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1. INTRODUCTION 

Necessary and sufficient conditions for a semigroup to be embeddable 
in a group were given by Mal’cev [fl. Similar conditions for a ring to be 
embeddable in a field are not yet known. Mal’cev [4] has constructed (non- 
commutative) integral domains that cannot be embedded in a (skew) field. 

His examples are based on the fact that the multiplicative semigroup (of 
nonzero elements) cannot be embedded in a group and this clearly implies 
that the rings are not embeddable in fields. 

The aim of this paper is to construct integral domains that cannot be 
embedded in a field, but whose multiplicative semigroups are embeddable 
in groups, and this solves the problem stated in [I], p. 277. 

I f  an integral domain R can be embedded in a field, then necessarily the 
ring of n x n matrices R, satisfies certain properties of matrices over a field. 
In particular if C E Rn is a nilpotent matrix, then Cn = 0. To obtain our 
example, ,we construct an integral domain R with a nilpotent matrix C E R, 
such that C” # 0, and then we show the multiplicative semigroup of R can be 
embedded in a group. This is obtained by embedding R in an integral 
domain W, whose multiplicative semigroup satisfies Doss’ condition [2] for a 
semigroup to be embeddable in a group. 

* This is a part of the author’s Ph.D. thesis prepared at the Hebrew University 
of Jerusalem under the supervision of Professor S. A. Amitsur. 

1 Editor’s note: The problem discussed here (first raised by Mal’cev in the 1930’s) 
was solved by three people this summer (1966), al1 working independently and 
obtaining different proofs. They are the author, L. A. Bokut’, and A. J. Bowtell. 
Mr. Bowtell’s solution (which is comparatively brief) was also submitted to this 
Journal and appears as the paper immediately following. 
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2. SUMMARY AND NOTATIONS 

The following is a list of the notations used and an outline of the construc- 
tion of the integral domain R. 

(1) F = (0, I}-the field of two elements. 

(2) F[.x] = F[x, ,..., x,]-the free noncommutative polynomial ring 
(with 1) generated by a set of indeterminates {x1 ,..., x,}, n > 2, over F. 

(3) fl[x]]-the ring of formal power series of F[x], namely, infinite 
sums of homogeneous polynomials of distinct degrees. 

(4) P-the subring of F[x] generated by all monomials xix, and 1; clearly 
P contains those polynomials all of whose homogeneous components of odd 
degree are 0. 
g-the subring of F[[x]] of those series all of whose homogeneous components 
of odd degree are 0. 

(5) A = (x&-the matrix in P,, , whose entry in the ith row and jth 
column is xixj . 

(6) k-a fixed integer >, 1 and sij-the (i, j) entry of the matrix AL+‘; 
thus, Ak+’ = (zij). 

(7) T-the ideal in P generated by {zi, ] 1 < i, j < tz} and R = P/T. 
F-the ideal in B generated by {zi, 1 1 < i, j < n} and W = 9/F. 

The integral domain we construct is obtained by taking a fixed k > n 
and proving that R is an integral domain. The matrix C = (x,x, + T) E R, 
and Ck+’ = (Zij + T) = 0, hence C is nilpotent. But since the polynomials 
of Tare of degree > 2k + 2 and the entries of An are of degree 2n < 2k + 2, 
it follows that Cn # 0. Thus, we have: 

THEOREM 1. If k 3 n, then R is not embeddable in a field. 

After proving that R is an integral domain, we show that for n 3 3 (inde- 
pendent of k) the multiplicative semigroup R* = R - (0) is embeddable in 
a group in the following way: 

The injection F[x] + F[[x]] induces the injections P + 9’ and T + 7, 
and it is proved that R = P/T can be embedded in 9 = 9/F. Next it is 
shown that W is also an integral domain and hence W* = W - (0) is a semi- 
group which satisfies the cancellation laws. It is then proved that W* satisfies 
the following condition: if two elements of 9* have a common left-multiple, 
then one of them is a right-divisor of the other. By a result of Doss [2], this 
condition is sufficient for a semigroup with cancellation laws to be embeddable 
in a group. Hence W* is embeddable in a group and R* which is embeddable 
in W* is also embeddable in a group. 
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The most difficult part of this paper is the proof that R is an integral 
domain. This is carried out by choosing unique representatives in every 
class of P/T, and giving a method for passing from a polynomial p E P to 
the representative of p + T by a finite number of steps. In particular the 
representative of T is 0. It is then proved that the representative of the residue 
class of the product of two nonzero representatives is not 0, which means that 
P/T is an integral domain. 

3. THE IDEAL T AND THE REPRESENTATIVES OF R 

In this section we shall define the representatives of R = P/T called hence- 
forth “special polynomials” or just “special”. 

We begin by calculating the polynomials zi, which generate T. By defini- 
tion zff are the entries of the matrix Ak+l, where A = (x6 xf). It is readily 
seen that A = (xi)* (xf) where (xj) = (x1 ,..., x,J and (xi)* is its transpose. 
Then Akfl = [(xi)* (xi)lk+i = (x3* [(xJ (xi)*lk (xj). Lety = x1* + .*a + xn2, 
then (x,) (xi)* = xla + es* + xn2 = y. Hence we have 

and consequently: 
klk+l = (x0* yk(xJ = (x&x,) 

In view of the fact that F is the field of two elements, every polynomial 
p EF[x] can be written in an unique way as a sum of distinct monomials 
(the unity 1 is identified.with the empty monomial). The set of monomials 
which appear in this sum will be denoted by {p}. For p = 0 we obtain the 
empty set. 

We recall that P is the subring of F[x] of those polynomials which are 
sums of monomials of even degree. 

DEFINITION. A monomial of P will be called “special” if it is not of 
the form m.x,xzkxfm’, where m, m’ are monomials of even degree (belong to P) 
and 1 < i, j < n. A polynomial p E P will be called “special” if the set of 
monomials (p} contains only special monomials. 

Let S denote the set of all special polynomials and the following are some 
properties of this set. 

LnrkxbfA 2. S is an aaVitive group and if (p> C {q), q E S, then p E S. 

Proof. Every sum of special monomials is a special polynomial. Thus 
a sum (which is also a difference since the characteristic is 2) of two special 
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polynomials is special. Clearly the zero-polynomial is special, hence S is an 
additive group. If (p} C {q}, then p is a subsum of q, and since q E S, p is also 
a sum of special monomials and it is therefore special. 

LEMMA 3. (a) If p1 EF[x] and xipl E S for some i, then xjpl E S for all j. 

(b) If 

p = f xipi E s 
f-l 

then all xipi E S. 

(4 If 
n 

p = c x,xjpj E S, 
j-1 

then all p, E S. 

Proof. (a) xipl E S means that no monomial of {xipJ is of the form 
mxi,xFxjfm’(m, m’ E P). Hence if such a monomial appears in xjpl then x, 
must be either the first indeterminate in m, or m = 1 and xj = Xi’ , but then 
clearly xip, will also have such a monomial with x1 replacing xj in the begin- 
ning, a contradiction. 

