Rings Nonembeddable in Fields with Multiplicative Semigroups Embeddable in Groups*

Abraham A. Klein
Institute of Mathematics, The Hebrew University, Jerusalem, Israel
Communicated by P. M. Cohn ${ }^{1}$
Received September 12, 1966

1. Introduction

Necessary and sufficient conditions for a semigroup to be embeddable in a group were given by Mal'cev [5]. Similar conditions for a ring to be embeddable in a field are not yet known. Mal'cev [4] has constructed (noncommutative) integral domains that cannot be embedded in a (skew) field. His examples are based on the fact that the multiplicative semigroup (of nonzero elements) cannot be embedded in a group and this clearly implies that the rings are not embeddable in fields.
The aim of this paper is to construct integral domains that cannot be embedded in a field, but whose multiplicative semigroups are embeddable in groups, and this solves the problem stated in [1], p. 277.
If an integral domain R can be embedded in a field, then necessarily the ring of $n \times n$ matrices R_{n} satisfies certain properties of matrices over a field. In particular if $C \in R_{n}$ is a nilpotent matrix, then $C^{n}=0$. To obtain our example, we construct an integral domain R with a nilpotent matrix $C \in R_{n}$ such that $C^{n} \neq 0$, and then we show the multiplicative semigroup of R can be embedded in a group. This is obtained by embedding R in an integral domain \mathscr{R}, whose multiplicative semigroup satisfies Doss' condition [2] for a semigroup to be embeddable in a group.

[^0]
2. Summary and Notations

The following is a list of the notations used and an outline of the construction of the integral domain R.
(1) $F=\{0,1\}$-the field of two elements.
(2) $F[x]=F\left[x_{1}, \ldots, x_{n}\right]$-the free noncommutative polynomial ring (with 1) generated by a set of indeterminates $\left\{x_{1}, \ldots, x_{n}\right\}, n \geqslant 2$, over F.
(3) $F[[x]]$-the ring of formal power series of $F[x]$, namely, infinite sums of homogeneous polynomials of distinct degrees.
(4) P-the subring of $F[x]$ generated by all monomials $x_{i} x_{j}$ and 1 ; clearly P contains those polynomials all of whose homogeneous components of odd degree are 0 .
\mathscr{P}-the subring of $F[[x]]$ of those series all of whose homogeneous components of odd degree are 0 .
(5) $A=\left(x_{i} x_{j}\right)$-the matrix in P_{n}, whose entry in the i th row and j th column is $x_{i} x_{j}$.
(6) k-a fixed integer $\geqslant 1$ and $z_{i j}$-the (i, j) entry of the matrix A^{k+1}; thus, $A^{k+1}=\left(z_{i j}\right)$.
(7) T-the ideal in P generated by $\left\{z_{i j} \mid 1 \leqslant i, j \leqslant n\right\}$ and $R=P / T$. \mathscr{T}-the ideal in \mathscr{P} generated by $\left\{z_{i j} \mid 1 \leqslant i, j \leqslant n\right\}$ and $\mathscr{R}=\mathscr{P} \mid \mathscr{T}$.
The integral domain we construct is obtained by taking a fixed $k \geqslant n$ and proving that R is an integral domain. The matrix $C=\left(x_{i} x_{j}+T\right) \in R_{n}$ and $C^{k+1}=\left(z_{i j}+T\right)=0$, hence C is nilpotent. But since the polynomials of T are of degree $\geqslant 2 k+2$ and the entries of A^{n} are of degree $2 n<2 k+2$, it follows that $C^{n} \neq 0$. Thus, we have:

Theorem 1. If $k \geqslant n$, then R is not embeddable in a field.

After proving that R is an integral domain, we show that for $n \geqslant 3$ (independent of k) the multiplicative semigroup $R^{*}=R-\{0\}$ is embeddable in a group in the following way:

The injection $F[x] \rightarrow F[[x]]$ induces the injections $P \rightarrow \mathscr{P}$ and $T \rightarrow \mathscr{F}$, and it is proved that $R=P / T$ can be embedded in $\mathscr{R}=\mathscr{P} / \mathscr{T}$. Next it is shown that \mathscr{R} is also an integral domain and hence $\mathscr{R}^{*}=\mathscr{R}-\{0\}$ is a semigroup which satisfies the cancellation laws. It is then proved that \mathscr{R}^{*} satisfies the following condition: if two elements of \mathscr{R}^{*} have a common left-multiple, then one of them is a right-divisor of the other. By a result of Doss [2], this condition is sufficient for a semigroup with cancellation laws to be embeddable in a group. Hence \mathscr{R} * is embeddable in a group and R^{*} which is embeddable in \mathscr{R} is also embeddable in a group.

