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We present a simple new construction of a pseudorandom bit generator. It stretches a short 
string of truly random bits into a long string that looks random to any algorithm from a com- 
plexity class C (e.g., P, NC, PSPACE, ...) using an arbitrary function that is hard for C. This 
construction reveals an equivalence between the problem of proving lower bounds and the 
problem of generating good pseudorandom sequences. Our construction has many consequen- 
ces. The most direct one is that efficient deterministic simulation of randomized algorithms is 
possible under much weaker assumptions than previously known. The efficiency of the simula- 
tions depends on the strength of the assumptions, and may achieve P = BPP. We believe 
that our results are very strong evidence that the gap between randomized and deterministic 
complexity is not large. Using the known lower bounds for constant depth circuits, our 
construction yields an unconditionally proven pseudorandom generator for constant depth 
circuits. As an application of this generator we characterize the power of NP with a random 
oracle. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

The fundamenta l  idea of t rading hardness for r andomness  is due to Shamir  [Sh] ,  
who suggested that  the RSA funct ion can be used to construct  good p seudo random 
sequences. The first secure p seudo random bi t -generator  was buil t  by Blum and  
Micali  [B1M],  who used the intractabi l iy of the discrete logar i thm function. These 
ideas were generalized by Yao [Ya] ,  who showed that  any one-way pe rmuta t ion  

can be used to construct  generators that  foor every po lynomia l  time computa t ion .  
This result gave the first explicit ha rdness - r andomness  trade-off: if no poly-size cir- 
cuit can invert  the one-way permuta t ion ,  then R P  ~ ( ~  > o D T I M E ( 2 n " )  • Yao's result 
was recently generalized by Impagliazzo,  Levin, and  Luby  J I LL]  who succeeded in 
const ruct ing a p seudorandom generator  based on an arbi t rary  one-way function. 

In  all these papers, the generator  uses the one-way funct ion f essentially as 
follows: F r o m  a r a n d o m  string X0 (the seed), it computes  a sequence {Xi} by 
Xi+ l  = f ( X i ) .  The ou tpu t  bits bi depend on  this sequence. The heart  of the argu- 
ment  is then showing that  a small circuit that  is no t  fooled by the bit sequence {b~ } 

• Presented at the 29th IEEE Conference on Foundations of Computer Science, October 24-26, 1988. 
t This work was done while the first author was a student in the University of California at Berkeley. 
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can be used to compute J ° 1, contradicting its assumed hardness. A deterministic 
simulation of a randomized algorithm then proceeds by trying all possible seeds Xo. 

These pseudorandom generators can all be computed by polynomial time Turing 
machines, and in fact this requirement is usually considered part of the definition 
of pseudorandom generators. While this requirement is needed for various cryp- 
tographic applications, it is not needed for "simulaton of randomized algorithms" 
purposes, which are the focus of interest in this paper. We thus propose to separate 
the requirements regarding the running time of the generator from the requirements 
regarding the "pseudorandomness" (security) of its output. In this paper we will 
thus use the term "pseudorandom generator" for any function whose output "looks 
random" (to some class of algorithms). Of course, for our pseudorandom 
generators to be of any interest we will separately need to show that they can be 
computed "sufficiently fast." 

All of the pseudorandom generators mentioned above share the following 
limitations: 

(1) They require a strong unproven assumption. (The existence of a one-way 
function, an assumption which is even stronger than P ~ NP.) 

(2) They are sequential and cannot be applied to an arbitrary complexity 
class. The only known parallel pseudorandom generator [RT] is based on a very 
specific function. There is no known construction of pseudorandom generators for 
NC that is based on a general complexity assumption about NC. 

We propose here a new construction of a generator which avoids both problems. 
This generator does not run in polynomial time, but it can be computed sufficiently 
fast for our simulation purposes. The generator can be based on the hardness of 
approximation of an arbitrary function in E X P T I M E  and is completely parallel 
and thus can be applied to other complexity classes. (To "approximate a function" 
means to agree with it on a large fraction of inputs--exact definitions appear in 
Section 2.1). Simply, each output bit bi of the generator is computed by applying 
f t o  a subset Si of the bits in the seed X0. These subsets (up to exponentially many) 
are explicitly described and have the prQperty that every pair of them is nearly 
disjoint. Here this property is the heart of ensuring the quality of bits. 

Perhaps the most important conceptual implication of this construction is that it 
proves the equivalence between the problem of proving lower bounds for the size of 
circuits approximating functions in EXPTIME, and the problem of constructing 
pseudorandom generators which run "sufficiently fast." 

THEOREM 1. For every function s, m ~ s(m) <<. 2 m the following are equivalent: 

(1) For some c > 0  EXPTIME cannot be approximated by circuits o f  size 

s(mC). 

(2) For some e > 0  there exists a pseudorandom generator {Gin :{0, 1} m---* 
{0, 1} s(mc)} that runs in time exponential in m and its output looks random to any 

circuit o f  size s(mC). 
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This theorem should be contrasted with the result of Impagliazzo, Levin, and 
Luby JILL] showing the equivalence of proving the existence of one-way functions 
and constructing pseudorandom generators which run in polynomial time. Our 
construction requires weaker assumptions but yields less efficient pseudorandom 
generators. This loss, however, does not have any effect when using pseudorandom 
generators for the deterministic simulation of randomized algorithms. 

This construction has many implications and we describe some of them in 
Section 3. 