(b) For i # j {Xipi} n {x&j} = 4, hence {X&i} C(p), 1 < i < n. AS 
p E S we obtain by lemma 2 that xfpi E S. 

(c) As in (b) we obtain xlxjpr E S for 1 <j < tl. Hence, if m is a mono- 
mial of {p,}, its degree is even and from the definition it is clear that m is also 
special, thus pj E S. 

Now, we proceed to prove some similar properties for the ideal T. 
We introduce here the notation p (~1 for the homogeneous component of 

degree OL of a polynomial p. 

LEMMA 4. T is a homogeneous ideal. 

PROOF. Let p E T, then p can be written as a finite combination of multi- 
ples of the generators Zij: 

P = c P,z$J,PI 9 where P,,P:EP- (4 
P 

The ZC,,J, are homogeneous of degree 2.k + 2, hence the homogeneous 
component of degree CY of p is 

where /3 + y + 2k + 2 = 0~ 

and /3, y are even; thus pcrr) E T. 
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REMARK. The same proof for B and F (defined in 2) yields that F is 
a homogeneous ideal in 9 and the homogeneous polynomials of 3 belong 
to T. 

LEMMA 5. (a) Ifpr EF[JC] and xipr E T for some i, th xjpl E T fm all j. 

(b) If 

p = i xipi E T, 
i=l 

then all xrpi E T. 

Proof. Let p E T be written in the form (2) and replace the polynomials 
pa by the sums of their monomials. Thus, p is of the form p = Zm,Zt,j,pi, 
where the m,‘s are monomials. 

(a) Since xipl E T we can write xipl = Zm,ziA,Ap; and assume that if 
m, # 1 then m, = x,m; , and if m, = 1 then ZiAjA = XiAykx*, = XiykxjA = ZijA. 
Hence, 

Xipl = Z’Z,p; + ZnXittf~Z;AjAp~ , 

where in Z’ we take all the summands of ,Z with m, = 1. Thus, 

Xjpl = Z’Zjj,p; + Z”xjm$ziAjAp; 

and hence x,pr E T. 

(b) We write 

where in Z(i) we take the summands of Z with m, = 1 and iA = i, 
or m, = ximb . Since {Z(i)} n (Z(j)} = 0 and {xipi} n {x,p,} = 0 we obtain 
xipi = Z(i)mAZiAjAp; E T for all i. 

Our next aim is to prove that each residue class of P/T has one and only 
one special polynomial. 

4. EXISTJINCE 

Let m E P be a monomial and denote by r(m) the number of possible ways 
of writing m in the form m,(xixikx,) m2 with m, , m, monomials of even 
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degrees > 0. If m is special, then T(m) = 0. For m = xi, a** xizD, with 
2~4 > 2k + 2, we have 

and each term of this sum is either 0 or 1. 
Denote by rn’ a monomial which is obtained from m by replacing some of 

the x’s by x,, , then clearly 7(m’) > T(m). In particular, if we replace all the 
x’s by x, we get T(x:) > T(m). Hence the maximum of -r(m) for all monomials 
of degree 2~4 is I = r (t = 0 if 01 < k and Y = 01 - k if CL > k). 

Let p E P be homogeneous of degree 2or > 2k. Denote by A, the number of 
monomials m E {p} with T(m) = V, 1 < v < Y. We introduce the notion of the 
height of p as the non-negative integral vector: u = (A, , A,-r ,..., A,). Clearly, 
p is special if and only if its height is (0, O,..., 0). 

For a fixed 01 consider the lexicographic ordering of integral vectors; 
namely, let U’ = (hi, Ai-, ,..., A;); then u’ < u if there is a v such that Ai < A, . 
But AL = A,, for p > v. The set of heights for a given 01 is a well-ordered set 
under lexicographic ordering (e.g., [3], Section 39). 

LEMMA 6. If m, m’ are monomials of P, 1 < Ii ,..., 1% < n, and at least one 
of the l’s ti # n then: 

Proof. By replacing some x’s in a monomial m by x, , its r does not 
decrease. Hence each summand in the representation (3) of .(mxixfl a** xFkxjm’) 
is < than the corresponding summand of 7(mxixtkxrm’) where the inequality 
is strict for at least one summand, since (Zr ,..., Zk) # (n,..., n) and so 

+ix;l *a* x%xj) = 0, 7(xixikxj) = 1. Thus, we obtain 

r(mxix% a.- xFkxjm’) < +nxix~kxjm’). 

LEMMA 7. If p E P is homogeneous and mxixikxjm’ (m, m’ E P) is one of its 
monomials, then the height of p’ = p + mzdjm’ is lower than the hezkht of p. 

Proof. Let u = (& ,..., A,) be the height of p and let T(mx,xFxjm’) = V. 
Since mx,xikx# E {p>, by definition of u we have A, > 1. We assert that the 
height of p’ is u’ = (A, ,..., A,,, , A, - 1, Ai-, ,..., A;), which is by definition 
lower that u. Indeed, by (1) we have 

t?Z.?lij??Z’ = m 
( c 

2 
&Xl, 

2 *‘* XZhXj m’. 
lQzl.....zk<n 1 
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Thus, p’ = p + rn.+rn’ does not contain mxixzkxjm’ as this monomial appears 
in p and in mxijm’ and we deal with a ring of characteristic 2. Hence, if a 
monomial of p’ does not belong top, it is of the form mx,xF .a. xfkxjm’ where 
(4 ,*.*, lk) i b, %*-, n), and by the previous lemma we ha:e 

.(mx,xfl -a+ xfkxjm’) < 7(mxixFxjm’) = v. 

It follows therefore that, if the height ofp’ is CJ’ = (hi ,..., Xi,, , hi , Ai-, ,..., A;), 
then hi = A, ,..., A:+, = h,+1 and hi = A,, - 1, which proves our assertion, 

LEMMA 8. Let p be homogeneous of degree 2a: > 2k and define q,, = p; if 
qr contains a nonspecial monomial WlpXi,X~kXj,?tl~ , set qF+l = qp + ?tl,Zipjp??l~ 
for p = 0, l,... . Then the chain go, q1 ,... is$nite and its last element is special. 

Proof. Let eP be the height of qr . By the previous lemma we have: 
00 > Ul > me* and by the well-ordering of the set of heights (of homogeneous 
polynomials of degree SOL), this chain must terminate at ur , say. Hence q, 
does not contain a monomial of the form m+xFx&(m, m’ E P) and it is 
therefore special. 

COROLLARY. If p E P is homogeneous, then p = p, + p, with p, E S, 
p, E T and deg p, = deg p if p q! T, deg p, = deg p if p 6 S. 

Indeed, if degp < 2k, then p is special and we take p, = p and p, = 0. If 
deg p > 2k, then in the previous lemma we have obtained 

1-I 

41 = P + C m$ipilrml . 
p=o 

Hence we take p. = qr which is special and p, = CLzi m,zi j rn: which 
belongs to T. If p 4 T then p, # 0 and degp, = degp. Sirn&$, if p 4 S 
then p, # 0 and degp, = degp. 

