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1. INTRODUCTION

Necessary and sufficient conditions for a semigroup to be embeddable
in a group were given by Mal’cev [5]. Similar conditions for a ring to be
embeddable in a field are not yet known. Mal’cev [4] has constructed (non-
commutative) integral domains that cannot be embedded in a (skew) field.
His examples are based on the fact that the multiplicative semigroup (of
nonzero elements) cannot be embedded in a group and this clearly implies
that the rings are not embeddable in fields.

The aim of this paper is to construct integral domains that cannot be
embedded in a field, but whose multiplicative semigroups are embeddable
in groups, and this solves the problem stated in [1], p. 277.

If an integral domain R can be embedded in a field, then necessarily the
ring of 7 X n matrices R, satisfies certain properties of matrices over a field.
In particular if C € R, is a nilpotent matrix, then C* = 0. To obtain our
example, we construct an integral domain R with a nilpotent matrix C € R,
such that C* # 0, and then we show the multiplicative semigroup of R can be
embedded in a group. This is obtained by embedding R in an integral
domain %, whose multiplicative semigroup satisfies Doss’ condition [2] for a
semigroup to be embeddable in a group.

* This is a part of the author’s Ph.D. thesis prepared at the Hebrew University
of Jerusalem under the supervision of Professor S. A. Amitsur.

1 Editor’s note: The problem discussed here (first raised by Mal’cev in the 1930’s)
was solved by three people this summer (1966), all working independently and
obtaining different proofs. They are the author, L. A. Bokut’, and A. J. Bowtell.
Mr. Bowtell’s solution (which is comparatively brief) was also submitted to this
Journal and appears as the paper immediately following.
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2. SuMMARY AND NOTATIONS

The following is a list of the notations used and an outline of the construc-
tion of the integral domain R.

(1) F = {0, 1}—the field of two elements.

(2) F[x] = F[#,,..., x,]—the free noncommutative polynomial ring
(with 1) generated by a set of indeterminates {x, ,..., x,}, 7 > 2, over F.

(3) F[[x]]—the ring of formal power series of F[x], namely, infinite
sums of homogeneous polynomials of distinct degrees.

(4) P—the subring of F]x] generated by all monomials x;x; and 1; clearly
P contains those polynomials all of whose homogeneous components of odd
degree are 0.

P-~the subring of F[x]] of those series all of whose homogeneous components
of odd degree are 0.

(5) A = (%;x;—the matrix in P,, whose entry in the sth row and jth
column is xx; .

(6) k—a fixed integer > 1 and z;;—the (i, ) entry of the matrix A%+,
thus, A% = (z;).

{7) T—the ideal in P generated by {z;|1 <i#,j <n} and R = P|T.

J —the ideal in & generated by {2, |1 <4,j<n} and Z = P|T.

The integral domain we construct is obtained by taking a fixed 2 > n
and proving that R is an integral domain. The matrix C = (»;x; + T)€ R,
and C*¥*1 = (z;; + T) = 0, hence C is nilpotent. But since the polynomials
of T are of degree = 2k + 2 and the entries of A" are of degree 2n << 2k + 2,
it follows that C* £ 0. Thus, we have:

THeoreM 1. If k = n, then R is not embeddable in a field.

After proving that R is an integral domain, we show that for n >> 3 (inde-
pendent of k) the multiplicative semigroup R* = R — {0} is embeddable in
a group in the following way:

The injection F[x] — F[[*]] induces the injections P— & and T — 7,
and it is proved that R = P/T can be embedded in # = #/J". Next it is
shown that £ is also an integral domain and hence Z* = % — {0} is a semi-
group which satisfies the cancellation laws. It is then proved that Z* satisfies
the following condition: if two elements of Z* have a common left-multiple,
then one of them is a right-divisor of the other. By a result of Doss [2], this
condition is sufficient for a semigroup with cancellation laws to be embeddable
in a group. Hence #£* is embeddable in a group and R* which is embeddable
in #* is also embeddable in a group.
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The most difficult part of this paper is the proof that R is an integral
domain. This is carried out by choosing unique representatives in every
class of P/T, and giving a method for passing from a polynomial p € P to
the representative of p -+ 7 by a finite number of steps. In particular the
representative of T'is 0. It is then proved that the representative of the residue
class of the product of two nonzero representatives is not 0, which means that
P/T is an integral domain.

3. Tue IpEAL T AND THE REPRESENTATIVES OF R

In this section we shall define the representatives of R = P/T called hence-
forth “special polynomials” or just “‘special”.

We begin by calculating the polynomials 2;; which generate T. By defini-
tion 2,; are the entries of the matrix 4*+1, where 4 = (w; x;). It is readily
seen that 4 = (x,)* (x;) where (x;) = (% ,..., %,) and (x;)* is its transpose.
Then 4% — [()* ()] = (£)* [(5)) (5) ¥ (). Lety = 22 + -+ + 5,2
then (%) (x;)* = %% + --- + x,2 = y. Hence we have

AF = () * yH(x;) = (xiy*xy)
and consequently:

2y = 2%, = % ( y PRI x?k) %, 1<, j<n 1)
1<l S

In view of the fact that F is the field of two elements, every polynomial

p €F[x] can be written in an unique way as a sum of distinct monomials

(the unity 1 is identified with the empty monomial). The set of monomials

which appear in this sum will be denoted by {p}. For p = 0 we obtain the

empty set.

We recall that P is the subring of F[x] of those polynomials which are

sums of monomials of even degree.

DErFINITION. A monomial of P will be called “special” if it is not of
the form mxxZ*x,m’, where m, m’ are monomials of even degree (belong to P)
and 1 <7, j < n. A polynomial p € P will be called “special” if the set of
monomials {p} contains only special monomials.

Let S denote the set of all special polynomials and the following are some
properties of this set.

LemMma 2. S is an additive group and if {p}C{q}, g€ S, then peS.

Proof. Every sum of special monomials is a special polynomial. Thus
a sum (which is also a difference since the characteristic is 2) of two special
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polynomials is special. Clearly the zero-polynomial is special, hence S is an
additive group. If {p} C {g}, then p is a subsum of ¢, and since ¢ € S, p is also
a sum of special monomials and it is therefore special.

Lemma 3. (a) If p, €Flx) and x;p, € S for some 1, then x;p, € S for all 5.
(b) If

P = Z xp; €S
i=1

then all x;p; € S.
(© If

p =Y mxp €S,

f=1

then all p; € S.

Proof (a) x,pl € S means that no monomial of {x;p,} is of the form
mx;x2x,m'(m, m’ € P). Hence if such a monomial appears in x;p; then x,
must be either the first indeterminate in m, or m = 1 and x; = x;+, but then
clearly x;p, will also have such a monomial with x; replacing x; in the begin-
ning, a contradiction.

(b) For i#j {x;p} N{xp;} =¢, hence {xp}C{p}, 1 <i<n As
p € S we obtain by lemma 2 that x;p; € S.