Hardness-Randomness Trade-off We first show that efficient deterministic 
simulation of randomized algorithms is possible under much weaker assumptions 
than previously known. The efficiency of the simulation depends on the strength of 
the assumption: a strong enough assumption implies that P - -BPP.  An example of 
this trade-off is: 

THEOREM 3. I f  E X P T I M E  cannot be approximated by polynomial size circuits 
then RP  ~ n ~ > o D TIME( 2 "°). 

Comment. All our simulation results are stated for one-sided error classes, but 
obviously hold for the two-sided analogs as well. 

Since the assumptions required for our generator are so weak and natural, we 
believe that this work provides overwhelming evidence that the gap between deter- 
ministic and randomized complexity is not large. 

In [Ya], the same consequence is obtained, assuming that one-way permutations 
exist, an assumption which is stronger than NP c~ Co - N P  cannot be approximated 
by polynomial size circuits. 

Randomized Parallel Computation. Reif and Tygar [RT-I considered simulation 
of probabilistic parallel algorithms under intractability assumptions. They showed 
how to parallelize the Blum-Micali type generator over a particular function 
(inverse mod p), and thus get a pseudorandom generator for N C  assuming that this 
function (which is in P) cannot be approximated by NC circuits. Under this 
assumption they obtain R N C  ~ n~>0 DSPACE(n~). As our construction is parallel, 
we can obtain: 

THEOREM 3. I f  P S P A C E  cannot be approximated by NC circuits then R N C c  
As > o DSPACE(n~) . 

Randomized Constant Depth Circuits. Ajtai and Wigderson [AW] studied the 
simulation of probabilistic constant-depth circuits, since for them lower bounds 
exist. They devised a complicated generator, based on the proof methods of the 
parity lower bound that gave the first nontrivial simulation result proven without 
any assumptions: R A C ° c  N~>0 DSPACE(n~). Our construction enables us to use 
directly the best parity lower bound [Hal  and obtain the stronger result: 

THEOREM 5. R A C  ° c Uc DSPACE(( log  n)C). 
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This result is not based on any unproven assumptions. The only other complexity 
class for which pseudorandom generators are unconditionally proven to exist is 
logspace [BNS]. 

Random Oracles. The power of random oracles is an old subject of interest 
[BG, BGS]. For a complexity class C, define almost-C = {L  : L ~ C A for almost all 
oracles A }. 

Baker and Gill [BG] proved that almost-P = BPP,  suggesting that B P P  is the 
right probabilistic analog of P. Babai [Ba] introduced the class A M  (Arthur- 
Merlin games) and proposed it as a probabilistic analog of NP.  We justify this 
intuition, answering an open question of Babai and Sipser (see [BM]). 

THEOREM 6. A l m o s t - N P  = A M .  

The proof relies on a description of almos t -NP as a probabilistic, exponential 
size, constant-depth circuit, and our generator. A similar consideration, together 
with Sipser's result that B P P c  P H  [Sil], implies the surprising fact that random 
oracles do not help the polynomial time hierarchy. 

THEOREM 7. A l m o s t - P H - -  PH.  

B P P  and the Polynomial  Time Hierarchy. In [Sil] Sipser showed that B P P  is 
contained in the polynomial time hierarch. Gacs improved on this and showed that 
B P P  is actually contained in S2 c~ H2. Using our generator we give a completely 
different, simple proof of this fact. 

Time vs Space and Randomness vs Determinism. In [Si2] Sipser made the 
striking observation that efficient deterministic simulation of probabilistic 
algorithms is intimately related to efficient simulation of time by space (in a certain 
weak sense). 

Assuming that it is possible to explicitly, construct certain strong expanders, 
he proved that either R P  = P, or else some nontrivial space-efficient simulation 
of time-bounded Turing machines is possible. (A space simulation which is 
significantly better than the best unconditional bound of t(n)/log t(n) of Hopcroft, 
Paul, and Valiant [HPV]). We use our generator to give a complexity different 
proof of slightly weaker relation, but using no unproven assumption. 

Note.  Since this manuscript was originally written [BFNW] have strengthened 
some of the results appearing here. 

2. THE GENERATOR 

In this section we state and prove our results for pseudorandom generators that 
look random to small circuits, and thus also to time-bounded Turing machines. 
All the definitions and theorems we give have natural analogues regarding 
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pseudorandom generators for other complexity classes such as depth-bounded 
circuits, etc. It is rather straightforward to make the required changes, and we leave 
it to the interested reader. 

2.1. Definitions 
Informally speaking, a pseudorandom generator is an "easy to compute" function 

which converts a "few" random bits to "many" pseudorandom bits that "look ran- 
dom" to any "small" circuit. Each one of the quoted words is really a parameter, 
and we may obtain pseudorandom generators of different qualities according to 
the choice of parameter. For example, the standard definitions are: "easy to 
compute" = polynomial time; "few" = n ~ (for some 0 < e < 1); "many" = n; "look 
r andom"=  subpolynomial difference in acceptance probability; and "small"= any 
polynomial. We wish to present a more general trade-off, and obtain slightly 
sharper results than these particular choices of parameters alow. Although all these 
parametes can be freely traded off by our  results, it will be extremely messy to state 
everything in its full generality. We will thus restrict ourselves to two parameters 
that will have multiple purposes. The choice was made to be most natural from the 
"simulation of randomized algorithms" point of view. 

The first parameter we have is "the quality of the output," this will refer to three 
things: the number of bits produced by the generator, the maximum size of the 
circuit to the generator "fools," and the reciprocal of difference in accepting 
probability allowed. In general, in order to simulate a certain randomized 
algorithm, we will require a generator with quality of output being approximately 
the running time of the algorithm. 