Since every p E P can be expressed as a sum of its homogeneous compo- 
nents and S, T are additive groups, it follows immediately that 

THEOREM 9. Every residue class of P/T contains a special polynomial. 
Using the above corollary we prove here one additional lemma which 

will be used in the next section. 

LEMMA 10. If Y E T, then Y can be written as a sum of the form &t.+m’, 
where m, m’ E P are monomials and all first terms m are special. 

Proof. We shall prove that r = ZpZijp’ where p E S, p’ E P and our 
result will follow by replacing p and p’ by the sum of their monomials. 
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Since r E T we can write r = Z’Zi,p’, where p, p’ E P and clearly we may 
assume that they are homogeneous. If all the polynomials p in this sum are 
special the result is proved. Assume that this is not the case and look at 
the polynomials p $ S of maximal degree v, say. Write p = p,, + p, with 
p,, E S, p, E T and if pi # 0 then degp, = degp = v. Note that since 

Pl = zPlfizi~~llP~p and all summands are of the same degree, then 
deg pi,, < deg pr . Now, we write 

Y = a?YpZijp’ = 2Yc’pZ,jp’ + Z”pZi*p’, 

where in Z” we take all summands of Z with p 4 S and degp = v, and for 
those p we have: p = p, + Zpu,.sziPj~p~, . Hence, 

This can be written in the form ZqZ,’ with q equal to p,, , pi,, or p which 
appears in Z”. Now p,, E S, degp,, < degp = v, and for those p +C S which 
appear in Z”, degp < v (by the maximality of u). Hence we have I = ZqZijq’ 
with q, q’ E P and the degree of a q $ S is < v. Repeating the above process 
several times, the maximal degree v lowers in each step and the final repre- 
sentation of r is the required for obtaining our lemma. 

5. UNIQUBNES 

In this section we prove the following theorem. 

THJXXEM 11. Every residue class of P/T contains only one special polyno- 

mkl. 

Proof. The theorem will follow if we prove that S n T = (0). Indeed let 
pr and pa be any two special polynomials of the same residue class. Then 
pl - p2 E T and since S is an additive group we have pr - pz E S. Thus, 
if S n T = (0) it follows pi -pa = 0 and hence pi = pz . 

Assume that S n T # (0). Let q # 0 be a non-zero element of (cl) 
minimal degree in S n T, such that it has a representation q = Zmi,m’ as 
in Lemma 10 (m, m’ E P are monomials and m ES) with a (~2) minim01 
number of summads d, say. Among the representations of q with d summands 
we choose one with (~3) 2 deg m maximal, and let us write it in the form 
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We shall obtain a contradiction by proving in six steps (A)-(F) that (4) 
cannot exist. 

For convenience we set 

x = I,..., d (5) 

and so (4) has the form: q = ct, qA . Note that q,, # qA’ for h # X’ since the 
characteristic is 2. 

(A) There exists xi such that qA = xiq; for all qA of (4) and without loss 
of generality we may assume xi = x1 . 

Proof. We write, as in the proof of Lemma 5 (b), 

where in .Zo) we take the summands qA of the form xjq;. Thus 
4 = ci”=1+%,9; , and by Lemma 3(b) we have qci) = Z(j)qA = xJ(j,q; E S 
and, as all qA E T by (5), we have qci) E S n T. By the minimality of d, 
qti) # 0 only for one j. 

If q = qti) and i # 1, let q’ = x1 XL, qi . Clearly q’ satisfies all conditions 
(cl)-(~3) with the same d [by Lemma 3(a)]. 

We assume henceforth: qA = xlq; for X = I,..., d. 

(B) There exists a mA in (4) equals to I and so qA = zIjArn~ . 

Proof. Assume the assertion (B) is not true. Then deg m, > 0 for 
1 <h<d and since deg m, is even we have: m, = xlxjm,“. Thus, 
9 = Cbl &)9A 9 where Z(j)qn is the sum of the qA’s with m, = xlximI . 
By Lemma 3(c) we have .C(,,qA E 5’ and since all qA E T, Z(jjq, E S n T for 
1 <j < n. By the minimality of d we must have q = Zci)qA for some j and 
therefore q = x,xj ~~=, rn;ziAiArnA . But q’ = Zm$iAjAmi E T and it is clear 
that 0 # q’ E S, hence we have 0 # q’ E S n T. But deg q’ < deg q and 
this contradicts the minimality of the degree of q which proves that some 
m, = 1. 

The second part of (B) follows immediately. Indeed, some qA = ziAjAm; 
and iA = 1 since qA = x,q; by assumption. 

(C) The sum (4) does not contain n summands qA, , 1 < 1 < n, such that 
q,,, = m,,zil(xlxjm/,) where m,, , rn6 , i, j are the same for all qA, and such that 
deg m, < 2k - 2(mAl = m, , iA, = i, jA, = 1, m, = xzxjm;). 1 

Proof. If this is not the case we shall construct a representation of q with 
the same number of summands and for which Zdeg m > CfW1 deg mh 
which will contradict the assumption of maximality of alar deg m, . 
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Thus, let CJ,+ = m,zjz(xzx5m;), 1 < 1 < n, and deg m, < 2k - 2 
We recall that the matrix A = (xixj) and Ak+l = (Q). Since 
Ak+lA = Ak+2 = AAk+l we obtain for the (i, j)-entry of Ak+2 

n n 
c Qw5 = c xixz~z5 
Z=l Z-l 

Using this equation we obtain 

12 12 12 
C qAz = 1 m&zXzXjmA = m0 ( 1 ZizXzXj 1 rnh 
Z=l kl Z=l 

= m, (i XiXZDZj) rnh = i (mOXixJ Zzjmh . 
14 Z=l 

Since deg ma < 2k - 2 we have deg (m,,xixz) < 2k and hence m,xixz is 
special. Replacing the partial sum Cy=r qA, of (4) by the equal sum 
Ctr (m,,xjxz) zzimb we obtain a new representation of the same q (of the 
form .Zmz+m’, m, m’ E P monomials, m E S) with the same number of sum- 
mands (since d is minimal). For this representation we have: 

Cdegm= c degm,+~degm,,+2n>~degm,. 
.+A~ l-l A=1 

The next two steps deal with common monomials of two and of three 
summands of (4). 

(D) Let qa, qa be summunds of (4) such that {pa} r\ {qa> # 6 If 
deg mp = deg m, then qti = qa and if 0 < deg ma - deg m, = 2v < 2k then 

b7cJ n {!?a) = {mex+Jr “-“xj,m~}. (6) 

Proof. By (1) and (5) we have 

qu = %Xi,YkX5,mh qa = mpisy 
k 

xi& . (7) 

By assumption {qor} n {qs) # @, thus let m E {qor) n {qa). Since m E (qa} we 
have m = rngd,xzl e-e xtkxj rn: for some 1 < sr ,..., sk < n, and also m E {pa>, 

hence m = mpi xf* +a. xf ij rnb for some 1 < tl ,..., t, < 7t. (Note that for 
convenience we h ave wrikek the indices in the two representations of m in 
reverse order.) Thus 
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If deg m, = deg ma, we deduce 

m, = ma , Xi, = Xip p 
2 2 2 

x,, “. XSk = X& *** 
2 

x ,, ) .Tjl = X. 
‘P ’ 

rn: = rn; . 