The most difficult part of this paper is the proof that R is an integral domain. This is carried out by choosing unique representatives in every class of P / T, and giving a method for passing from a polynomial $p \in P$ to the representative of $p+T$ by a finite number of steps. In particular the representative of T is 0 . It is then proved that the representative of the residue class of the product of two nonzero representatives is not 0 , which means that P / T is an integral domain.

3. The Ideal T and the Representatives of R

In this section we shall define the representatives of $R=P / T$ called henceforth "special polynomials" or just "special".

We begin by calculating the polynomials $z_{i j}$ which generate T. By definition $z_{i j}$ are the entries of the matrix A^{k+1}, where $A=\left(x_{i} x_{j}\right)$. It is readily seen that $A=\left(x_{i}\right)^{*}\left(x_{j}\right)$ where $\left(x_{j}\right)=\left(x_{1}, \ldots, x_{n}\right)$ and $\left(x_{i}\right)^{*}$ is its transpose. Then $A^{k+1}=\left[\left(x_{i}\right)^{*}\left(x_{j}\right)\right]^{k+1}=\left(x_{i}\right)^{*}\left[\left(x_{j}\right)\left(x_{i}\right)^{*}\right]^{k}\left(x_{j}\right)$. Let $y=x_{1}{ }^{2}+\cdots+x_{n}{ }^{2}$, then $\left(x_{j}\right)\left(x_{i}\right)^{*}=x_{1}{ }^{2}+\cdots+x_{n}{ }^{2}=y$. Hence we have

$$
A^{k+1}=\left(x_{i}\right)^{*} y^{k}\left(x_{j}\right)=\left(x_{i} y^{k} x_{j}\right)
$$

and consequently:

$$
\begin{equation*}
z_{i j}=x_{i} y^{k} x_{j}=x_{i}\left(\sum_{1 \leqslant l_{1} \ldots \ldots, l_{k} \leqslant n} x_{l_{1}}^{2} \cdots x_{l_{k}}^{2}\right) x_{j}, \quad 1 \leqslant i, j \leqslant n . \tag{1}
\end{equation*}
$$

In view of the fact that F is the field of two elements, every polynomial $p \in F[x]$ can be written in an unique way as a sum of distinct monomials (the unity 1 is identified with the empty monomial). The set of monomials which appear in this sum will be denoted by $\{p\}$. For $p=0$ we obtain the empty set.

We recall that P is the subring of $F[x]$ of those polynomials which are sums of monomials of even degree.

Definition. A monomial of P will be called "special" if it is not of the form $m x_{i} x_{n}^{2 k} x_{j} m^{\prime}$, where m, m^{\prime} are monomials of even degree (belong to P) and $1 \leqslant i, j \leqslant n$. A polynomial $p \in P$ will be called "special" if the set of monomials $\{p\}$ contains only special monomials.

Let S denote the set of all special polynomials and the following are some properties of this set.

Lemma 2. S is an additive group and if $\{p\} \subseteq\{q\}, q \in S$, then $p \in S$.
Proof. Every sum of special monomials is a special polynomial. Thus a sum (which is also a difference since the characteristic is 2) of two special
polynomials is special. Clearly the zero-polynomial is special, hence S is an additive group. If $\{p\} \subseteq\{q\}$, then p is a subsum of q, and since $q \in S, p$ is also a sum of special monomials and it is therefore special.

Lemma 3. (a) If $p_{1} \in F[x]$ and $x_{i} p_{1} \in S$ for some i, then $x_{j} p_{1} \in S$ for all j.
(b) If

$$
p=\sum_{i=1}^{n} x_{i} p_{i} \in S
$$

then all $x_{i} p_{i} \in S$.
(c) $I f$

$$
p=\sum_{j=1}^{n} x_{1} x_{j} p_{j} \in S
$$

then all $p_{j} \in S$.
Proof. (a) $x_{i} p_{1} \in S$ means that no monomial of $\left\{x_{i} p_{1}\right\}$ is of the form $m x_{i}^{\prime} x_{n}^{8 k} x_{j} m^{\prime}\left(m, m^{\prime} \in P\right)$. Hence if such a monomial appears in $x_{j} p_{1}$ then x_{j} must be either the first indeterminate in m, or $m=1$ and $x_{j}=x_{i^{\prime}}$, but then clearly $x_{i} p_{1}$ will also have such a monomial with x_{i} replacing x_{j} in the beginning, a contradiction.
(b) For $i \neq j\left\{x_{i} p_{i}\right\} \cap\left\{x_{j} p_{j}\right\}=\phi$, hence $\left\{x_{i} p_{i}\right\} \subseteq\{p\}, 1 \leqslant i \leqslant n$. As $p \in S$ we obtain by lemma 2 that $x_{i} p_{i} \in S$.
(c) As in (b) we obtain $x_{1} x_{j} p_{i} \in S$ for $1 \leqslant j \leqslant n$. Hence, if m is a monomial of $\left\{p_{j}\right\}$, its degree is even and from the definition it is clear that m is also special, thus $p_{j} \in S$.