The second parameter is "the price" of the generator, this will refer to both the 
number of input bits needed and to the logarithm of the running time of the 
generator. In general, the deterministic time required for simulation will be 
exponential in the "price" of the generator. 

DEFINITION. G =  {G, : {0, 1}z(")~ {0, 1}"}, denoted by G:l--,n, is called a 
pseudorandom generator if for any circuit C of size n: 

IPr[C(y) = 1] - P r  [C(G(x))= 1]1 < 1/n, 

where y is chosen uniformly in {0, 1} n, and x in {0, 1}( 

We say G is a quick pseudorandom generator if it runs in deterministic time 
exponential in its input size, G e DTIME(2°(tl). 

We will also define an extender, a pseudorandom generator that only generates 
one extra bit: 

DEFINITION. G={Gl: {0, 1} l~{0 ,  1} t+l} is called an n-extender if for any 
circuit C, of size n: 

IPr[C(y) = 13 - P r  [C(G(x))= 1]l ~< l/n, 

where y is chosen uniformly in {0, 1} '+1, and x in {0, 1}( 
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We say G is a quick extender if it runs in deterministic time exponential in its 
input size, G E DTIME(2°(O). 

The major difference between our definition and the "normal" definition is the 
requirement regarding the running time of the algorithm: normally the pseudoran- 
dora generator is required to run in polynomial time, we allow it to run in time 
exponential in its input size. This relaxation allows us to construct pseudorandom 
generators under much weaker conditions than the ones required for polynomial 
time pseudorandom generators, but our pseudorandom generators are as good for 
the purpose of simulating randomized algorithms as polynomial time ones. The 
following lemma is the natural generalization of Yao's [Ya] lemma showing how 
to use pseudorandom generators to simulate randomized algorithms: 

L~MMA 2.1. I f  there exists a quick pseudorandom generator G: l(n) ~ n then for 
any time constructible bound t = t(n): RTIME( t ) c DTIME( 2°(I(t2))). 

Proof The simulation can be partioned into two stages. First, the original 
randomized algorithm which uses O(t) random bits is simulated by a random 
algorithm which uses l(t 2) random bits but runs in time 2 °(t(t:)). This is done simply 
by feeding the original algorithm pseudorandom sequences obtained by the 
generator instead of truly random bits. Since the output of the pseudorandom 
generator looks random to any circuit of size t 2 and since any algorithm running 
in time t can be simulated by a circuit of size t 2, the output of the generator will 
look random to the original algorithm. Thus the probability of acceptance of this 
randomized algorithm will be almost the same as of the original one. 

In the second stage we simulate this randomized algorithm deterministieally, by 
trying all the possible random seeds and taking a majority vote. The number of 
different seeds is 2 t(t2~, and for each one a computation of complexity 2 °(l(t2~) is 
done. | 

2.2. Hardness 

The assumption under which we construct a generator is the existence of a 
"hard" function. By "hard" we need not only that the function cannot be computed 
by small circuits but also that it cannot be approximated by small circuits. There are 
basically two parameters to consider: the size of the circuit and the closeness of 
approximation. 

DEFINITION. Let f :  {0, 1 } ' ~  {0, 1} be a boolean function. We say that f is 
(e, S}-hard if for any circuit C of size S, 

IPr [C(x) =f (x ) ]  - 1/21 < e/2, 

where x is chosen uniformly at random in {0, 1 }n. 

Yao [Ya] shows how the closeness of approximation can be amplified by xor-ing 
multiple copies o f f  A full proof of this lemma may be found in [-BH]. 
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LEMMA 2.2 (Yao). Let f l  ..... fk  all be (~, S)-hard. Then for any 6 >0, the function 
f ( x l  . "  Xk ) deft'ned by 

k 
f ( x l  "" " Xk)= ~, f i (x i )  (mod 2) 

i = l  

is (~k -k- (~, C]2(l - -  e)2S)-hard. 

The kind of hardness we will require in our assumption is the following: 

DEFINITION. Let f = { O ,  1}*~{O,  1} be a boolean function. We say that f 
cannot be approximated by circuits of size s(n) if for some constant k, all large 
enough n, and all circuits C. of size s(n): 

Pr [Cn(x) ¢ f ( x ) ]  > n-k,  

where x is chosen uniformly in {0, 1 }n. 

This is a rather weak requirement, as it only requires that small circuits 
attempting to compute f have a non-negligible fraction of error. Yao's xor-lemma 
allows amplification of such hardness to the sort of hardness which we will use in 
our construction. We will want that no small circuit can obtain any non-negligible 
advantage in computing f 

DEFINITION. Let f :  {0, 1 } * ~  {0, 1} be a boolean function, and let fm be the 
restriction o f f  to strings of length m. The hardness o f f  at m, Hf (m)  is defined to 
the maximum integer h m such that fm is (1/hm, hm )-hard. 

The following lemma is an immediate application of Yao's 1emma. 

COROLLARY 2.3. Let s(m ) be any function such that m <<, s(m ) <~ 2m; i f  there ex&ts 
a function f in EXPTIME that cannot be approximated by circuits o f  size s(m), then 
for some c > 0  there exists a function f '  in EXPTIME that has hardness 
Hf,(m) >1 s(mC). 

2.3. The Main Lemma 

Given a "hard" function, it is intuitively easy to generate one pseudorandom bit 
from it since the value of the function must look random to any small circuit. The 
problem is to generate more than one pseudorandom bit. In order to do this we will 
compute the function on many different, nearly disjoint subsets of bits. 

