notes in Comput. Sci.," Vol. 62, pp. 544-550, Springer-Verlag, New York/
Berlin, 1981.
L. STOCKM~R, The polynomial time hierarchy, Theoret. Comput. Sci. 3, No.1 (1976).
A. C. YAO, Theory and applications of trapdoor functions, in "23rd FOCS, 1982," pp. 80-91.