(c) As in (b) we obtain xyx;p; € S for 1 < j < n. Hence, if m is a mono-
mial of {p,}, its degree is even and from the definition it is clear that m is also
special, thus p; € S.

Now, we proceed to prove some similar properties for the ideal T.

We introduce here the notation p®) for the homogeneous component of
degree « of a polynomial p.

LemMma 4. T is a homogeneous ideal.

Proor. Let p € T, then p can be written as a finite combination of multi-
ples of the generators z;;:

p=Y paip., Where p,,pieP. @)
"

The z,, are homogeneous of degree 2k + 2, hence the homogeneous
component of degree « of p is

(“) z P ‘#’up ’(Y) where B +vy+ 2k+2 =«

BBy

and B, y are even; thus p e T.
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Remark. The same proof for 2 and & (defined in 2) yields that J is
a homogeneous ideal in & and the homogeneous polynomials of 7 belong
to T.

Lemma 5. (a) If p, € Flx] and x;p, € T for some i, then x;p, € T for all j.
(b) ff

n
p= Z xp; T,
i=1

then all x;p; e T.

Proof. Let p € T be written in the form (2) and replace the polynomials
. by the sums of their monomials. Thus, p is of the form p = ZmAzimp; ,
where the m,’s are monomials.

(a) Since x;p, € T we can write x;p, = Zmz,;p, and assume that if
m, # 1 thenm, = x;m} , and if m; = 1 then Z, = x,-Ay"x,A = x‘y"x,-h = 2z,
Hence,

Xipy = leiaP:\ + Z”xim:zi,\i,\P:\ ’

where in 2’ we take all the summands of X with m, = 1. Thus,

? ’ » ” ’
xipy = 22, p5 + Zemiz, 05

and hence x;p, € T.
(b) We write

”n

= Zmr\ziﬂ,\p:\ = Z (E(i)m/\ziﬂ,\p:\)v

i=1

where in X(;) we take the summands of 2 with m;, =1 and ¢, =,
or m, = x;m, . Since {Zy} N {Z;} = 0 and {x,;p;} N {x;p;} = & we obtain
x;p; = Zymyz,,; p3 € T for all i,

Our next aim is to prove that each residue class of P/T has one and only
one special polynomial.

4, EXISTENCE

Let m € P be a monomial and denote by 7(m) the number of possible ways
of writing m in the form m,(xx%*x,) m, with m,, m, monomials of even
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degrees > 0. If m is special, then 7(m) =0. For m =x; - Xi, with
20 > 2k 4 2, we have

T(m) = T(xil xizku) + T(xia xi2k+4) + ot T(xim—zk—l xim) (3)

and each term of this sum is either 0 or 1.

Denote by m’ a monomial which is obtained from m by replacing some of
the &’s by «,, , then clearly #(in') > 7(m). In particular, if we replace all the
«’s by x, we get 7(x2) > 7(m). Hence the maximum of r(m) for all monomials
of degree 20 is H(x2) =r (r =0ifa <kandr =a — kif o > k).

Let p € P be homogeneous of degree 2o > 2k. Denote by A, the number of
monomials m € {p} with 7(m) = v, 1 v < 7. We introduce the notion of the
height of p as the non-negative integral vector: ¢ = (A, , A,_; ..., Ay). Clearly,
p is special if and only if its height is (0, 0,..., 0).

For a fixed « consider the lexicographic ordering of integral vectors;
namely, let o’ = (A;, A;_; ,..., A); then o’ << oif thereisavsuchthatA) < A, .
But A, = A, for u > v. The set of heights for a given « is a well-ordered set
under lexicographic ordering (e.g., [3], Section 39).

Lemma 6. If m, m' are monomials of P, 1 < 1, ,..., I, < n, and at least one
of the I's is =~ n then:

-r(mac,-xf1 xka,-m') < r(mxx2xm’).

Proof. By replacing some «’s in a monomial m by x,, its 7 does not
decrease. Hence each summand in the representation (3) of r(mxx} - x} x;m’)
is < than the corresponding summand of 7(mxx2*x,m’) where the inequality
is strict for at least one summand, since (/4 ,..., ;) 7% (n,...,n) and so
(agey - %7 x;) = 0, m(xa37%;) = 1. Thus, we obtain

(msy, -+ &7 xm") < T(mxxn % m’).

LemMa 7. If p € P is homogeneous and mxx2x;m’ (m, m' & P) is one of its
monomials, then the height of p' = p + mz,;m’ is lower than the height of p.

Proof. Let 6 = (), ,..., ;) be the height of p and let w(mx;xZx,m’) = v.
Since mx,xZx,m’ €{p}, by definition of o we have A, > 1. We assert that the
height of p" is o' = (A; ,.o.y Ay, A, — 1, A,y .00y A7), Which is by definition
lower that ¢. Indeed, by (1) we have

g 2 il 42 ’
mz;;m = m ( z x,-xll xlkx,-) m.
1€ lnnlpsn
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Thus, p’ = p + mz;;m’ does not contain mx;x2*x;m’ as this monomial appears
in p and in mz;m’ and we deal with a ring of characteristic 2. Hence, if a
monomial of p” does not belong to p, it is of the form mxxf -+ x? x;m’ where
(4 5.y ) 5 (n, m,..., ), and by the previous lemma we have

(i, e x5 2’ ) < v(mxgg xm’) = v.

It follows therefore that, if the height of p"is o’ = (A, ..., Alpy , Ay, Ay ey AY),
then A, =X, .., ALy = Ay and A = A, — 1, whlch proves our assertion.

Lemma 8. Let p be homogeneous of degree 20 > 2k and define g, = p; if

g, contains a nonspecial monomial "%y, 2 x, s Set Guyy = g, + mz2; i, m,
for u =0, 1,... . Then the chain q, , q, ,... 1s ﬁmte and its last element is speczal

Proof. Let o, be the height of ¢,. By the previous lemma we have:
0y > oy > --+ and by the well-ordering of the set of heights (of homogeneous
polynomials of degree 2a), this chain must terminate at o;, say. Hence ¢;
does not contain a monomial of the form mxx2x,m'(m, m’ € P) and it is
therefore special.

CoroLLARY. If pe P is homogeneous, then p = p, + p; with po€e S,
preTanddegpy =degpif p¢ T, degp, —degpif p ¢ S.

Indeed, if deg p < 2k, then p is special and we take p, = p and p, = 0. If
deg p > 2k, then in the previous lemma we have obtained

-1

=p+ ) mz,m,.
p=0

Hence we take p, = ¢; which is special and p; =3\ tm WZi, m, which
belongs to 7. If p ¢ T then p, #~ 0 and deg p, = deg p. Slrmlarl;r, ifpesS
then p, 54 0 and deg p, = deg p.

Since every p € P can be expressed as a sum of its homogeneous compo-
nents and S, T are additive groups, it follows immediately that

Tueorem 9. Every residue class of P|T contains a special polynomial.
Using the above corollary we prove here one additional lemma which
will be used in the next section.