DEFINITION. A collection of sets {$1 ..... Sn}, where S ; c  {1 .... l} is called a 
(k, m)-design if: 
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(1) For  al l i ,  

[Si[ = m; 

(2) For  all i ~ j ,  

IS~Sjl ~k. 

A n x l 0-1 matrix is called a (k, m)-design if the collection of its n rows, 
interpreted as subsets of {1..l}, is a (k, m)-design. 

DEFINITION. Let A be a n x l 0-1 matrix, let f be a boolean function, and let 
x =  (xl" . .x t )  be a boolean string. Denote by fA(X) the n bit vector of bits com- 
puted by applying the function f to the subsets of the x's denoted by the n different 
rows of A. 

Our generator expands the seed x to the pseudorandom stringfA (x). The quality 
of the bits is assured by the following lemma. 

LEMMA 2.4. Let m, n, l be boolean integers; let f be a boolean function, 
f :  {0, 1}m~ {0, 1 }, such that Hf(m) ~ n2; and let A be a boolean n x l matrix which 
is a (logn, m) design. Then G : l - ~ n  given by G(x )=fA(x )  is a pseudorandom 
generator. 

Proof We will assume that G is not a pseudorandom generator and derive a 
contradiction to the hardness assumption. If G is not a pseudorandom generator 
then, w.l.o.g., for some circuit C, of size n, 

Pr [C(y)  = 1] - P r  [C(G(x))= 1] > l/n, 

where x is chosen uniformly in {0, 1}' and y is chosen uniformly in {0, 1} n. We 
first show, as in [-GM, Ya], that this implies that one of the bits offA (x) ban be 
predicted from the previous ones. 

For  any i, 0 ~<i~< n, we define a distribution E, on {0, 1} n as follows: the first i 
bits are chosen to be the first i bits o f f . ( x ) ,  where x is chosen uniformly over l bit 
strings, and the other n -  i bits are chosen uniformly at random. Define 

p, = Pr [C(z) = 13, 

where z is chosen according to the distribution E,. Since P0 - P n  > l/n, it is clear 
that for some i, Pi-1 - p i >  1In z. Using this fact we will build a circuit that predicts 
the ith bit. 

Define a circuit D, which takes as input the first i - 1  bits offA(x),  Yl ..... Y,-~, 
and predicts the ith bit, yi. D is a probabilistic circuit. It first flips n - i + 1 random 
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bits, r~ ..... rn. O n  input  y =  (Yl,  ...,Yi 1), it computes  C ( y l ,  . . . ,Y~- I ,  r~ ..... rn). If  
this evaluates to 1 then D will return ri as the answer, otherwise it will return the 
complement  of  r~. As in [ Y a ]  it can be shown that  

1 1 
Pr  l-Dn ( Y l ,  "", Y i -  1 ) = Yi] -- ~ > n-7, 

where the probabil i ty is taken over all choices of x and of  the r a n d o m  bits that  D 
uses. At this point  an averaging argument  shows that  it is possible to set the private 
r andom bits that  D uses to constants  and to achieve a deterministic circuit D '  while 
preserving the bias. 

By now we have constructed a circuit that  predicts Yi from the bits Yl ..... Ye-1. 
To achieve a contradict ion to the hardness assumption we will now transform this 
circuit into a circuit that  predicts y~ from the bits x l ,  ..., x~. W.l.o.g. we can assume 
that  y; depends on xl  ..... xm, i.e., 

Yi = f ( x a . . . x m  ). 

Since y~ does not  depend on the other bits of x, we can rewrite 

Pr  [ D , ( y l ,  . . . ,Yi ~ ) = Y , ] ,  

where x is chosen at random,  as the average over all possible choices of  xm + a -. .x~ 
of the same expression, where only Xl " ' 'Xm are chosen at random.  It  follows that  
for some part icular  choice of values cm + 1 "'" c~ for Xm + 1 "'" Xt, setting xj = ej for all 
m < j  ~< l preserves the prediction probability. 

At this point, however, each one of the bits y; .... , Y~- 1 depends only on at mos t  
log n of  the bits x l  ..... Xm. This is SO since the intersection of the set of  xk's defined 
by Yi and by yj is bounded  f rom above by log n for each i vaj. N o w  we can compute  
each yi as a C N F  (or D N F )  formula of  a linear (in n) size over the bits it uses. This 
gives us a circuit D " ( X l ,  ..., Xm ) that  predicts y~ which is f ( x l ,  ..., xm ). It  is easy to 
check that  the size of  D "  is at mos t  n 2 and the bias achieved is more  than n -2, 
which contradicts the assumpt ion that  HF(m ) > n 2. | 

2.4. Construct ion  o f  N e a r l y  Dis jo in t  Se t s  

This section describes the actual construct ion of the designs that  are used by the 
p seudorandom generator.  In  the construct ion of the generator,  we are given a 
"hard"  function f with a certain "hardness," Hu, and we wish to use it to generate 
a p seudorandom generator  G : l ~ n. Our  aim is to minimize l, that  is, to obtain a 
p seudorandom generator  that  uses the smallest number  o f  r a n d o m  bits. I f  we look 
at the requirements of  Lemma 2.4, we see that  we will require a (log n, m)-design, 
where m must  satisfy HF(m ) >~n 2. This basically determines a min imum possible 
value for m. The following lemma shows that  l need no t  be much  larger than m. 
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LEMMA 2.5. For all integers n and m, such that log n <~ m <<. n, there exists an n x I 
matrix which is a (log n, m)-design, where l =  O(m2). Moreover, the matrix can be 
computed by a Turing machine running in space O(log n). 