Now, we proceed to prove some similar properties for the ideal T.
We introduce here the notation $p^{(\alpha)}$ for the homogeneous component of degree α of a polynomial p.

Lemma 4. $\quad T$ is a homogeneous ideal.
Proof. Let $p \in T$, then p can be written as a finite combination of multiples of the generators $z_{i j}$:

$$
\begin{equation*}
p=\sum_{\mu} p_{\mu} z_{i_{\mu} 1_{\mu}} p_{\mu}^{\prime}, \quad \text { where } \quad p_{\mu}, p_{\mu}^{\prime} \in P \tag{2}
\end{equation*}
$$

The $z_{i \omega / \mu}$ are homogeneous of degree $2 k+2$, hence the homogeneous component of degree α of p is

$$
p^{(\alpha)}=\sum_{\mu, \beta \cdot \gamma} p_{\mu}^{(\beta)} z_{i_{\mu} \mu_{\mu} p_{\mu}^{\prime}}^{(\gamma)}, \quad \text { where } \quad \beta+\gamma+2 k+2=\alpha
$$

and β, γ are even; thus $p^{(\alpha)} \in T$.

Remark. The same proof for \mathscr{P} and \mathscr{T} (defined in 2) yields that \mathscr{T} is a homogeneous ideal in \mathscr{P} and the homogeneous polynomials of \mathscr{T} belong to T.

Lemma 5. (a) If $p_{1} \in F[x]$ and $x_{i} p_{1} \in T$ for some i, then $x_{j} p_{1} \in T$ for all j.
(b) If

$$
p=\sum_{i=1}^{n} x_{i} p_{i} \in T,
$$

then all $x_{i} p_{i} \in T$.
Proof. Let $p \in T$ be written in the form (2) and replace the polynomials p_{μ} by the sums of their monomials. Thus, p is of the form $p=\Sigma m_{\lambda} z_{i_{\lambda} \lambda_{\lambda}} p_{\lambda}^{\prime}$, where the $m_{\lambda}{ }^{\prime}$ s are monomials.
(a) Since $x_{i} p_{1} \in T$ we can write $x_{i} p_{1}=\Sigma m_{\lambda} z_{i_{\lambda} \lambda_{\lambda}} p_{\lambda}^{\prime}$ and assume that if $m_{\lambda} \neq 1$ then $m_{\lambda}=x_{i} m_{\lambda}^{\prime \prime}$, and if $m_{\lambda}=1$ then $z_{i_{\lambda} j_{\lambda}}=x_{i_{\lambda}} y^{k} x_{i_{\lambda}}=x_{i} y^{k} x_{i_{\lambda}}=z_{i i_{\lambda}}$. Hence,

$$
x_{i} p_{1}=\Sigma^{\prime} z_{i j_{\lambda}} p_{\lambda}^{\prime}+\Sigma^{\prime \prime} x_{i} m_{\lambda}^{\prime \prime} z_{i_{\lambda} j_{\lambda}} p_{\lambda}^{\prime},
$$

where in Σ^{\prime} we take all the summands of Σ with $m_{\lambda}=1$. Thus,

$$
x_{j} p_{1}=\Sigma^{\prime} z_{j j_{\lambda}} p_{\lambda}^{\prime}+\Sigma^{\prime \prime} x_{j} m_{\lambda}^{\prime \prime} z_{i \lambda} j_{\lambda} p_{\lambda}^{\prime}
$$

and hence $x_{j} p_{1} \in T$.
(b) We write

$$
p=\Sigma m_{\lambda} z_{i_{\lambda} \lambda_{\lambda}} p_{\lambda}^{\prime}=\sum_{i=1}^{n}\left(\Sigma_{(i)} m_{\lambda} z_{i_{\lambda} \lambda_{\lambda}} p_{\lambda}^{\prime}\right),
$$

where in $\Sigma_{(i)}$ we take the summands of Σ with $m_{\lambda}=1$ and $i_{\lambda}=i$, or $m_{\lambda}=x_{i} m_{\lambda}^{\prime \prime}$. Since $\left\{\Sigma_{(i)}\right\} \cap\left\{\Sigma_{(j)}\right\}=\emptyset$ and $\left\{x_{i} p_{i}\right\} \cap\left\{x_{i} p_{j}\right\}=\emptyset$ we obtain $x_{i} p_{i}=\Sigma_{(i)} m_{\lambda} z_{i_{\lambda}{ }_{\lambda}^{2}} p_{\lambda}^{\prime} \in T$ for all i.