LemMa 10. Ifr €T, then r can be written as a sum of the form Zmz m’,
where m, m’ € P are monomials and all first terms m are special.

Proof. We shall prove that r = Zps;;p’ where pe S, p' € P and our
result will follow by replacing p and p’ by the sum of their monomials.
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Since r € T we can write r = Zpz,,p’, where p, p’ € P and clearly we may
assume that they are homogeneous. If all the polynomials p in this sum are
special the result is proved. Assume that this is not the case and look at
the polynomials p ¢ S of maximal degree v, say. Write p = p, + p, with
€S, preT and if p, #0 then degp, = degp =v. Note that since
p = Z'pmz‘“,“p,"# and all summands are of the same degree, then
deg p,, < deg p, . Now, we write

r = Zpzyp' = Z'pz;;p’ + L payp’,

where in 2 we take all summands of Z with p ¢ S and deg p = v, and for
those p we have: p = p, + Eplﬁ;“,“p{“. Hence,

r=Z'po2up’ + Z'Zp12i 5 (P12up") + Zpzip’.

This can be written in the form 2gz,,q" with ¢ equal to p,, p,, or p which
appears in Z”. Now p, € S, deg p,, < deg p = », and for those p ¢ § which
appear in 27, deg p < v (by the maximality of v). Hence we have r = Zgz,;q’
with ¢, ¢’ € P and the degree of a ¢ ¢ S is < v. Repeating the above process
several times, the maximal degree » lowers in each step and the final repre-
sentation of r is the required for obtaining our lemma.

5. UNIQUENESS
In this section we prove the following theorem.

THEOREM 11. Every residue class of P|T contains only one special polyno-
mial.

Proof. The theorem will follow if we prove that S N T = {0}. Indeed let
P, and p, be any two special polynomials of the same residue class. Then
P, — P2 € T and since S is an additive group we have p, — p, € S. Thus,
if SN T ={0} it follows p; — p, = 0 and hence p; = p,.

Assume that SN T = {0}. Let ¢ 0 be a non-zero element of (cl)
minimal degree in S N T, such that it has a representation ¢ = Zmz;m’ as
in Lemma 10 (m, m’ € P are monomials and m € §) with a (c2) minimal
number of summands d, say. Among the representations of ¢ with 4 summands
we choose one with (c3) Z deg m maximal, and let us write it in the form

d
= z m/lzt',\!,\m:\ . (4)

-1
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We shall obtain a contradiction by proving in six steps (A)-(F) that (4)
cannot exist.
For convenience we set

9= m)lzi,\i,\m)t" A= 1,"'7 d (5)
and so (4) has the form: ¢ = 3°¢_, ¢, . Note that ¢, # g, for A # X’ since the
characteristic is 2.

(A) There exists x; such that q, = 9, for all q, of (4) and without loss
of generality we may assume x; = x, .

Proof. We write, as in the proof of Lemma 5 (b),

d n
q= Z 9y = Z 25
a=1 j=1
where in 2y we take the summands ¢, of the form x4;. Thus
g =Z271%Z ()4, , and by Lemma 3(b) we have gy = Z59) = x,Z(»g; € S
and, as all g, € T by (5), we have g; € SN 7. By the minimality of 4,
¢ ¥ 0 only for one j.
Ifg=guandi 1, let ¢ =% 35 ¢, . Clearly ¢’ satisfies all conditions
(c1)-(c3) with the same d [by Lemma 3(a)].
We assume henceforth: ¢, = x,q; for A = 1,..., d.

(B) There exists a my in (4) equals to 1 and so g, = 2y,m; .

Proof. Assume the assertion (B) is not true. Then degm, >0 for
I <A< d and since degm, is even we have: m, = x,x;m;. Thus,
g =27_12;)q:, where Z(;q, is the sum of the g)’s with m, = x,x,m] .
By Lemma 3(c) we have X;g, € S and since all ¢, € T, Z(;,¢, € SN T for
1 < j < n. By the minimality of d we must have ¢ = X;)¢, for some j and
therefore ¢ = xyx; 3%, myz;,;m, . But ¢’ = Zmyz;;,my € T and it is clear
that 0 % ¢’ €S, hence we have 0 52 ¢' € SN T. But degg¢’ < deggq and
this contradicts the minimality of the degree of ¢ which proves that some
my, = 1.

The second part of (B) follows immediately. Indeed, some ¢, = 2,5,
and 7, = 1 since ¢, = x,¢; by assumption.

(C) The sum (4) does not contain n summands 0, > 1 <1< n, such that
4y, = mya(xyx;my) where my , my, i, j are the same for all gy, and such that
deg my < 2k — 2Am,, = my , i) =i, jy, = I, my = xy0;mp).

Proof. If this is not the case we shall construct a representation of ¢ with

the same number of summands and for which Xdegm > Y% degm,
which will contradict the assumption of maximality of 3% , deg m, .
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Thus, let g, = mo2a(xxmg), 1 < I < n, and deg my < 2k — 2
We recall that the matrix 4 = (¥»;) and A*! = (2;). Since
A¥ g = A*+? = AA*H we obtain for the (7, j)-entry of A*+2

n n

Z RiX¥s = Z X:X1214
=1 =1

Using this equation we obtain

n

n n
’ I
Z 9= 2 My X Xy = My (Z z,-,x,x,-) my
=1 =1 =1

n

n
=my, (21 xixlzli) my = lZl (o) 2 myg

Since degm, << 2k — 2 we have deg (myx;x;) < 2k and hence myxx; is
special. Replacing the partial sum Y7, g, of (4) by the equal sum
3 1 (mgx;x;) 2,;my we obtain a new representation of the same ¢ (of the
form Zmz,;m’, m, m’ € P monomials, m € S) with the same number of sum-
mands (since 4 is minimal). For this representation we have:

n d
Ydegm= Y degm,+ Y degm, +2n>Y degm,.
A=1

A%y =1

The next two steps deal with common monomials of two and of three
summands of (4).