Hence by (7) q6 = qa and the first assertion of (D) is proved. 
Next, let deg mg = deg m, -I- 2~ and 0 < v ,< k. In this case it follows 

from (8) that ma = rnpiiv:, ... x~~-,x,~ and therefore 

from this we obtain 

X8” zz x. 2 

‘B ’ %+I 
. . . x2 Sk = xir *** x;y+I , xj, = Xt, I  

Thus 

2 
mi = xtvxb-, *** x:lx*p~ . 

and for the first representation of m  in (8) we get 

Since xfp+l *** xir is a monomial of yk-v, we deduce that m E {mp+yk-uxj~m~}. 

This relation is true for any monomial of {qm} n {qo}, and hence 

To prove the inclusion in the other direction, let xF1 *a* x:~-, be any 
monomial of yk-u. Since (9) still holds we have 

and this monomial belongs to {qo(} by (7). Similarly, it belongs to {qa} since 
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(E) If 41, 9 !hr , 91, appear in (4), {qA,) n {qhJ # 8 for all i, j and 
deg mAl < deg mAa < deg m,3 < 2k, then 

Proof. Let deg mAl - deg mAl = 2v and deg mA8 - deg rnAl = 2~. Then 
deg mA3 - deg mAl = 2b + v) < deg mA8 < 2k. Since {qA,) n {qi} # 0, we 
obtain by (9) with OL = h, , /? = ,& , 

From {qb} n {qA,) # 0 and deg mA, - deg m,, = 2~ we obtain, by (6) with 
a = h, , p = X, and p replacing v, 

Since 2(~ + v) < 2k and {qA) n {qr,) # 0, then by (6) with (Y = h, , /I = X, 
and /J + v replacing v, 

and by (10) this is equal to {m,ix~~yk-(p+D)~~~,xtl a.. xf,x,,,mk}. But 
x2 x2 j A, G-1 **a xi1 is a monomial of y” and therefore 

GlJ n {&I C {m~,Xf~,Yk-Oi+v)yuxjl,m;,} = {m#fA,Y”%,,m~,) 

by (1 1), which proves (E). 
Our final step is. 

(F) The sum (4) does not contain a summund q1 for which 

2 (k+l-v) 
m,Xi, = XI% , O<v<k+l. 

Roof. The result is true for v = 0 since otherwise we have 
m, = xIxiti’ = x1(x?) x,, which is not special, but by assumption on the 
representation (4) all m, are special. 

Assume the assertion (F) is true for all p with 0 < TV < v < k + 1 and we 
proceed to prove it for v + 1. If it is not true for v + 1, let q, be such that 

vf, = x1x, 
O(k+l-b+l)) = xlx~(k-d~ ~~~~~~ 

q, = mgrtJkxj,m: = XIX~‘k-v)ykXj,?Pt: . 
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Since yk = ~~y”-~ and y” contains xz, the polynomial 

(12) 

contains all monomials of {q7} that begin with x,x:” and these are not special; 
now Q is special, hence every monomial of Y must also appear in another 
summand of (4). 

Thus, let V = {q,,, ,..., qA,} be a set of summands of (4) such that q7 4 V 

and (4 C GzA,~ u *.a u {Q~,). For simplicity we assume that V = (qr ,..., qh}. 
We also assume that V is minimal in the sense that, by omitting any {qp}, 

i4 P Ulfll GlJ* 
From the minimality of I’ it follows that 

h) n M f 0 for 1 <h<h; (13) 

otherwise we omit qn from V. Since {r} C {qT} we have 

We prove now two additional properties of V: 

(a) degmA<2(K--)forl <A,<h; 

(b) if qA , qA’ E V and h # A’, then {qA} n {qA,} = 0. 

Proof of (a). First deg mx < 2k, since if deg m,, > 2k we obtain 
deg mA 2 2k + 2 and taking a monomial of (13) we see by (12) that it 
begins with xlxik and therefore m, begins with xlxik, contradicting the fact 
that it is special. Thus, deg m, < 2k and therefore 

deg (mAxa) < 2k + 1 = deg (xlxkk) 

from which it follows, again by (13) and (12), that x1x? begins with mAxiA . 
We have also deg m, # 2(k - V) = deg m, , since if equality holds, then 

from (14) we obtain by (D) that qA = q, , but qA E V and q7 4 V. 
If 2(k - V) < deg m,(< 2k), then deg m, > 2(k + 1 - V) and hence 

deg m, = 2(k + 1 - CL) for some CL, 1 < TV < Y. Since xrxib begins with 
mAxi we obtain mAxiA = x~x~‘~+‘-~’ with 1 < p < V, but this contradicts 
the ihnduction hypothesis. Hence deg m, $2(k - V) and (a) is proved. 

Proof of(b). Since h # A’ we have qA # qA’. If we assume that {qA} n {qAs) #@ 
then deg m, # deg mAI since otherwise qA = qn’ by (D). Thus, suppose 
deg m,, -=c deg rn,, . By (a) we have deg m,’ < 2(k - v) = deg m, . Hence 
deg m, < deg rn,’ < deg m7 = 2(k - V) < 2k and (qA} n {qg} # 0. By (14) 
it follows that {qA) n {qT} # 0 and {qAt} n {q7} # 0. Thus, the conditions of 



RINGS NONEMBEDDABLE IN FIELDS 113 

(E) are valid for A, = A, A, = A’, A, = r. Hence {qA} n {q7} C {qA,} n {q,} 
and since {Y} C {q,} we obtain {qA} n {Y} C {qA,} n {Y}. From this it follows that 
{r} C uPzA {q,,}, which contradicts the minimal@ of V and (b) is proved. 

Having the above properties at our disposal we continue with the proof 
of(F). 

I f  qA E V we have {qA} n {q7} # 0, and by (a), deg m, -C 2(k - v) = deg mT . 
Let deg m, - deg m, = 26 > 0, then deg m, = deg m, - 28 = 
2(k - Y - 6) > 0. By (D) with a = A, /I = r, Y = 6, we obtain 
{qA} n {q7} = {m,xiJk-6xxjAmi}, and by (9), rn; = xjAxfs, *a* x:1x5,m,‘. But 

m9i, = x,x, 2(k--y); hence 

Since k - Y - S > 0, yk-5 = yvyk-a-~ and recalling that {I) contains all those 
monomials of (q,} that begin with xlxEk, we obtain 

{qA} n {I} = {xlx~kyk--v-*x~Ax~~~, *a* x:lxj7m:}. (15) 

Now, let X be such that deg m, = min {deg m, 1 1 < p < h}. In the right- 
hand side of (15) we replace xfA by xr2 for every I # j, and obtain the polyno: 
mial 

2k Yl = %X7&Y k--v-sx,2~fa-, *** x4,xj,m: . 