Proof  We need to construct n different subsets of { 1 .-- l} of size m with small 
intersection. Assume, w.l.o.g., that m is a prime power, and let l = m 2. (If m is not 
a prime power, pick, e.g., the smallest power of 2 which is greater than m; this can 
at most double the value of m.) Consider the numbers in the range { 1-- .  I} as pairs 
of elements in GF(m), i.e., we construct subsets of {(a ,  b ) ] a ,  b E GF(m)}. Given 
any polynomial q on GF(m), we define a set Sq= {(a ,  q(a))  [a~  GF(m)}. The sets 
we take are all of this form, where q ranges over polynomials of degree at most 
log n. The following facts can now be easily verified: 

(1) The size of each set is exactly m. 

(2) Any two sets intersect in at most log n points. 

(3) There are at least n different sets (the number of polynomials over GF(m) 
of degree at most log n is m l °gn+ l  >~n). 

It  should be noted that all that is needed to construct these sets effectively is 
simple arithmetic in GF(m) and, since m has a length of O(log n) bits, everything 
can be easily computed by a log-space bounded Turing machine. | 

I t  can be shown that the previous design is optimal up to a factor of log n; i.e., 
for given m and n, l is within a log factor of the design with the smallest value of 
I. For  most  values of m this small added factor is not so important;  however, for 
small values of m we may wish to do better. One way to achieve a better design for 
small values of m is to consider mulivariate polynomials over finite fields. These 
multinomials may define sets in a similar manner  as in the previous design, and for 
small values of m, l can be reduced up to about  m log m. We leave the details to 
the interested reader. 

A case of special interest is m -- O(log n). In this case it is possible to reduce l also 
to O(log n). We do not have an explicit construction for this; however, we note that 
such a design can be computed in polynomial time. 

LEMMA 2.6. For all integers n and m, where m = C log n, there exists a n x l 
matrix which is a (log n, m)-design, where 1 = O( C 2 log n). Moreover, the matrix can 
be computed by a Turing machine running in time polynomial in n. 

Proof  The Turing machine will greedily choose subsets of {1 ..... l} of ear- 
dinality m, which intersect each of the previously chosen sets at less than log n 
points. A simple counting argument shows that it is always possible to choose such 
a set, whatever the previous sets that were chosen are, as long as there are at most  
n such sets. (A random subset of size m is expected to intersect a single given set 
of size m in m2/l points; the probability that the intersection is more than, say, twice 
as large can be bounded by 1/n using Chernoff bounds.) The running time is 
polynomial since we are looking at subsets of O(log n) elements. | 
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2.5. Main Theorem 

The main theorem that we obtain is a necessary and sufficient condition for the 
existence of quick pseudorandom generators. 

THEOREM 1. For every function s, 1 <. s(1) <~ 2 l, the following are equivalent: 

(1) For some e > 0  some function in E X P T I M E  cannot be approximated by 
circuits of  size s(lC). 

(2) For some c > 0 there exists a function in E X P T I M E  with hardness s(lC). 

(3) For some c > 0 there exists a quick s(lC)-extender G : l--* l + 1. 

(4) For some c > 0 there exists a quick pseudorandom generator G : l--* s( lC). 

Note. We assume here that (s(1))C<.s(l c) (as is true for most  functions of 
interest as size bounds), otherwise the expression s(l c) should be changed every- 
where to s(lC) c. 

Proof  (1) ~ (2) is Corollary 2.3. 

(4) ~ (3) is trivial. 

(3) --+ (1) 1 Let G = {Gl} be an extender as in (3). Consider the problem o f " I s  
y in the range of G ?". It can be easily seen that this can be computed in exponential 
time; however, no circuit of size s(l ~) can compute it since that circuit would dis- 
tinguish between the output of G and between truly random strings. If G happens to 
be 1-1 then it is also clear that no circuit of size s(l c) can even approximate this 
language. However, if G is not 1-1 then in order to obtain a function which cannot 
even be approximated we will require the following fact which developed from the 
work on random-self-reducability: If every function in E X P T I M E  can be 
approximated to within 1In 2 by circuits of size s(n) then every function in E X P T I M E  
can be computed exactly by circuits of size s(n)poly(n). The proof  of this fact proceeds 
by taking the multi-linear extension of the function, and using the random-self- 
reducability of the extension to correct errors. See [ B F N W  ] for details and references. 

The main part  of the proof  is, of course, that (2) ~ (4). Let f be a function 
in E X P T I M E  with hardness s(U). We build a quick pseudorandom generator 
G : l  ~ n, for n = s(mC/4): For  every n let A,  be the matrix guaranteed by Lemma 2.5 
for m = 11/2. Note that this is an n x l matrix which is a (log n, m)-design. Note also 
that, by our choice of parameters,  H f ( m ) >  n 2. Thus, by Lemma 2.4, the function 
G , ( x ) = f A , ( x  ) is a pseudorandom generator. G =  {Gn } is a quick pseudorandom 
generator simply since f is in EXPTIME.  | 

This theorem should be contrasted with the known results regarding the condi- 
tions under which polynomial time computable pseudorandom generators exist. 
Impagliazzo, Levin, and Luby J I L L ]  prove the following theorem: 

* Our original paper contained an error in the proof of this implication (which is the converse of the 
main result). The error was pointed out to us by Oded Goldreich. The correction appearing here uses 
an idea from [BFNW]. 
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THEOREM [-ILL]. The following are equivalent (for any 1 > e > 0): 

(1) There exists a one-way function. 

(2) There exists a polynomial time computable pseudorandom generator 
G : n * ~ n .  