Our next aim is to prove that each residue class of P / T has one and only one special polynomial.

4. Existence

Let $m \in P$ be a monomial and denote by $\tau(m)$ the number of possible ways of writing m in the form $m_{1}\left(x_{1} x_{n}^{2 k} x_{j}\right) m_{2}$ with m_{1}, m_{2} monomials of even
degrees $\geqslant 0$. If m is special, then $\tau(m)=0$. For $m=x_{i_{1}} \cdots x_{i_{2 \alpha}}$ with $2 \alpha \geqslant 2 k+2$, we have

$$
\begin{equation*}
\tau(m)=\tau\left(x_{i_{1}} \cdots x_{i_{2 k+2}}\right)+\tau\left(x_{i_{3}} \cdots x_{i_{2 k+4}}\right)+\cdots+\tau\left(x_{i_{2 \alpha-2 k-1}} \cdots x_{i_{2 x}}\right) \tag{3}
\end{equation*}
$$

and each term of this sum is either 0 or 1 .
Denote by m^{\prime} a monomial which is obtained from m by replacing some of the x^{\prime} s by x_{n}, then clearly $\tau\left(m^{\prime}\right) \geqslant \tau(m)$. In particular, if we replace all the x^{\prime} 's by x_{n} we get $\tau\left(x_{n}^{2 \alpha}\right) \geqslant \tau(m)$. Hence the maximum of $\tau(m)$ for all monomials of degree 2α is $\tau\left(x_{n}^{2 \alpha}\right)=r(r=0$ if $\alpha \leqslant k$ and $r=\alpha-k$ if $\alpha>k)$.

Let $p \in P$ be homogeneous of degree $2 \alpha>2 k$. Denote by λ_{ν} the number of monomials $m \in\{p\}$ with $\tau(m)=\nu, 1 \leqslant \nu \leqslant r$. We introduce the notion of the height of p as the non-negative integral vector: $\sigma=\left(\lambda_{r}, \lambda_{r-1}, \ldots, \lambda_{1}\right)$. Clearly, p is special if and only if its height is $(0,0, \ldots, 0)$.

For a fixed α consider the lexicographic ordering of integral vectors; namely, let $\sigma^{\prime}=\left(\lambda_{r}^{\prime}, \lambda_{r-1}^{\prime}, \ldots, \lambda_{1}^{\prime}\right)$; then $\sigma^{\prime}<\sigma$ if there is a v such that $\lambda_{v}^{\prime}<\lambda_{\nu}$. But $\lambda_{\mu}^{\prime}=\lambda_{\mu}$ for $\mu>\nu$. The set of heights for a given α is a well-ordered set under lexicographic ordering (e.g., [3], Section 39).

Lemma 6. If m, m^{\prime} are monomials of $P, 1 \leqslant l_{1}, \ldots, l_{k} \leqslant n$, and at least one of the l 's is $\neq n$ then:

$$
\tau\left(m x_{i} x_{l_{1}}^{2} \cdots x_{i_{k}}^{2} x_{j} m^{\prime}\right)<\tau\left(m x_{i} x_{n}^{2 k} x_{j} m^{\prime}\right) .
$$

Proof. By replacing some x 's in a monomial m by x_{n}, its τ does not decrease. Hence each summand in the representation (3) of $\tau\left(m_{i} x_{i_{1}}^{2} \cdots x_{i_{k}}^{2} x_{j} m^{\prime}\right)$ is \leqslant than the corresponding summand of $\tau\left(m x_{i} x_{n}^{2 k} x_{j} m^{\prime}\right)$ where the inequality is strict for at least one summand, since $\left(l_{1}, \ldots, l_{k}\right) \neq(n, \ldots, n)$ and so $\tau\left(x_{i} x_{l_{1}}^{2} \cdots x_{l_{k}}^{2} x_{j}\right)=0, \tau\left(x_{i} x_{n}^{2 k} x_{j}\right)=1$. Thus, we obtain

$$
\tau\left(m x_{i} x_{l_{1}}^{2} \cdots x_{l_{k}}^{2} x_{j} m^{\prime}\right)<\tau\left(m x_{i} x_{n}^{2 k} x_{j} m^{\prime}\right) .
$$