We have {qA} n {pi} = 0. Indeed, all monomials of {qr) end with 

4 = xjAxf8e, 
2 J *** Xr,Xj,??l, and all monomials of kd end with 

w:&l -a- xflxj,m: # rni since x1 # x,, . 
We have 

hence if m E {T‘}, then m E {q,,) for some q,,, E V, and qp, # qA since 
(qA} n {rl} = 0. By the minimality of deg m, we have deg mpr > deg ml 
and we assert that deg rngg = deg m, . Indeed, if deg ml,, > deg ml, then 
since deg m,, < deg m7 [by (a)] it follows that deg m, - deg m,l = 
2e < 2s = deg my - deg m, . Then by (15), with q,+ replacing qA and l 

replacing 6, we have 
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Now, m E {q,J n {I~} c {qP,} n (Y}; hence, comparing (16) with {rL} and since 
c < 6, we obtain 

From this it follows that (qr,) n {Y} 2 {qA} r\ {Y}, hence {Y> C uPzl {q,), 
which contradicts the minimality of V. Thus, we have deg mh = deg rnPl 
and hence x. = xI and ml, = x~x~~-~ 2 

>h 
--a xt,xj,mi . Let us define qIll for 

I = jA by putting pjLjn = A, so qpl has been defined for 1 = l,..., n, and 

d% mp, = deg m, = 2(k - v - S) < deg m, . Since {q,,} n {q7} # fl, m, 
begins with mp,xip,, then mPlxiP = xlx~tbV-‘) does not depend on 1. We 

denote mP, by m, and xtP5 by xi(xi = x1 if k - v - 6 = 0 and xi = x,, if 

R - v - 6 > 0). We also denote xts-, by xj and xtS-1~fG8-s a.* xflxj,m: by 
rn; (if 6 = 1, then we take rni = rnh and xi, = x,) and obtain rn:, = x,xjmh . 
Thus, 

for 1 = l,..., n. But by (C) the sum (4) does not contain rz summands of the 
form (17). Thus, from the assumption that (F) is not valid for v + 1 but is 
true for all 0 < p < v + 1, we have obtained a contradiction. Hence (F) is 
valid for v + 1, which completes the induction on the validity of (F). 

We complete now the proof of Theorem 11. 
Choose in (F) v = k + 1, then it follows that the representation (4) of q 

does not contain a summand q7 such that m,xjr = xi and which is necessarily 
of the form: q, = ,+rm:. This contradicts (B) which proves that the sum (4) 
does not exist; hence S n T = CO} and Theorem 11 follows. 

6. R HAS NO ZERO-DIVISORS 

We have proved that every residue class of R = P/T contains one and 
only one representative which is a special polynomial. For p E P, we denote 
by S(p) the unique special polynomial of $ = p + T. Thus, if q is special, 
then$=4ifandonlyifS(p)=q. 

DEFINITION. If 0 # p E S and p(a) is its nonzero homogeneous component 
of least degree, then a will be called the value of p and we shall write v(p) = a. 
For p = 0 we set ~(0) = co. If @ E R we define Ed@) = u(S(p)). 

Note that w(P) is well defined since s(p) is the unique special polynomial 
of p. 
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We shall prove that if I, g E R, then v@ZjZj = w(j) + w(q), from which it 
follows that R has no zero divisors. (In fact, w is a valuation on R.) We first 
need some lemmas. 

LEMMA 12. Zfp, ,..., pz,p,qEP,the?l 

(4 S (tl Pi) = $I S(Pd; 

(b) S&d = SW(d); 
(c) foY f?weYy cd >, 0, S(p) = (Scp))(*‘. 

Proof. (a) and (b) are evident; let us prove (c). 
Let p = Zp(a), then by (a) we have S(p) = ZS(pca)). By the corollary to 

Lemma 8 it is seen that, since p(“) is homogeneous, then either S@(a)) = 0 
or S(pG)) is homogeneous and deg (S@J’~))) = deg (PIE)) = (Y. This implies 
that (S(P))(~) = S(p(‘)) by the uniqueness of the decomposition of a poly- 
nomial as a sum of homogeneous polynomials. 

LEMMA 13. Zf p = x&’ then there exists I( EF[x] such that the monomials 
of {p + .vIyku} do not begin with x,x,“. 

Proof. Let pl be the sum of all monomials of {p} which begin with 
~~2~~; then p1 = x,x~‘% for some u EF[x] (which is 0 if pl = 0). Let p,, be 
such that p = p,, + p1 , then the monomials of {p,,} do not begin with xix,“- 
Thus, 

p + XJU = p0 + xlxZku + XflkU = po + x,(4” + y’3 u. 

Since {yk} contains x:, {yk + xik} does not contain x,“, and hence the 
monomials of {x,(xik + y”) u} do not begin with xix:, and since the same is 
true for {p,,} the required result follows. 

LEMMA 14. Zf p E P is homogeneous and the monomials of {p} do not begin 
uith xik-l then the same is true fw {S(p)). 

Proof. If S(p) = p there is nothing to prove. Assume S(p) # p, then by 
Lemma 8 there exists a finite chain p = qO, q1 ,..., qr such that S(p) = q1 
and qr+l = q,, + mp,,,,,,mL , where m,,y,xik+,,mL E {q,), c’ = 0, L..., I- 1. 
Since q,, = p does not contain a monomial which begins with xtk-l, we can 
obtain our result by induction; assume the monomials of (q,,} do not begin 
with xtk-l. Since q,,+l = q,, + m,,ay rn: , it is sufficient to prove that 
{m,z4u,fim~} does not contain a mon&nial that begins with timk-l. Let 
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m x. x2 !J Ip 11 ... xfkxjcrml be any monomial of (m,z,,i..m~}. If it begins with xzk-l, 
then clearly the same is true for m,x,l;x~kx~Mm~; but m,xiPx~kxj,m~ E {y,}, 
which contradicts the induction hypothesis. 

LEMMA 15. If p = Cj”=l xlxjpj E T is homogeneous and the monomials of 
(p} do not begin with xlxzk, then alip E T. 

Proof. By Lemma 12(a) we have 

and since p E T we obtain S(p) = Cy=i S(x,x,p,) = 0. We shall show that 
S(xlxjpj) = x,x,S(p,) for 1 < j < n. Hence Cj”=r x,x$(p,) = 0 and since 
{xlxjS(pj)} n (x,xjG3(pj~)} = Id forj # j’, we have xix$(p,) = 0 which implies 
S(p,) = 0 and therefore pj E T. 

To prove that S(X,X,P,) = xlxjS(pj) it suffices to show by Lemma 12(b) 
that x,x,S(p,) is special. For j # rz, x,xjS(pj) E S since S(p,) E S. It remains 
to prove that xrx,S(p,J is special. By assumption the monomials of {p} do not 
begin with x1x? and since {xrx,~,} C {p} the same is true for (xrx,p,}. Hence 
the monomials of {p,> do not begin with xik-l and by the previous lemma it 
follows that the monomials of {S(p,)} do not begin with xzk--l and conse- 
quently the monomials of {xlx,S(pn)} do not begin with x1x;“. Furthermore, 
S(p,) is special so xlx,S(p,) is special which proves our assertion and hence 
our lemma. 