The existence of polynomial time computable pseudorandom generators seems to 
be a stronger statement and to require apparently stronger assumptions than the 
existence of "quick" pseudorandom generators. 

3. MAIN COROLLARIES 

3.1. Sequential Computations 

The major application of the generator is to allow better deterministic simulation 
of randomized algorithms. We now state the results that we obtain regarding the 
deterministic simulation of BPP algorithms. 

THEOREM 2. 

(1) 
(2) 
(3) 

then, 

(1) 
(2) 
(3) 

I f  there ex&ts a function computable in DTIME(2°(n)), 

that cannot be approximated by polynomial size circuits, 

that cannot be approximated by circuits of  s&e 2 ~° for some e > O, 

with hardness 2 ~n for some e > O, 

BPP  ~ (-]~ > o D TIME( 2n~), 

BPP ~ DTIME(20°gn)~) for some constant c, 

BPP = P, 

respectively. 

Note. Here we mean that for i = 1, 2, 3, assumption i implies conclusion i. 

Proof Using Theorem 1, (1) implies the existence of a quick pseudorandom 
generator G : n ~ n  for every e > 0 ,  and (2) implies the existence of a quick 
pseudorandom generator G : (log n)C~ n for some c > 0. (3) implies the existence of 
a quick pseudorandom generator G : C l o g  n ~ n for some c > 0. This can be seen 
by modifying the proof of Theorem 1 as to use the design specified in Lemma 2.6 
instead of the "generic" design (Lemma 2.5). The simulation results follow by 
Lemma 2.1. | 

3.2. Parallel Computation 

The construction of the generator was very general, it only depended on the 
existence of a function that was hard for the class for which the generated is 
intended. Thus we can obtain similar simulation results for other complexity classes 
under analogous assumptions. We will now state the major simulation results that 
we obtain for parallel computation. 
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THEOREM 3. 

then 

I f  there exists a function in PSPACE that 

(1) cannot be approximated by NC circuits or 

(2) cannot be approximated by circuits of depth n ~ (for some constant ~ > 0), 

(1) R N C ~  N~>oDSPACE(n~), 

(2) RNC c DSPACE(polylog), 

respectively. 

Note. Here we mean that for i = 1, 2, assumption i implies conclusion i. 

Proof. The proof is the straightforward adaptation of our pseudorandom 
generator to the parallel case. The important point is that the generator itself is 
parallel and, indeed, in the proof of the main lemma, the depth of the circuit C 
increases only slightly. | 

3.3. Constant Depth Circuits 

A special case of interest is the class of constant depth circuits. Since for this class 
lower bounds are known, we can use our construction to obtain pseudorandom 
generators for constant depth circuits that do not require any unproven assump- 
tion. These results appear also in a previous paper of ours IN]  with more complete 
proofs and some extensions. 

Our generator is based on the known lower bounds for constant depth circuits 
computing the parity function. We will use directly the strongest bounds known 
due to Hastad [Ha] .  

Tr~OREM (Hastad). For any family { Cn } of circuits of depth d and size at most 
2 n~/~d+l~, and for all large enough n, 

[Pr[C,(x) = parity(x)] - 1/21 ~< 2 "l/~d+'), 

when x is chosen uniformly over all n-bit strings. 

Applying to this our construction we obtain 

THEOREM 4. For any integer d, there exists a family of functions: {Gn : {0, 1 } t ~  
{0, 1}n}, where l= O((log n) 2d+6) such that 

(1) { Gn } can be computed by a log-space uniform family of circuits of  polyno- 
mial size and d + 4 depth. 

(2) For any family { C, } of circuits of polynomial size and depth d, for any 
polynomial p(n) and for all large enough n, 

1 
]Pr[Cn(y) = 1] -Pr [Cn(Gn(x ) )=  1]l <~p(n)' 

where y is chosen uniformly in {0, 1 }" and x is chosen uniformly in {0, 1 }( 

571/49/2-2 
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Proof  Again Gn =fA,, where f is the parity function, and An is the design 
described in Section 2.3 for m =  (log n) d+3. Note that: (1) the generator can be 
computed by polynomial size circuits of depth d+  4, since it is just the parity of sets 
of bits of cardinality (log n)a+3; (2) all the considerations in the proof of correct- 
ness of the generator apply also to constant depth circuits. In particular the depth 
of the circuit C in the proof of Lemma 2.4 increases only by one. | 

We can now state the simulation results we obtain for randomized constant 
depth circuits. Denote by R A C  ° ( B P A C  °) the set of languages that can be 
recognized by a uniform family of probabilistic constant depth, polynomial size 
circuits, with one-sided error (two-sided error bounded away from one-half by 
some polynomially small fraction). 

THEOREM 5. B P A C  °, R A C  ° c Uc D S P A C E ( ( l o g  n) c) and B P A C  °, R A C  ° 
U c DTIME(2°°gn)C) • 

Denote by # DNF the problem of counting the number of satisfying assignments 
to a DNF formula, and by Approx-# DNF the problem of computing a number 
which is within a factor of 2 (or even 1 +n  k) from the correct value. Clearly 
# D N F  is # P complete. However, our results imply that: 

COROLLARY 3.1. Approx- # DNF ~ DTIME(2(I°g')~4). 