(D) Let gq,, qg be summands of (4) such that {g,} N {gg} # 9. If
deg mg = deg m, then q, = gy and if 0 < degmg — degm, = 2v < 2k then

{o.0 N g}t = {mﬂx,.ﬁyk"’x,-um;}. (6)
Proof. By (1) and (5) we have

L ’. . k ’
Qo = MX; Y X5 My gp = MpXigy XjgMtig . ()

By assumption {g,} N {gs} # @, thus let m {g,} N {gp}. Since me{g,} we
have m = m “xi“xfl xgkqum:‘ for some 1 < s ..., § < 7, and also m € {gg},
hence m = mgx; xfk xflxism;, for some 1 < t,,..., #, < n. (Note that f9r
convenience we fave written the indices in the two representations of m in

reverse order.) Thus

— 2 L.x2 /= 2 . ,2 ’
M =M% X, "* Xy Xy My == MkygXy, " Ky XjgMp . (8)
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If deg m, = deg m, , we deduce

mo=mg, X =%, XX = XX, X, =y, mo=mg.
Hence by (7) g, = gz and the first assertion of (D) is proved.
Next, let degmy = degm, — 2v and 0 << v < k. In this case it follows
from (8) that my = mx, 2 -~ 2! x, and therefore
a 1 y=1 %

. gl 2 g2 g’
xsu 3v+1 xskxh 'thk xtu+lxtv xtlx’ﬂmﬂ’

from this we obtain

— 2 e T o
X5, = xiﬂ ’ Foypr T Xy T X T Xy Xig = %y
= x‘ x b tlxjﬂmS
Thus
2 (XX} 2 — .
M Xy, o0 Xy, Xig == Mg m, = x, x,y L Xy ,amﬂ 9)

and for the first representation of m in (8) we get

— 2 .2 ’
m= ”’Bxia(xsm Xy,) X5 m, .

Since 2 -+ % is a monomial of y*~*, we deduce that m € {mypx, Y kg m, ')
541 L
This relation is true for any monomial of {g.} N {gg}, and hence

0.} 0 (g9} C (mgmigy*~x, ml).

To prove the inclusion in the other direction, let x2 ---x! be any
-v

monomial of y*-. Since (9) still holds we have

’

mﬁx{gxrl r,_,,xza « (maxt“ 8 xs,, lxip) xpxrl rk_vxfmmu
- 2, 2
- maxiu(xal a‘, 1 iﬁxrl rk_.,) x’.,mzx
and this monomial belongs to {¢,} by (7). Similarly, it belongs to {gg} since
2 3 2 2 2242 a2
Mg¥ "ﬁxﬁ T By ¥ umﬂ: = mgX ‘5(x"1 T Xy KR, x&) x!p"‘;‘ ’

Hence My (x e xl )x,ﬂm; e{g,} N {gg} for all r,,...,7,_, and this com-
pletes the proof of (D)
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(E) If g1,» @, 0, appear in (4), {g\} N (g} # O for all i,j and
degm, <degm,\ <degmA < 2k, then

{91,} N {Qa,} C {qu} N {9,\,}-

Proof. Let degm, — degm, =2v and deg m, — degm, =2u. Then
degm, —degm, =2u +v) < degm, <2k Since {g,} N {gy} # B, we
obtain by (9) with e = A, , 8 = A,,

f = 2 cee x2 4
My, = X5, Xy, | XXy, M, (10)

From {g,} N {g)} # # and deg m, — degm, = 2u we obtain, by (6) with
a = Ay, B = Ay and p replacing v,

{02} O {gs) = Imypsi, 70, i), (1)

Since 2(u + ») < 2k and {g, } N {g,} # @, then by (6) with « = A, , B =X,
and p + v replacing v,

(Ih{-v) ’
- ,\ m/\;}

{qt\l} N {QA,} = {"‘/\, i
and by (10) this is equal to {m,x, y*~(+x] x}

p—1
I L3
LR

o xp g, m 3 But
I is a monomial of y* and therefore

—~ V) tg - ’
{@g N {QA,} C {"‘A,xu yk fit Y %, "‘A,} = {mhx,&yk “xia,"‘a\,}

=10} N {gs,}»
by (11), which proves (E).
Our final step is.

(F) The sum (4) does not contain a summand q, for which
mx; = x,x2 ("“"') O<v<k+ 1.

Proof. The result is true for » = 0 since otherwise we have
m, = 2, x3+! — x,(x2*) x, which is not special, but by assumption on the
representation (4) all m, are special.

Assume the assertion (F) is true for all g with 0 < p v <k + 1 and we
proceed to prove it for v 4 1. If it is not true for v + 1, let ¢, be such that
mx, =% xa(k+1—(v+l)) — xlx:(k«—v)‘ Hence’

2(k~v), k
g4, = mfxt,y x,fm = X1%g ”)J’ xa., o
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Since ¥* = y*y*~* and »* contains x2”, the polynomial

r = 2 200G By, ml = xxy w; ml (12)
contains all monomials of {g,} that begin with x,x3* and these are not special;
now g is special, hence every monomial of r must also appear in another
summand of (4).

Thus, let V = {q,\1 -+ 4s,} be a set of summands of (4) such that g, ¢ V
and {r} C{g, } U --- U{g,}. For simplicity we assume that V' ={g; ,..., an}-
We also assume that V is minimal in the sense that, by omitting any {g,},

ne Unzu {02}

From the minimality of V" it follows that
fg3n{r#0 for 1<AKH (13)
otherwise we omit g, from V. Since {r} C {g,} we have

{gyn{gy#9 for 1<A<h (14)

We prove now two additional properties of V:
(a) degmy <2k —v)for 1 <ALH
(b) ifg,, qr €V and A+ X, then {g)} N {g,} = 0.

Proof of (a). First deg m, < 2k, since if deg m, > 2k we obtain
degm, > 2k + 2 and taking a monomial of (13) we see by (12) that it
begins with x,x2* and therefore m, begins with x,x2*, contradicting the fact
that it is special. Thus, deg m, < 2k and therefore

deg (m,x;,) < 2k + 1 = deg (%,%7")

from which it follows, again by (13) and (12), that x,x2* begins with mx;, .

We have also deg m, = 2(k — v) == deg m,, since if equality holds, then
from (14) we obtain by (D) that g, =¢,, but g€ Vand ¢, ¢ V.

If 2(k —v) << degm,(< 2k), then degm; >2(k+ 1 —v) and hence
degm, = 2(k + 1 — ) for some p, 1 <p < v Since xx2* begins with
myx; we obtain myx, = 22214 with 1 < pu < v, but this contradicts
the induction hypothesis. Hence deg m, 2 2(k — ») and (a) is proved.

Proof of (b). Since A 3 X’ we have g, 7 gy. If we assume that {g,} N {g,} #0
then degm, 5 degm, since otherwise ¢, = ¢, by (D). Thus, suppose
degm, << degm, . By (a) we have degm, < 2(k —v) = degm_. Hence
deg m, < deg my» < degm, = 2(k — v) < 2k and {g,} N {gy} # 0. By (14)
it follows that {g,} N {g.} # ¥ and {g,} N {g,} # 9. Thus, the conditions of



RINGS NONEMBEDDABLE IN FIELDS 113

(E) are valid for A, = A, A, =X, A, = 7. Hence {g:} N {g.} C{g:} N {g.}
and since {r} C {g,} we obtain {¢,} N {r} C {g,'} N {r}. From this it follows that
{r} C U, -1 {g.}, which contradicts the minimality of ¥ and (b) is proved.

Having the above properties at our disposal we continue with the proof
of (F).