The following are common assumptions for Lemmas 16, 17, 18: 

~1, B, y, h are integers > 0 and 01 > /3. 

p, q, Y, s E S are homogeneous and p = P(~~), Y = rc2b) # 0, 

P4 = (P!?Y2Y)P YS = (YS)@). 

(Note that if p = 0 then the assumption p = p(2a) still holds.) 

v EF[X] is homogeneous such that xjyhv = (Xjy%p. 

LEMMA 16. If /3 > 0 and pq + YS + xj,y% E T for some j,, , then there 
exist p, , Y,, E S with p, = ph2u) = xl&, , Y,, = ~628) = x& # 0 and p, = 0 
if p = 0 such that: p,,q + rg + xIyhvO E T, where either v, = v OY v, = 0. 

Proof. Since OL > /3 > 0 we have p = & xipi , Y = & xiri . Hence 
pq + IS + x+yhV = Zx,pzq + ZX~Y~S + xioyhv E T and this relation can be 
written in the form 

xj&P,,,q + riOs + yhv) + C xi(PiP + ~2s) E T 
i#io 
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By Lemma 5(b) we obtain 

xja(Pjoq + rjos + yhv) E T and x&w + ris) E T for i#:j,, 

and by (a) of the same lemma, 

xl(pjoq + rjo s + yhv) E T and xI(piq + rg) E T for i # j,,. 

Since Y # 0 we have yi # 0 for some i. I f  i = j0 we takep, = ~,p,~ , Y, = x~Y,, 
and V, = v. I f  i # j, we take p, = xlpi , r,, = xlri and v,, = 0. In both cases 
we also obtain that p, = p:k) = X&ES, O#~,=Y;~~)=X,Y;ES by 
Lemma 3. Clearly, if p = 0, then all pi = 0 and p, = 0. 

LEMMA 17. If /3 > 0,O < h < k andpq + rs + xflhv E T, withp = x&, 
r = xlrh, then for j = 1,2 ,..., n there exist pj = pj2a-2) E S which is 0 ;f 
p = 0, rj = rj2fl-2) E S which is # 0 for at least one j, and w EF[x] with the 
same property as v such that: pjq + rjs f xjyh-lw E T for all j. 

Proof. By assumption, pq + YS + x,yhv is of the form x,p’ 
(p’ = pir + r& + yhv) and for the u of Lemma 13 we obtain that 

x,y% = (x~~u)@J) and the monomials of {x,# + xry”~} do not begin with 
x1x?. Let v  + ykehu = w, then w has the same property as v  and we have 

pq + n + xlyhw = (Pq + rs + w+‘4 + xlyku E T. 

Let p = Cy=, x,xjp* , r = Ci”_, xlxjr,; then since h > 0, 

pq + IS + xlyhw = 5 xlxjpjq + 5 xlxirjs + x, (2 ,2) yh-1W 
j=l j=l j=l 

= gl xlxj(P9!l + ‘js + XjYh-‘W)* 

Now, pq + YS + xiyhw = xrp’ + x,yku does not contain monomials which 
begin with xlxik, it is homogeneous and belongs to T, hence Lemma 15 
implies that 

pjq + rjs + XjyhelW E T for j = 1, 2 ,..., 11. 

Clearly pj , rj satisfy all the requirements of the lemma. 

REMARK. I f  the assumptions in the previous lemma hold for v  = 0, 
i.e. pq + rs E T, and if pq + IS does not contain monomials which begin 
with xlxtk then the u of Lemma 13 is 0 and hence w = a + ykmhu = 0 and 
pjq + rjs E T for j = 1, 2 ,..., tl. 
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LEMMA 18. If  pq + rs E T, then for 0 < Y < min (j3, k) there exist 
fv = f !~-2v' = xl f: E S, g, = gj2s-2vj = xlgi E S with f,, = 0 if p = 0 and 
gv # 0 such that 

fvq + gvs + xlyk-“w. E T, (18) 

where wv has the same property as v (fw h = k). 

Proof. We prove the lemma by induction on v. For v  = 0 we obtain the 
result by Lemma 16 with e, = 0, if we takef, = p, , g, = Y, , v,, = 0. 

If  (18) holds for some v  such that Y + 1 < min (/3, k) then since 
or-v>p---v>Oandk-v>Oweobtain(byLemmal7withp=f,,, 

r=gv, v=wy, and Q: - v, fl - v, k - v, replacing OL, /3, h, respectively) 

pi + YES + Xjyk-wlW E T for j = l,..., n. 

Letj be such that r, # 0 then since /3 - (v + 1) > 0 we obtain the result by 
Lemma 16 with p, , Y, , x, , w replacing p, q, xi0 , et, if we take fv+l = p, , 

&l = To P %+1 = uo - 

Now we turn to the main result of this section which is 

THEOREM 19. R has no zero-divisors. 

Proof. The theorem will follow if we prove that, for j, g E R, 

@) = @) + u(q). (19) 

Indeed, let j, 4 # 0 then by definition it follows that o(f), $4) are finite and 

hence by (19) w(j@) is finite and therefore jg # 0. 
Let us prove first the following assertion [which implies (19) for p, q 

homogeneous] : 
If I, s are homogeneous and special, r # 0 and rs E T (S(rs) = 0) then 

s E T (s = 0). 
We shall prove this assertion by induction on deg Y = 2/3 using the above 

lemmas with p = 0. 
I f  /3 < k, then Lemma 18 holds for 0 < v  < 8. Hence for v  = fl - 1 we 

obtain g,+.rs + qyk-Q-l) wa-r E T such that 0 # g,-, = gE1 = x&r . 
Apply Lemma 17 with p = 0, r = g,-, , h = k - (/I + 1) > 0 and obtain 

rjs + xak-BW E T, for j = l,..., n, 

and since degg,+r = 2, all the rj are constants, 0, 1, and at least one of them 
equals 1. Letj be such that rj = 1, thus s + xjyk+w E T. I f  xjyk+w # T then 
for any i # j (there exists i # j since n > 2) it follows by Lemma 5(a) that 
xiyk-aw $ T and since ‘rss + xiyk-BW E T we must have ri = 1, so 
s + xiyk+w E T. Finally we have 

Xjyk-b + X~JP”~ = (S + x~JJ~-‘w) + (S + x~Y~-&w) E T 
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and by Lemma 5(b) we deduce that also Xjy’L-Bw E T, contrary to our assump- 
tion. It remains therefore that xjp-sw E T and hence s E T as required. 

Let /3 > K and assume the result is true for /3 - 1. We have IS E T and by 
Lemma 16 with p = 0, w = 0 we may assume I = xi~;. Now, I = Y(‘@) is 
special and 2/3 > 2k + 2, so Y and hence also IS cannot contain monomials 
which begin with X,X~ . *’ Then by the remark to Lemma 17 we obtain yjs E T 
for j = l,..., 11. Let j be such that rj # 0, then since deg rj = 2(p - 1) 
we obtain the result s E T by the induction hypothesis. 