Proof  Karp and Luby [KLu] give a probabilistic algorithm for Approx- 
# DNF that with high probability outputs a number which is within a factor of 2 
of the number of satisfying assignments. It is not difficult to see that this algorithm 
can be implemented by a random-AC ° circuit of depth 4. The output of our gener- 
ator may be used by this circuit instead of truly random bits without significantly 
changing the probability that the output of the circuit is in any fixed range. (Since 
otherwise we could add a comparator to the circuits and obtain a one-bit constant 
depth circuit that distinguished between random and pseudorandom strings.) | 

3.4. Random Oracles 

The existence of our pseudorandom generator for constant depth circuits has 
implications concerning the power of random oracles for classes in the polynomial 
time hierarchy. Let C be any complexity class (e.g., P, NP). As in [BM] we define 
the class almost-C to be the set of languages L such that 

P r [ L ~ C  A ] = 1, 

where A is an oracle chosen at random. The class almost-C can be thought of as 
a natural probabilistic analogue of the class C. 

The following theorem is well known [Ku, BG] and underscores the importance 
of BPP as the random analogue of P: 

TI-mOREM. BPP = almost-P. 

Babai [Ba] introduced the class AM. An AM Turing machine is a machine that 
may use both randomization and nondeterminism, but in this order only: first flip 
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as many random bits as necessary and then use nondeterminism. The machine is 
said to accept a language L if for every string in L the probability that there exists 
an accepting computation is at least ~, and for every string not in L the probability 
is at most ½ (the probability is over all random coin flips, and the existence is over 
all nondeterministic choices). The class AM is the set of languages accepted by 
some AM machine that runs in polynomial time. The randomization stage of the 
computation is called the "Arthur" stage and the second stage, the nondeterministic 
one is called the "Merlin" stage. For  exact definitions as well as motivation refer to 
[Ba, BaM];  also see [GS] .  

[BaM, GS]  raised the question of whether A M = a l m o s t - N P ?  This would 
strengthen the feeling that A M  is the probabilistic analogue of NP. Our results 
imply that this is indeed the case. 

THEOREM 6. A M  = almost-NP. 

Proof We first show that A M  c almost-NP. Given an A M  machine we can first 
reduce the probability of error such that for a given e > 0, on any input of length 
n, the machine errs with probability bounded by e4 -n. An NP machine equipped 
with a random oracle can use the oracle to simulate the Arthur phase of the A M  
machine. For  any given input, this machine will accept with the same probability 
as the A M  machine. By summing the probabilities of error over all possible inputs 
we get that the probability that this machine errs on any input is at most e. Since 
e is arbitrary we get that A M  c almost-NP. 

We will now prove almost-NP c AM. We first prove the following fact: 

FACT. I f  L ~ almost-NP then there exists a specific nondeterministic oracle Turing 
machine M that runs in polynomial time such that for an oracle A chosen at random: 

P r I M  a accepts L ]  ~> 2. 

Proof (of fact). Since there are only contably many Turing machines, some fixed 
Turing machine accepts the language L on a non-zero measure of oracles. By using 
the Lebesgue density theorem, we see that it is possible to fix some finite prefix of 
the oracle such that for oracles with this prefix the Turing machine accepts L with 
probability at least ~. Finally, this prefix can be hard-wired into the Turing 
machine. | 

Up to this point we have only used the standard tools. The difficulty comes when 
we try to simulate M (with a random oracle) by an A M  machine. The difficulty lies 
in the fact that the machine may access (non-deterministically) an exponential num- 
ber of locations of the oracle, but A M  computations can only supply a polynomial 
number of random bits. We will use our generator to convert a polynomial number 
of random bits to an exponential number of bits that "look" random to the 
machine M. 

Let the running time of M be n k. We can view he computation of M as a large 
OR of size 2 nk of all the deterministic polynomial time computations occurring for 
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the different nondeterministic choices. Each of these computations can be converted 
to a CNF formula of size 2 nk over the oracle entries. Altogether the computation of 
M can be written as a depth-2 circuit of size at most 2 2nk over the oracle queries. 

Our generator can produce from 2n l°k random bits 2 2nk bits that look random to 
any depth-2 circuit of this size. So the simulation of M on a random oracle 
proceeds as follows: Arthur will flip 2n l°k random bits and then M will be simulated 
by Merlin; whenever M makes an oracle query, the answer will be generated from 
the random bits according to the generator. Note that this is just a parity function 
of some subset of the bits, which is clearly in P. Since the generator "fools" this cir- 
cuit, the simulation will accept with approximately the same probability that M 
accepts on a random oracle. | 

Exactly the same technique suffices to show that for any computation in PH, the 
polynomial time hierarchy [St, CKS],  a random oracle can be substituted by an 
"Arthur" phase. Applying to this the fact that B P P  ~ 272 c~ H 2 (see next subsection) 
allows simulation of the "Arthur" phase by one more alternation and thus we obtain: 

THEOREM 7. almost -PH = PH. 

3.5. B P P  and the Polynomial Time Hierarchy 

In ESil] Sipser showed that BPP could be simulated in the polynomial time 
hierarchy. Gacs improved this result and showed that simulation is possible in 
Z 2 c~ H2. In this section we give a new simple proof of this fact. 

THEOREM 8 (Sipser and Gacs). B P P  ~ 272 c~ H 2. 

Proo f  Because B P P  is closed under complement it suffices to show that 
B P P  ~ 272. The main idea is that a pseudorandom generator that stretches O(log n) 
random bits to n pseudorandom bits can be constructed in 272- To simulate B P P  

then, a $2 machine will then run over all of the polynomially many possibilities of 
the random seed. 

To obtain such a pseudorando.m generator, using our construction, we only need 
a function with exponential hardness (specifically we want a function on O(log n) 
bits with hardness which is O(n2)). Such a function can be found in 272: A simple 
counting argument shows that such a function exists (although non-uniformly), and 
verifying that a function on O(log n) bits has, indeed, a high hardness can easily be 
seen to be in Co-NP. (The function can be described by a polynomial-size table, and 
the verification can be done by nondeterministically trying all circuits of size n2.) 