If g, € V we have {¢;} N {¢.} # 0, and by (a), deg m, << 2(k — v) = degm, .
Let deg m, — deg m, = 26 > 0, then deg m, = deg m, — 286 =
2k — v —8) =2 0. By (D) with « = A, 8§ =7, v = 8§, weobtain
{9} N {g.} = (mx, %, mp), and by (9), mj=x;xL - xlxm,’ But
m.x;. = x,x2%*; hence

{aynie) = {xlx?l(k_l‘)yk_ox?/‘xaa_l xz,lxjvm;}.

Since B — v — 8 == 0, y*~% == y*y*~3¥ and recalling that {r} contains all those
monomials of {g,} that begin with x,xZ*, we obtain

{g:3 0 {1} = {xaxly ™l o whx ml). (13)

Now, let A be such that degm, = min {degm, | 1 < p << h}. In the right-
hand side of (15) we replace x5, by ;? for every I # j, and obtain the polyno-
mial

_ 2k, k—»—38_ 2,2 vee a2 ’
= X %g Y Xy Xeg_, " Xy Xy My .

We have {g;} N {r;} = 0. Indeed, all monomials of {g,} end with
m, = x; %, - xx;m, and all monomials of {r} end with

2 L. xf ! ! a1
XKy, |t Xy Xy my F# m, sINce X, - X; .
We have

{r} C ey~ my =(r3C U {g.5;

p=1

hence if me{r,}, then me{g,} for some g, €V, and g, # ¢, since
{g.} N {r;} = 0. By the minimality of degm, we have degm, > degm,
and we assert that degm, = degm,. Indeed, if degm, > degm,, then
since degm, <degm, [by (a)] it follows that degm, —degm, =
2¢ <28 = degm, — degm,. Then by (15), with g, replacing ¢, and e
replacing 8, we have

{gu) N {r} = {ody 7 45, e wag i) (16)
ny

481/7/1-8
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Now, m €{g, } N {r:} C{g,} N {r}; hence, comparing (16) with {r;} and since
€ << 8, we obtain

2 2 2 .2 2 __ .2
= . %5, = %o -

From this it follows that {g,} N {r} 2{g;} N {r}, hence {r} CU,..{a.}
which contradicts the minimality of V. Thus, we have degm, = degm,,
and hence %, =% and m, = xlea_l xflx,-7m; . Let us define ¢, for
1 =j, by putting p;, = A, so g, has been defined for / = 1,..,n, and
degm, =degm, =2k —v —8) <degm,. Since {g,}N{g} ;é 0, m,
begins with m,x, , then m,x;, =, xz"“"”a) does not depend on I We
denote m, by m, and %y, by x(x, =x if k—v—8=0and x;, = x, if
R—v— 8 > 0). We also denote *ip by x; and xta_lea._a xflijm; by
my (if 8 = 1, then we take m, = my and x; = x;) and obtain m, = xx;m, .

Thus,
k. r ¥ N o ’
Gy = My X%, Y Xy, My, = mXyy %y (00m5) = moZy(%x,m) 17

for [ = 1,..., n. But by (C) the sum (4) does not contain # summands of the
form (17). Thus, from the assumption that (F) is not valid for » 4 1 but is
true for all 0 << u <v + 1, we have obtained a contradiction. Hence (F) is
valid for v 4+ 1, which completes the induction on the validity of (F).

We complete now the proof of Theorem 11.

Choose in (F) v =k -+ 1, then it follows that the representation (4) of ¢
does not contain a summand ¢, such that m x; = x; and which is necessarily
of the form: ¢, = 2y, m, . This contradicts (B) which proves that the sum (4)
does not exist; hence S N T' = {0} and Theorem 11 follows.

6. R HAS NO ZERO-DIVISORS

We have proved that every residue class of R = P/T contains one and
only one representative which is a special polynomial. For p € P, we denote
by S(p) the unique special polynomial of p = p 4 T. Thus, if ¢ is special,
then p = § if and only if S(p) =g¢.

DerFiniTION.  If 0 = p € S and p™ is its nonzero homogeneous component
of least degree, then « will be called the value of p and we shall write ¢(p) = .
For p = 0 we set 9(0) = 0. If § € R we define v(p) = v(S(p)).

Note that v(p) is well defined since S(p) is the unique special polynomial
of p.
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We shall prove that if §, § € R, then v($§) = v() + ©(§), from which it
follows that R has no zero divisors. (In fact, v is a valuation on R.) We first
need some lemmas.

LevMMA 12. Ifpy i pis 2, g EP, then

@ 5(30) = S0
®) Sg) = SES@):
(©) for every a >0, S(p) = (S(p)*.

Proof. (a) and (b) are evident; let us prove (c).

Let p = Zp'*), then by (a) we have S(p) = ZS(p*). By the corollary to
Lemma 8 it is seen that, since p* is homogeneous, then either S(p'*) =0
or S(p®)) is homogeneous and deg (S(p™)) = deg (p**’) = . This implies
that (S(p))* = S(p**’) by the uniqueness of the decomposition of a poly-
nomial as a sum of homogeneous polynomials.

LemMa 13. If p = x,p’ then there exists u € F]x)] such that the monomials
of {p + x,y*u} do not begin with x,x*.

Proof. Let p, be the sum of all monomials of {p} which begin with
x,x2¥; then p, = x,x%u for some u € F[x] (which is 0 if p, = 0). Let p, be
such that p = p, + p, , then the monomials of {p,} do not begin with x,x2*.
Thus,

P+ 2y"u = po + 2xfu + 2" = po + 2,(5F + 5 u.

Since {y*} contains x2, {y* + x3¥} does not contain x2*, and hence the
monomials of {#,(x2* + y*) 4} do not begin with x,x%*, and since the same is
true for {p,} the required result follows.

Lemma 14. If p € P is homogeneous and the monomials of {p} do not begin
with x2¥-1 then the same is true for {S(p)}.

Proof. 1If S(p) = p there is nothing to prove. Assume S(p) # p, then by
Lemma 8 there exists a finite chain p = ¢, ¢, ,..., ¢; such that S(p) = ¢,
and ¢, =¢, + m“z‘u,“m", , wWhere m“x‘“x:"x,“m; €{g.} n=0,1,...,1— 1.
Since g, = p does not contain a monomial which begins with x3*-1, we can
obtain our result by induction; assume the monomials of {g,} do not begin
with x2-1, Since ¢, = ¢, + m,3; ) m, , it is sufficient to prove that

. “ 3 . .
m 2, , m} does not contain a monomial that begins with x2*-1 Let
W ‘“’“ 73 gl "
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m#x,-uxfl x?kx,-um; be any monomial of {muzi“,-ﬂm"‘}. If it begins with x2%1,
then clearly the same is true for m#x,-uxf,kxjuml:; but m#xiﬂxi’“xjum; €{g.},

which contradicts the induction hypothesis.

Lemma 15. If p =37 xyx;p; € T is homogeneous and the monomials of
{p} do not begin with x,x%, then all p; € T.