We can turn now to the proof of (19). 
Let j, q # 0 and w.1.g. we may assume that p, 4 are special. Let w(p) = a 

and w(q) = /3; hence by definition, 

p = p’s’ + p'.+l + . . . . q z q’a’ + q'B+l' + ,.. 

and p(a), q@’ # 0. By the above assertion with Y = p(a), s = q(a), we obtain 
S(p(a)q’@‘) # 0 and since p(a)q@) is homogeneous of degree a + /?, it follows 
by the corollary to Lemma 8 that deg (S(p’a’q’fi))) = OL + /3. Now we have 

pq = p’dq’P’ f (p’dq’B+l’ + p’a+l’q’B’) + . . . . 

and hence the nonzero homogeneous component of least degree of ,!j’(pq) is 
S(p’a)q’@‘) which is of degree a + p. Thus, by definition of w it follows that 
w(S@q)) = a + fl = w@) + w(f) and we obtain (19) since w(K) = w&) = 
w(S(pp)), and our theorem is proved. 

The following lemma will be used in the next section and it is proved here 
since it is also a result of Lemmas 16-18. 

LEMMA 20. Let 0 # p, g, Y, s E S, homogeneous and p = p(&), Y = I(@), 

a>fl,deg(pq)=deg(rs).Ifn>3andpq+rsET,t~th~eetitstES 
such that tq + s E T and t = t’“-ea). 

Procf. As in Theorem 19 we first prove the result for /I < k. 
Apply Lemma 18 and Lemma 17 as before and obtain 

Pjq + yjs + x&h E T, j=l,2 ,.a., n; m 

all rj are constants 0, 1, and at least one of them equals 1. 
Consider two cases: (a) x&Bt4 E T; (b) x&b # T. 

(a) Let j be such that Y, = 1, then p,9 + s + &+w E T. Since 
x~--@w E T it follows x&Bw E T by Lemma 5 and hence p,q + s E T and 
the theorem is proved with t = p, E S. 
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(b) By Lemma 5 also xjyk+w $ T forj = 1,2,..., n and also every subsum 
of cin_t xjyk+w does not belong to T. If  .Z’xjyk+w is such a subsum, then 
from (20) we obtain by summation 

Z’pjq + .Yrjs + .Z’xjyk+w E T (21) 

From this it follows that 01 # /3. Indeed if 01 = /3 then the pj’s are also 
constants. Since 71 >, 3 the two-dimensional vectors (p, , r,), (ps , us),..., 

(pn , YJ over the field (0, I} are dependent and therefore there exists a 
subsum of Cy=‘=, (pj , yj) which is 0. Denote this subsum by .Z’(p, , yj), then 
Z’pj = 0, Z’rj = 0 and from (21) it follows that Z”x~yk+w E T, which is a 
contradiction. 

Since 01 > /3 and 01# /I, we have c1> /I. 
Let Y, = 1 and let i # j, then by (20) we have 

pip + s + xiyvtJ E T; piq + yis + xiyk+w E T. 

Since a > 0, we can write 

Pi = x1p; + *-- + Q%; pi =x& + -** +xnp;. 

Now, if yi = 0, from x&q + *** + xnpLq + xiyk+w E T it follows by 
Lemma 5 that x&q + xiyk+w E T and also xIpIq + Xjyk% E T, hence 

(pj + x~P;) q + s = (Pjq + s + xjyk-‘w) + (xjp;q + xjyk-‘w) E T 

and the result is obtained with t = pi + xjp;. 
I f  ri = 1, then piq + s + xiyk-Bw E T; hence 

(pj + pi) q + Xjyk-‘W + x~Y~-‘w E T 

and again by Lemma 5 we obtain x,(pi + p;) q + xjyk+w E T, from which 
it follows that (p3 + x,p; + xjpj”) q + s E T. Thus, the result is obtained 
with t = p, + x,p; + xJp;. 

It is readily verified that in each case deg t = degpj and by Lemmas 18 
and 17 degpj = 201 - 2/3. Hence we have t = t(&-2b). 

This completes the proof of the lemma for /3 < K. 
Let /? > Iz and assume the result is true for /I - 1. We have pq + YS E T 

and by Lemma 16 with v  = 0 we may assume p = x& , Y  = +Y; . Now, 
r = Y@~) is special and 2/I > 2k + 2, so Y and hence also IS cannot contain 
monomials which begin with xlxtk. Since p = p(k) is special and (Y > /I 
the same is true for pq. Then by the remark to Lemma 17 we obtain 
pjq + rjs E T and let j be such that rj # 0. Since deg Y, = 2@ - l), the 
result follows by induction. 
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7. THE EMBEDDING OF R* IN A GROUP 

Our next aim is to show that for n > 3, R* is embeddable in a group. 
The proof of this fact is based on the following result due to Doss [2]: 

A semigroup which satisfies the cancellation laws is embeddable 
in a group, if for any two elements with a common left-multiple, 
one of them is a right-divisor of the other. 

The semigroup R* does not satisfy this condition as is readily seen by 
considering the equation (x~~x~~ + 1) xl2 = x,~(x,%,~ + 1) (~7 is not a 
multipl of x.$rs + 1 and ~~~xrs + 1 is not a multiple of 2). However 
we can apply Doss’ result to a larger semigroup @* = W - (0}, where W 

is the ring defined in Section 2. 
First we shall prove that R is embeddable in W. We recall that the injection 

F[x] -+P[[x]] induces the injections P -+ B and T--f 9. Let 4 be the 
composition of the injectionP-@with the natural homomorphism8+B/Y. 
Thus,$:P-+B/Y=G?andker$=PnY.WeassertthatPnY=T 
which implies that R = Pl T is embeddable in W. Clearly we have T C P n F 
since T C P and T C Y. On the other hand, by the remark to Lemma 4, .Y 
is homogeneous and its homogeneous polynomials belong to T. Hence, if 
p = Zp(@) E P n Y then all pta) E T and also p = .Zl’p(a) E T. Thus, 
P n Y C T and our assertion is proved. 

To prove that B is an integral domain (B* is a semigroup with cancellation 

laws) we observe that the valuation defined on R can be extended to BY in 
the following way: 

If  p E B is such that all its homogeneous components are special, then p 
will be called special, and if p # 0 and pea) is its nonzero homogeneous 
component of least degree we set: v(p) = CL. 

If  p = Z’tg) E P, then let S(p) = ZS(P(~)). Clearly S(p) is special and it 
is the unique special element of j5 = p + Y. 

Thus, for p EB we define ZJ@) = v(S(p)). 
The equation o@) = w@) + v(q) for j, q E W is proved as in Theorem 19 

and this clearly implies that 9 is an integral domain. 
It remains to prove that W* satisfies Doss’ condition. First we prove the 

following consequence of Lemma 20. 

LEMMA 21. Let p, q, r, s E P be homogeneous, q, r 4 T and 
w@) = 01 > y = v(f). If jq = 7s and n >, 3, then there exists t = Cay) E P 
such that j = i? and 5t = S. 

