Science of Computer Programming 77 (2012) 81-82

Contents lists available at SciVerse ScienceDirect

cience of Computer
rogramming

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Editorial

Introduction to the Special Issue on Automatic Program Generation for
Embedded Systems

This special issue contains three papers devoted to the automatic generation of programs for embedded systems.
Automatic program generation is a form of meta-programming, where a high-level program is automatically generated for the
programmer using some program generator tool. Embedded systems are a natural target for automatic program generation.
Program generator tools may range from simple pre-processors through to complete implementations of new languages,
or to tools that build a software product line from libraries of components, tailoring the final software to the specific needs
of the product. The special issue arose out of a workshop on automatic program generation for embedded systems, held
in Salzburg, Austria in late 2007. Following the workshop, an open call was issued for extended, journal quality papers to
explore key issues associated with this emerging and increasingly important research area.

As a form of machine translation, automatic program generation is related to compilation. It differs in a number of
respects. Firstly, the generator produces code in a high-level programming language, such as C, C++, Java, ML or Haskell.
This must then be compiled or interpreted so that it can be executed on the target platform. Secondly, automatic program
generation often involves programmer intervention to direct the generator tool. In some approaches, such as the staged
meta-programming used in Meta-ML, it may even involve the programmer writing rules that govern how meta-level source
is translated to the high-level target.

The main motivation for using automatic program generation is to provide abstractions/features that are not present in
the target language, so reducing the cost of code development/maintenance, enhancing flexibility and improving time to
market. As a way of translating high-level programs, automatic programming has a number of advantages over conventional
compilation. The main advantages are that program generators are much simpler than full compilers, and so can be written
much more rapidly; that full advantage can be taken of an existing language implementation, so existing front-end and
back-end tools, code generators, optimisers etc. can all be exploited without needing to be re-developed; that generated
code automatically complies with the code standards or language requirements that may be enforced by some companies
or other organisations; and that the developer is not bound to a (possibly small) language developer, but can continue to
use generated code even if the generator tool is no longer supported or available. The main disadvantages are that errors
are often reported in terms of the target language and it may also be necessary to modify/specialise the generated target
code. It follows that the programmer must have a working understanding of both source and target language, and be able
to relate errors and code from the two levels.

The boundary between program generation and compilation becomes a little blurred when very high-level languages use
a high-level language as a compilation target. This is becoming an increasingly important technique, since it allows reuse
of code generators and other parts of the compiler tool-chain without needing to integrate with the internals of a specific
compiler. Done properly, this considerably reduces the effort required to produce a compiler for a new high-level language,
and can dramatically enhance both reliability, performance and portability. A related approach is that of Embedded Domain
Specific Languages, where the compiler for the new source language is developed in a host language, essentially extending
the host language constructs to cover those of the new language. This brings additional advantages, since all host features
can be used directly by the new domain-specific language. In this special issue, we consider these and similar techniques to
be part of the broad spectrum of automatic program generation.

Embedded systems form a rich target domain for automatic program generation techniques. The embedded systems
landscape is presently dominated by the use of C. This ensures maximum portability for what may be very obscure
architectures and platforms, and also provides good access to low-level operating system and hardware features, without
significantly impacting performance. However, the use of C has its own drawbacks, notably to do with memory management,
use of pointers, the ease of introducing bugs, and the relatively low level of abstraction, meaning that much repetitive or long-
winded code may be necessary. Deploying program generation techniques means that high-level programming abstractions

0167-6423/$ - see front matter © 2011 Published by Elsevier B.V.
doi:10.1016/j.scico.2011.11.001



https://core.ac.uk/display/82734959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.scico.2011.11.001
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2011.11.001

82 Editorial / Science of Computer Programming 77 (2012) 81-82

may be used without sacrificing any of the many advantages of C. Indeed, tools may include cost or memory information
that would take some effort to derive by hand.

The special issue contains three papers. Each of these papers throws new light on some specific aspect of this increasingly
important area. In their paper on “Automatic Library Migration for the Generation of Hardware-in-the-loop Models”,
Ryssel, Ploennigs and Kabitzsch show how a generative programming technique can handle the diversity of test libraries,
simplifying their management by the programmer. The approach is illustrated using MATLAB/Simulink examples taken
from the automotive domain, where a software product line is built from systems components. The authors have been able
to demonstrate both good performance and good quality in the examples that they have studied. Because the technique is
based around a functional building-block approach, these results should extend beyond the automotive sector to a variety
of other domains. This clearly demonstrates the generality of generative programming approaches.

In their paper on “Separate Compilation of Hierarchical Real-Time Programs into Linear-Bounded Embedded Machine
Code”, Ghosal et al. consider how to compile a hierarchical extension of Giotto so that it targets a virtual machine for
embedded systems, the E-Machine. This involves flattening the hierarchy. However, if this is done naively, there may then
be a code explosion. Here, the use of automatic program generation is as part of the compilation process for the hierarchical
code. The technique produces a version of the source code that eliminates the hierarchical structure, generating E-Machine
code that is linear in the source input.

Finally, in their paper on “Compositional Design of Isochronous Systems”, Talpin et al. introduce an approach to balance
the tradeoff between performance and precision by introducing a formal design methodology that supports non-blocking
composition of a specific class of processes, those that support weak endochrony, that is processes with an internal notion
of time. Importantly, the approach is able to reuse most of the Signal tool suite, which has been commercialised by TNI. This
gives an easily exploitable tool set, a classic outcome from a generative approach.

We hope that the reader derives as much pleasure in reading these papers as we had in editing this volume.

Kevin Hammond

School of Computer Science,

University of St Andrews,

St Andrews, Scotland, UK

E-mail address: kh@cs.st-andrews.ac.uk.

Paul HJ. Kelly

Department of Computing,

Imperial College,

London, UK

E-mail address: P.Kelly@imperial.ac.uk.

Available online 6 November 2011


mailto:kh@cs.st-andrews.ac.uk
mailto:P.Kelly@imperial.ac.uk

	Introduction to the Special Issue on Automatic Program Generation for Embedded Systems