Thus the simulation of B P P  will proceed as follows: (1) Nondeterministically 
guess a function on O(log n) bits with high hardness (first alternation). (2) Verify 
that it is indeed hard (second alternation). (3) Use it as a basis for the pseudo- 
random generator, using our construction. (4) Try all possible seeds. | 

Actually, this proves a slightly stronger statement, namely that B P P  c Z p P  ue. 
( Z P P  NP is the class of languages that have polynomial time, randomized, zero error 

algorithms, using an NP-complete oracle.) 
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3.6. Randomness and Time vs Space 

Our generator is based on the assumption that there exists a function in, say 
DTIME(2") ,  that cannot be approximated by small circuits. In this section we show 
that if this assumption does not hold then some nontrivial simulation of time by 
space is possible. 

This result shows that either randomized algorithms can be simulated deter- 
ministicaUy with subexponential penalty, or that, in some sense, an algorithm that 
runs in time T can be simulated in space T 1- ~ for some ~ > 0. This simulation is 
significantly better than the best known simulation of time T in space T/log T due 
to Hopcroft, Paul, and Valiant [HPV] .  A result of a similar flavor, giving a trade- 
off between simulation of randomness by determinism and of time by space, was 
proved using different methods by Sipser [Si2] under an unproven assumption 
regarding certain strong expanders. 

Consider the following function F: On input (M,  x, t )  the output is a representa- 
tion of what Turing machine M does on input x at time t. Where the representation 
includes the state that the machine is in and the location of the heads. Moreover, 
consider a language L which encodes this function F, and let L ,  be the restriction 
of L to strings of length n. 

Hypothesis H1 (e, n): There is a circuit of size 2 (1-~)n that computes L, .  

We will show that if Hypothesis H1 is true then some non-trivial simulation of 
time by space is possible, and if it is false then we can use our construction to 
obtain a pseudo-random bit generator. 

LEMMA 3.2. I f  Hypothesis H1 (e, n ) i s  true for some e> 0 and all sufficiently 
large n then for some constants C > 1 and e' > O, and for every function T(n) = ~ (  Cn), 
D TIM E(  T(n) ) = DSPACE(  T ~- ~'(n) ). 

(This result is similar to results in [KLi ]  "translating" non-uniform upper 
bounds to uniform ones.) 

LEMMA 3.3. I f  for every ~ > O, Hypothesis H1 (e, n) is false for all sufficiently 
large n, then for every e > 0 and every c > O, there exists a polynomial time generator 
that converts n ~ truly random bits to n bits that look random to any circuit of  size n c. 

Proof  (of Lemma 3.2). We will show that (1) if for some ~>0,  Hypothesis 
H1 (e, n) is true for all n then L ~ D S P A C E ( 2  (l-`)n) and that (2) this implies the 
lemma. 

(1) A space-efficient algorithm for L is as follows: The machine tries all cir- 
cuits of size 2 (1-~)n; for each one it checks whether this is indeed the circuit for Ln. 
Once it finds the correct circuit, it uses it to look up the answer. Note that checking 
whether the circuit is the correct one is easy, since it only needs to be consistent 
between consecutive accesses to the same cell. 
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(2) Consider any Turing machine M running in DTIME(T(n)) ,  where 
T(n)-~ 2 t(n). Whether the Turing machine accepts or not can be derived from the 
value of F ( ( M ,  x, T (n) ) )  which is encoded by Zm, where m is the size of the input 
which in this case is n + t(n) + K, where K (a constant) is the length of the descrip- 
tion of M. This can be computed in DSPACE(2  (1 ~)m). For  proper choices of C 
and d, (1 - e ) m ~ < ( l - g ' )  t(n), and the lemma follows. | 

Note. Actually a stronger statement can be made, as under the assumption H1 
the simulation mentioned can even be performed in X 2 -  TIME(T(1- ')(n)) .  

Proof (of Lemma 3.3). First note that if H I  (e, n) is false then every circuit of 
size 2 n/2 errs on at least 2 -~n fraction of the inputs, since otherwise there would be 
at most 2 (1-~n errors which could be corrected by a table. Next, Yao's xor lemma 
(Lemma 2.2) allows amplification of the unpredictability by xoring disjoint copies 
of L: for any constant c' (assuming that e is small enough), there exists a constant 
d, so that by taking 2 a~n disjoint copies we obtain a function over N = n 2  d`" 
variables such that every circuit of size, say, 2 n/4 cannot achieve bias of better than 
N c,. Thus this new function has hardness H(N)>~N c'. This hardness suffices 
(by Theorem 1) for constructing a pseudorandom generator as required by the 
lemma. | 

The exact statement of the theorem we obtain is, thus: 

THEOREM 9. One of the two following possibilities holds: 

(1) B P P c  N~>oDTIME(2"~). 

(2) There exist ~ > 0 and C > 1 such that, for any function T(n) = I2( C~), every 
language in DTIME(  T(n) ) has an algorithm, such that for infinitely many n, runs in 
S P A C E  (actually even Z2-TIME ) T( i - ' / ( n )  on all inputs of  length n. 

Proof If for every e > 0 Hypothesis H 1 (e, n) holds for only finitely many n then 
Lemma 3.3 assures the existence of pseudorandom generators stretching n ~ bits to 
n bits and, by Lemma 2.1(1), is true. Otherwise the algorithm in the proof  of 
Lemma 3.2 will work for some e > 0 and infinitely many n which implies (2). | 
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