Proof. I f  $I = E = 0, then since R is an integral domain and since 
q # 0, f  # 0, we obtain 5 = S = 0 and the result follows with t = 0. 
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Let $g = 5 # 0, then we have also p, s # T and S(p), S(p), S(r), S(s) are 
nonzero, special, and homogeneous. Since 

-- -- ~ 
S(p) S(q) = S(p) S(q) = pq = ?5 = S(Y) S(s) = S(Y) S(s) 

it follows that S(p) S(q) + S(Y) S(s) E T. By lemma 12(c) S(p) = S(p(-1) = 

(S(P))(~) and S(Y) = (S(Y))(Y) $r 0. Th us, all the conditions of Lemma 20 

are satisfied for S(p), S(q), S(Y), S(s), 01, y  replacing p, 9, Y, s, 2or, 2/? respec- 
tively, and therefore there exists t = @-Y) E S such that tS(q) + S(s) E T. -- 
Hence 6j = tS(q) = S(s) = S and therefore jrj = f&j from which it follows 
that j5 = 7t since q # 0, and our lemma is proved. 

Ifpl,p2~PandA=Pz, then for convenience we shall write p1 3 p, 

meaning = mod T. 
We extend Lemma 21 to power series. 

THEOREM 22. Let 0 $1 p, q, I, s E 9 be special and jq = X If n 2 3 and 
v(p) > W(Y), then there exists t E W* such that $ = ?t; Sj = S. 

Proof. Let 01, /3, y, 6 be the values of p, q, Y,  s, respectively, then p(s), 

y(B), T(Y), sfs) # 0, and 

a + /I3 = w(j) + w(q) = fJ@j) = w(n) = w(f) + w(3) = y  + 6. 

$4 = ?i means pq = rs(mod Y) and since F is homogeneous and its homo- 
geneous polynomials belong to T we have 

(pq)(7) = (YS)(T) for each 7 > 0. (22) 

For 7 = 01 + fi = y  + 6 we obtain pca)q@) = Y(Y)@) and by the previous 
lemma there exists a homogeneous polynomial of degree z = OL - y  = 6 - /I 
such that, if we denote it by Cc), then 

p(a) c y(Y)t(C). , twqw z s(8)e (23) 

Assume that for p = 0, l,..., v, Cc+@) (which is 0 or homogeneous of degree 
E + p) has already been defined such that t, = t(c) + *a* t(*+v) satisfies 

p(lr+r) 3 (q’+P’; (tyq)@+r) s sw+flr) (24) 

for p = 0, l,..., v, and note that, for p = 0, (24) is identical with (23). 
We proceed to define t(E+u+l) such that (24) will hold for tp+l = t, + t(c+v+l) 

replacing t, and for p = 0, l,..., v  + 1. 
If  this is proved then t = Cc) + ++I) + **a will satisfy: 

p(r+p’ E (,t)‘a+r’; pqya+/d E +-r) 

for each p 2 0. This means p z rt (mod fl), tq 5 s(mod r) as required in 
the theorem. It is also clear that t E B and f  E W*. 
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For T = cx + fl+ v + 1 = y + 8 + v + 1 we have, by (22), 

(pq)b4+B+Y+1) z (y++8+v+l)* 

Let us calculate both sides of (25) using (24): 

(25) 

(pq)Ca+B+v+l) ,pG+vtl+p + i p+r+p+u+l-r) 

P-0 

~p(LI+u+1)q(8) + i (yQ(a+d q@+v+l-r) 

v+l 
= p(~+y+l)qW + (f&) (a+v+l' q(S) + c (y~")(a+P' q(j3tv+l--lr' 

P-0 

= Ip(m+y+l) + (y~“)(~+y+u] qw + [(yQ q](rr+w+l’, 

Similarly we have 

(Ys)w~+*l’ Gz Y”‘[(&q) (a+v+l) + p+vt1q + [y(~~)]'y+s+u+l~~ 

But [(rt,,) p](a+fi+v+l) = [Y(Q)](Y+*+Y+~), and therefore by (25) we obtain 

Cp(a+v+l) + (It”) b+v+lqp z yq(~yq)(8+v+l) + sm+v+l)]* 

Since q(s), Y(Y) $ T we can use the previous lemma and obtain a poly- 
nomial which is 0 or homogeneous of degree OL + v + 1 - y = E + v + 1 
such that, if we denote it by t(r+v+l), then 

p+v+1, + (y~")k+v+l) s y(Y)tk+v+l). 
9 t(r+v+l) 

4 
(B) E (ty4)(6+v+l) + p+vm* 

Now, for tv+l = t, + t(f+v+l) we obtain 

pca+v+1, s y(y'~k++v+l + (y#a+vtl) z (y~"+p+Y+l) 

and similarly, 
(~v+lq)(6+v+l) 3 p+v+l) 

, 

which proves (24) for ty+r replacingt,,and~=v+l;butfor~<v+l, 

p(a+r) E (y#"+P' = (yf"+,p+r' 

and also 
(&+lq)‘fj+“’ 3 @+P) 

and thii completes the induction. 
From the previous theorem and Doss’ result [2] it follows that W* is 

embeddable in a group if n > 3, and since R* is embeddable in W* we have: 
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THEOREM 23. If n 3 3, then R* is embeddable in a group. 
In Theorem 1 we have proved that if k 3 n, then R cannot be embedded in 

a field. Thus, Theorem 1 together with Theorem 23 give our main result 
which is: 

THEOREM 24. If k 3 n and n > 3, then the ring R cannot be embedded in a 
jield, but the multiplicative semigroup R* is embeddable in a group. 

Finally we note that if n = 2 and k > 2, then R* cannot be embedded in a 
group. It suffices to show that R* does not satisfy the following necessary 
condition for a semigroup to be embeddable in a group, given by Malcev [4]: 

If a, b, c, d, a’, b’, c’, d’ are elements of a semigroup that can be embedded 
in a group and if 

aa’ = bb’, ac’ = bd’, ca’ = db’, then cc’ = dd’. 

Let us denote the elements of A” E P, by wii and let 

a = wll, b = 55,,, , 72 c=x1, d=x,x,, 

a’ = wI1 , b’ = E2, , -2 cl =x1, d’=Gl. 

wllwll + w12w21 is the (1, 1) entry of A21c and therefore belongs to T 
(which is generated by the entries of Ak+l). Hence, 

- - 
aa’ = wllwll = w12w2, = bb’. 

Since A - Ak = Ak+l = Ak - A we obtain 

~1~~x1 + wy31 = 211 E T 

Hence, 

and ~11x1~ + ~12~2x1 = 211 E T. 

-- - - 
ca’ = x12wll = x~x~w,~ = db’; ac’ = wllxl 2 = w,~~~ = bd’. 

T does not contain polynomials of degree < 2k + 2 and in particular, 
since k >, 2, itenot contain xl4 + x1x22x1 which is of degree 4 < 2k + 2. 
Hence 2 # x1x22x1 and therefore cc’ # dd’. 

Thus, in R* we have aa’ = bb’, ac’ = bd’, ca’ = db’, but cc’ # dd’ and 
therefore R* cannot be embedded in a group. 
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