Proof, By Lemma 12(a) we have

i=1

S(0) = S (3 sitp) = 3, Steuep)

and since p € T we obtain S(p) =37, S(xx;p;) = 0. We shall show that
S(xyx;p;) = xy2%;8(p;) for 1 <<j<n Hence 37, %,2,8(p;) =0 and since
{2,2,S(p;)} N {wyxS(p;)} = O forj #j', we have ,%,5(p;) = 0 which implies
S(p;) = 0 and therefore p; € T.

To prove that S(x,x,p;) = x,x%;5(p,) it suffices to show by Lemma 12(b)
that x,2;5(p;) is special. For j 7 n, 2,%,5(p,) € S since S(p;} € S. It remains
to prove that x,x,5(p,) is special. By assumption the monomials of {p} do not
begin with x,x%* and since {x,x,p,} C {p} the same is true for {x,x,p,}. Hence
the monomials of {p,} do not begin with x2*-! and by the previous lemma it
follows that the monomials of {S(p,)} do not begin with x2*1 and conse-
quently the monomials of {x,x,S(p,)} do not begin with x,x2*, Furthermore,
S(pr) is special so x,x,.5(p,) is special which proves our assertion and hence
our lemma.

The following are common assumptions for Lemmas 16, 17, 18:

a, B, y, h are integers > 0 and o > 8.
b, ¢, r, s €S are homogeneous and p = p®) 7 = r2B) £ Q,
g =(pg)*",  rs = (rs)™.
(Note that if p = 0 then the assumption p = p*) still holds.)

v € Fx] is homogeneous such that xyho = (x;M0) @),

Lemma 16. If B> 0 and pq + rs + x; "0 € T for some j, then there
exist py, 7, €S with py = pi®™ =2 pg, 1o =1 = x5 5% 0 and p, =0
if p =0 such that: pyg + 75 + %90, € T, where either vy, = v or vy = 0.

Proof. Since a >8>0 we have p =37, u;p;, ¥ =Y, x7;. Hence
P9 +rs + % y* = Zx;pig + Zxs + x;, y*w e T and this relation can be
written in the form

% (Pid + 138 +¥0) + Y xlpig +rs)eT

i,
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By Lemma 5(b) we obtain
% (pig + ;8 +y0)eT and x{pgq +rs)eT for £,

and by (a) of the same lemma,
%(p; g + 15,8 + y) € T and x,(p,g + 7)€ T for 1 5= j,.

Since r 7= 0 we have r; # 0 for some 7. If { = j, we take p, = X1Dj, » o = %175,
and v, = v. If i # j, we take p, = x,p;, 7, = xy7; and v, = 0. In both cases
we also obtain that p, = pi* =x;pie S, 0 £ 7y =7 =xryeS by
Lemma 3. Clearly, if p = 0, then all p; = 0 and p, = 0.

Lemma 17. If > 0,0 <h < kandpg + rs + x,9" € T, withp = x,p;,
r=xyro, then for j =1,2,..,n there exist p; — p{*2 €S which is 0 if
p =0, r; =72 € § which is # 0 for at least one j, and w € Fx) with the
same property as v such that: p,q + r;s + x;y*'w e T for all j.

Proof. By assumption, pg + rs + xy*0 is of the form xp’
(p' = pyr + r¢s + y™) and for the u of Lemma 13 we obtain that
%1 y*u = (%;y*u)® and the monomials of {x;p’ + x,y*u} do not begin with
xx2". Let v + y*~*u = w, then w has the same property as v and we have

pq +rs + xyw = (pg + rs + xy™0) + wy*u e T.

Let p =32 %iX;p; , ¥ = 274 %;,%;7;; then since & > 0,

Y xyxiris + % ( Z sz) Y-l

=1 J=1

pg+rs +ayhw =Y xmxpg +
=1

=Y xx(pg + 155 + %" w).
j=1

Now, pg + rs + %, y"w = x;p’ + x,y*u does not contain monomials which
begin with x,x2¥, it is homogeneous and belongs to T} hence Lemma 15
implies that

pigt+rs+aptweT for f=12,..,n
Clearly p; , r; satisfy all the requirements of the lemma.
REMARK. If the assumptions in the previous lemma hold for v =0,
ie. pg +rse T, and if pg + rs does not contain monomials which begin

with x,x2* then the u of Lemma 13 is 0 and hence w = v + y**x = 0 and
pg+rseTforj=1,2,..,n
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Lemma 18. If pg+rseT, then for O <v <min(B, k) there exist
fo=few =xfleS, g =g ® = xgeS withf,=0f p=0 and
g, 7~ 0 such that

fa+es +xyweT, (18)
where w, has the same property as v (for h = k).

Proof. We prove the lemma by induction on ». For v = ( we obtain the
result by Lemma 16 with o = 0, if we take fy = p,, go =7, U5 == 0.

If (18) holds for some v such that » + 1 <min (8, k) then since
a—v =B —v>0and & —v >0 we obtain (by Lemma 17 with p = f,,
r=g,,v=wu,, and o« — v, § —v, &k —, replacing «, B, A, respectively)

pig trs+xy-=weT for j=1,.,n

Let j be such that r; 7 0 then since 8 — (v 4 1) > 0 we obtain the result by
Lemma 16 with p;, 7;, x;, w replacing p, ¢, %; , v, if we take f,., = p,,

8v+1 = Ty Wyyg = Vg -
Now we turn to the main result of this section which is

THEOREM 19. R has no zero-divisors.

Proof. The theorem will follow if we prove that, for §, § € R,

op0) = o(f) + v(@. (19)

Indeed, let p, § # 0 then by definition it follows that v($), v(§) are finite and
hence by (19) ©(37) is finite and therefore $7 = 0.

Let us prove first the following assertion [which implies (19) for p, ¢
homogeneous]:

If r, s are homogencous and special, r 20 and rse€ T (S(rs) = 0) then
seT(s=0).

We shall prove this assertion by induction on deg r = 28 using the above
lemmas with p = 0.

If B < &, then Lemma 18 holds for 0 <{v < 8. Hence forv =8 — 1 we
obtain g 45 + x;* BV, ;€ T such that 0£gy, =g =g, .
Apply Lemma 17 with p =0, r =gp_,, h =% — (8 + 1) > 0 and obtain

rs +xy*Pwe T, for F=1LL.,n,

and since deg gz ; = 2, all the r; are constants, 0, 1, and at least one of them
equals 1. Let j be such that 7; = 1, thus s + xy*~Pfw € T. If x;y*Pfw ¢ T then
for any 7 5~ § (there exists £ # j since n > 2) it follows by Lemma 5(a) that
#yxPwe¢T and since 7s+ %y PfwecT we must have 7, =1, so
s + x;y*Pw € T. Finally we have

xy*Pw 4 x ¥ Pw = (s + xy*Pw) 4 (s + xy*Pw)e T
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and by Lemma 5(b) we deduce that also x;3*—w € T, contrary to our assump-
tion. It remains therefore that x;y*#w e T and hence s € T as required.

Let 8 > k and assume the result is true for 8 — 1. We have rs € T and by
Lemma 16 with p =0, v = 0 we may assume 7 = x,;7,. Now, r = r(28 is
special and 28 > 2k + 2, so 7 and hence also rs cannot contain monomials
which begin with x,x2*. Then by the remark to Lemma 17 we obtainr;s € T
for j =1,...,n. Let j be such that r; 3£ 0, then since degr; =2(8 — 1)
we obtain the result s € T by the induction hypothesis.

We can turn now to the proof of (19).

Let p, § # 0 and w.l.g. we may assume that p, ¢ are special. Let v(§) = «
and ©(g) = B; hence by definition,

P =P(a) +p(u+1) + oo g = q(ﬂ) + q(ﬂ+l) + vee

and p!, ¢'® 3 0. By the above assertion with r = p®), s = ¢'®, we obtain
S(p'=)g'#) =£ 0 and since p'*}¢'® is homogeneous of degree o + B, it follows
by the corollary to Lemma 8§ that deg (S(p*'¢**’)) = « + 5. Now we have

pq =P(a)qlﬂ) + (p(a)q(ﬂﬂ.) +p(u+l)q(ﬁ)) + ey

and hence the nonzero homogeneous component of least degree of S(pq) is
S{p'*'¢'®) which is of degree « + B. Thus, by definition of v it follows that
o(S(pq)) = a + B = v(P) + v(§) and we obtain (19) since v(p§) = v(pg) =
v(S(pg)), and our theorem is proved.

The following lemma will be used in the next section and it is proved here
since it is also a result of Lemmas 16-18.

LemMa 20. Let 0 4 p, q,7, s €S, homogeneous and p = p'*, r = r(2),
a =B, deg (pq) = deg (rs). If n >> 3 and pq + rs € T, then there exists t € S
such that tg +se€ T and t = t'%-%),

Proof. As in Theorem 19 we first prove the result for § < k.
Apply Lemma 18 and Lemma 17 as before and obtain

Piq + £y + x’.yk-ﬁ\w € T’ j = 1) 2)--°s n; (20)

all r; are constants 0, 1, and at least one of them equals 1.

Consider two cases: (a) x,y**w € T; (b) xy*Pw ¢ T.

(a) Let j be such that r, =1, then pg + s + x;y*Pwe T. Since
x,*Pw e T it follows x,5*Pw € T by Lemma 5 and hence p,g + s€ T and
the theorem is proved with t = p, € S.
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(b) By Lemma 5 also x;y*fw ¢ T forj = 1, 2,..., n and also every subsum
of 3°7 , x;y*~Pw does not belong to T. If Z'x;y*Pw is such a subsum, then
from (20) we obtain by summation

Zpig+ Zrs + Z'xy-PtweT (21)

From this it follows that « == B. Indeed if « = 8 then the p;’s are also
constants. Since 7z >> 3 the two-dimensional vectors (p;,71), (P2, 72)seee
(#n , rn) over the field {0, 1} are dependent and therefore there exists a
subsum of 37 , (p;, 7;) which is 0. Denote this subsum by X'(p;,r,), then
2'p; =0, X'7; = 0 and from (21) it follows that 2'x;y*fw € T, which is a
contradiction.

Since « >> 8 and o #~ 8, we have « > 8.

Let r; = 1 and let ¢ 5 j, then by (20) we have

pg+s+aytPweT,; pg +rss + x99 Pwel

Since « > 0, we can write

Pr =P+ Xy PPl + o+ by

Now, if 7, =0, from xp1q + - + x,pnq + xy*Pwe T it follows by
Lemma 5 that x;p/q + x,*Pw e T and also x;p]g + x;y*Pw € T; hence

(05 + 20D g + s = (g + s + %" Pw) + (wplg + x*Pw) e T

and the result is obtained with ¢ = p; + 5],
If r, = 1, then p,g + s + x,9%Pw € T; hence

(Ps + pi) g + %" Pw + xy*Pwe T

and again by Lemma 5 we obtain x,(p; + p;) ¢ + x;**fw € T, from which
it follows that (p; + x;p; + x;p7) ¢ + s € T. Thus, the result is obtained
with t = p; + x;p; + x;p;.

It is readily verified that in each case deg ¢t = deg p; and by Lemmas 18
and 17 deg p; = 2o — 28. Hence we have ¢ = ¢{2—26),

This completes the proof of the lemma for B < &.

Let B > k and assume the result is true for 8 — 1. We have pg +-rs€ T
and by Lemma 16 with v =0 we may assume p = x,p,, 7 = %,7,. Now,
r = r®) is special and 28 > 2k + 2, so r and hence also 7s cannot contain
monomials which begin with x,x2*. Since p = p® is special and « > 8
the same is true for pg. Then by the remark to Lemma 17 we obtain
24 +75€T and let § be such that r; # 0. Since degr; = 2(8 — 1), the
result follows by induction.
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7. Tue EMBEDDING OF R* IN A Groupr

Our next aim is to show that for » >> 3, R* is embeddable in a group.
The proof of this fact is based on the following result due to Doss [2]:

A semigroup which satisfies the cancellation laws is embeddable
in a group, if for any two elements with a common left-multiple,
one of them is a right-divisor of the other.

The semigroup R* does not satisfy this condition as is readily seen by
considering the equation (x,2x,2 + 1) x,® = x,%(x,%x,%2 + 1) (x% is not a
multipl of x,2%2 + 1 and x,2x> + 1 is not a multiple of x,?). However
we can apply Doss’ result to a larger semigroup #* = # — {0}, where #
is the ring defined in Section 2.

First we shall prove that R is embeddable in %. We recall that the injection
F[x] — F[[x]] induces the injections P— & and T—J, Let ¢ be the
composition of the injection P— # with the natural homomorphism# %7,
Thus, ¢ : P—>P|T =X and ker¢ = PN F. We assert that PNT =T
which implies that R = P/T is embeddable in #. Clearly we have TC PN T
since TC Pand T C 7. On the other hand, by the remark to Lemma 4, &
is homogeneous and its homogeneous polynomials belong to 7. Hence, if
p=2pePNJ then all p* eT and also p = Zp*» e T. Thus,
PN 7 CTand our assertion is proved.

To prove that # is an integral domain (Z* is a semigroup with cancellation
laws) we observe that the valuation defined on R can be extended to £ in
the following way:

If p € # is such that all its homogeneous components are special, then p
will be called special, and if p 3£ 0 and p is its nonzero homogeneous
component of least degree we set: o(p) = .

If p = Zp™ e P, then let S(p) = ZS(p®). Clearly S(p) is special and it
is the unique special element of p = p + 7.

Thus, for p € # we define v(p) = v(S(p)).

The equation v($g) = v(p) + v(§) for p, § € is proved as in Theorem 19
and this clearly implies that & is an integral domain.

It remains to prove that #* satisfies Doss’ condition. First we prove the
following consequence of Lemma 20.

Lemma 21.  Let p, q, r,s € P be homogeneous, q, r ¢ T and
vP)=azy=0oF) If p{=75 and n > 3 then there exists t = t'«¥) e P
such that p = 7t and § = §.

Proof. If pg =75 =0, then since R is an integral domain and since
g # 0,7 £ 0, we obtain p = § = 0 and the result follows with t = 0.
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Let pg = 7§ # 0, then we have also p, s ¢ T and S(p), S(g), S(r), S(s) are

nonzero, special, and homogeneous. Since

S(p) Sg) = S(p) S(g) = p7 = 75 = S(r) Ss) = S(r) S(s)

it follows that S(p) S(g) 4+ S(r) S(s) € T. By lemma 12(c) S(p) = S(p*') =
(S(p))« and S(r) = (S(r))» 0. Thus, all the conditions of Lemma 20
are satisfied for S(p), S(g), S(r), S(s), «, y replacing p, g, 7, s, 2o, 28 respec-
tively, and therefore there exists ¢ = t*—7) € S such that ¢S(q) + S(s) € T
Hence #j = £S(g) = S(s) = § and therefore $ = 77§ from which it follows
that = 7f since § 7 0, and our lemma is proved.

If py,p, € P and p, = p,, then for convenience we shall write p; = p,
meaning = mod 7.

We extend Lemma 21 to power series,

THrOREM 22. Let 0 5 p, g, 7, s € P be special and pg = 75. If n > 3 and
v(p) = o(r), then there exists t € R* such that p = 7, 1§ = §.

Proof. Let o, B, y, 8 be the values of p, g, 7, 5, respectively, then p'),
g®), 7, s =£ 0, and

« + B = ofF) + o(d) = 0(pf) = o(FF) = vF) + ofF) =y + 5.

PG = 75 means pg = rs(mod J) and since 7 is homogeneous and its homo-
geneous polynomials belong to 7" we have

(pq)('r) = (rs)("') for each r>=0. (22)

For 7 = a 4 8 =y + & we obtain p@®)g®) = r)s® and by the previous
lemma there exists a homogeneous polynomial of degree e =a —y =8 — 8
such that, if we denote it by #{¢), then

P(u) = r(y)t(e); t(e)q(ﬂ) = §(8), (23)

Assume that for u =0, 1,..., v, #{<+#) (which is 0 or homogeneous of degree
€ + p) has already been defined such that £, = #e} | ... tlet) gatisfies

PUHW = (rt,)ete); (1)) = s(5+m) (24)

for u =0, 1,..., », and note that, for u = 0, (24) is identical with (23).

We proceed to define t(<+*+1) such that (24) will hold for ¢,,, = ¢, + tletv+D)
replacing ¢, and for u =0, 1,...,» + 1.

If this is proved then ¢ = () - (D) | ... will satisfy:

p(-ﬁ-p.) = (rt)(u+p.); (tq)(&ﬂt) = g{&u)

for each p > 0. This means p = r¢ (mod J), g = s(mod F) as required in
the theorem. It is also clear that € # and { e Z*.
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For r=a+B8+4+v+1=y+4+8+v-+1 we have, by (22),
(pg) tBHr+l) = (rs)(rHotetl), (25)

Let us calculate both sides of (25) using (24):

v
(Pq)(“+ﬁ+v+l) =p(¢+v+1)q(ﬁ) + 2 P(¢+u)q(ﬂ+v+1—-p)
p=0

v
= platr+l) g(B) ¥t Yetn) (B+vtl—p)
? q® + Y q
p=0

v+l
== platrillg®) | (pt,)(etvH1) g | Z (rt,)(etr) glBtatl—p)
p==0

= [Pl o (r,) b)) g8 - [(rt,) g]letBHD),

Similarly we have

(rs)rt3betl) = p@)[(1,g) B+oH1) o B+ L [4(2,9)] D),
But [(rz,) g] @+ = [r(2,g)]7+3++1), and therefore by (25) we obtain

[t 1) - (rt,) @t il] gB) = (2, +o+D) - s(Br4DI],
Since ¢'®, r» ¢ T we can use the previous lemma and obtain a poly-
q p poly

nomial which is 0 or homogeneous of degree « +v +1 —y =€+ v + 1
such that, if we denote it by #(<+*+1), then

p(l+v+l) + (rtu)(a+v+1) = r(y)t(s+v+l); t(s+v+l)q(ﬂ) = (tvq)(8+v+1) + s(6+v+1).

Now, for t,,; = t, + t«»+) we obtain

P(a+v+1) = yy)letv+l) + (rtv)(u+v+l) = (rt,,+1)(=+"+1)

and similarly,
( 2. lq) (5+r+l) — gl8+v+l ),

which proves (24) for ¢,,; replacing ¢, and p =v + 1; but for p <v + 1,
Pl = (e = (7t )0

and also
(£,429) 3+ = s(8+n)

and this completes the induction.
From the previous theorem and Doss’ result [2] it follows that #* is
embeddable in a group if # > 3, and since R* is embeddable in £* we have:
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TueoreM 23. If n = 3, then R* is embeddable in a group.

In Theorem 1 we have proved that if # 2> n, then R cannot be embedded in
a field. Thus, Theorem 1 together with Theorem 23 give our main result
which is:

TueoreM 24. If k = nand n = 3, then the ring R cannot be embedded in a
field, but the multiplicative semigroup R* is embeddable in a group.

Finally we note that if » = 2 and & = 2, then R* cannot be embedded in a
group. It suffices to show that R* does not satisfy the following necessary
condition for a semigroup to be embeddable in a group, given by Malcev [4]:

Ifa b,c,d a,b,c, d are elements of a semigroup that can be embedded
in a group and if

aa’ = bb’, ac’ =bd’, ca’ = db', then e’ =dd'.
Let us denote the elements of A* € P, by w,; and let
a =1y, b = @,,, ¢ = x%, d = xx, ,
a =y, b =1y, ¢ =x2 d’' = xgx; .

wy Wy + Wity 1s the (1, 1) entry of A% and therefore belongs to T
(which is generated by the entries of 4*+'), Hence,

aa’ = wy Wy = Wy,Wy = bb'.
Since 4 « A% = A%+l — A% . 4 we obtain
22wy + XXy =2 €T and W %% + wpxex, = 2, € T.

Hence,

ca’ = x?wy) = Koy = db';  ac’ = wyx,? = wixen, = bd’

T does not contain polynomials of degree <2k -+ 2 and in particular,
since k 2> 2, it does not contain x,* + x,x,%¢; which is of degree 4 < 2k + 2.
Hence x,* # x,%,%, and therefore cc’ = dd’.

Thus, in R* we have aa’ = bb', ac’ = bd’, ca’ = db’, but cc’ 5 dd’ and
therefore R* cannot be embedded in a group.
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