Lemma 7. If $p \in P$ is homogeneous and $m x_{i} x_{n}^{2 k} x_{j} m^{\prime}\left(m, m^{\prime} \in P\right)$ is one of its monomials, then the height of $p^{\prime}=p+m z_{i j} m^{\prime}$ is lower than the height of p.
Prouf. Let $\sigma=\left(\lambda_{r}, \ldots, \lambda_{1}\right)$ be the height of p and let $\tau\left(m x_{i} x_{n}^{2 k} x_{j} m^{\prime}\right)=\nu$. Since $m x_{i} x_{n}^{2 k} x_{j} m^{\prime} \in\{p\}$, by definition of σ we have $\lambda_{\nu} \geqslant 1$. We assert that the height of p^{\prime} is $\sigma^{\prime}=\left(\lambda_{r}, \ldots, \lambda_{\nu+1}, \lambda_{\nu}-1, \lambda_{\nu-1}^{\prime}, \ldots, \lambda_{1}^{\prime}\right)$, which is by definition lower that σ. Indeed, by (1) we have

$$
m z_{i j} m^{\prime}=m\left(\sum_{1 \leqslant l_{1}, \ldots, l_{k} \leqslant n} x_{i} x_{l_{1}}^{2} \cdots x_{l_{k}}^{2} x_{j}\right) m^{\prime}
$$

Thus, $p^{\prime}=p+m z_{i j} m^{\prime}$ does not contain $m x_{i} x_{n}^{2 k} x_{j} m^{\prime}$ as this monomial appears in p and in $m z_{i j} m^{\prime}$ and we deal with a ring of characteristic 2 . Hence, if a monomial of p^{\prime} does not belong to p, it is of the form $m x_{i} x_{l_{1}}^{2} \cdots x_{l_{k}}^{2} x_{j} m^{\prime}$ where $\left(l_{1}, \ldots, l_{k}\right) \neq(n, n, \ldots, n)$, and by the previous lemma we have

$$
\tau\left(m x_{i} x_{l_{1}}^{2} \cdots x_{l_{k}}^{2} x_{j} m^{\prime}\right)<\tau\left(m x_{i} x_{n}^{2 k} x_{j} m^{\prime}\right)=\nu
$$

It follows therefore that, if the height of p^{\prime} is $\sigma^{\prime}=\left(\lambda_{r}^{\prime}, \ldots, \lambda_{\nu+1}^{\prime}, \lambda_{\nu}^{\prime}, \lambda_{\nu-1}^{\prime}, \ldots, \lambda_{1}^{\prime}\right)$, then $\lambda_{r}^{\prime}=\lambda_{r}, \ldots, \lambda_{v+1}^{\prime}=\lambda_{\nu+1}$ and $\lambda_{v}^{\prime}=\lambda_{\nu}-1$, which proves our assertion.

Lemma 8. Let p be homogeneous of degree $2 \alpha>2 k$ and define $q_{0}=p$; if q_{μ} contains a nonspecial monomial $m_{\mu} x_{i_{\mu}} x_{n}^{2 k} x_{j_{\mu}} m_{\mu}^{\prime}$, set $q_{\mu+1}=q_{\mu}+m_{\mu} z_{i_{\mu} \mu_{\mu}} m_{\mu}^{\prime}$ for $\mu=0,1, \ldots$. Then the chain q_{0}, q_{1}, \ldots is finite and its last element is special.

Proof. Let σ_{μ} be the height of q_{μ}. By the previous lemma we have: $\sigma_{0}>\sigma_{1}>\cdots$ and by the well-ordering of the set of heights (of homogeneous polynomials of degree 2α), this chain must terminate at σ_{l}, say. Hence q_{l} does not contain a monomial of the form $m x_{i} x_{n}^{2 k} x_{j} m^{\prime}\left(m, m^{\prime} \in P\right)$ and it is therefore special.

Corollary. If $p \in P$ is homogeneous, then $p=p_{0}+p_{1}$ with $p_{0} \in S$, $p_{1} \in T$ and $\operatorname{deg} p_{0}=\operatorname{deg} p$ if $p \notin T, \operatorname{deg} p_{1}=\operatorname{deg} p$ if $p \notin S$.

Indeed, if $\operatorname{deg} p \leqslant 2 k$, then p is special and we take $p_{0}=p$ and $p_{1}=0$. If $\operatorname{deg} p>2 k$, then in the previous lemma we have obtained

$$
q_{l}=p+\sum_{\mu=0}^{l-1} m_{\mu} z_{i_{\mu} j_{\mu}} m_{\mu}^{\prime} .
$$

Hence we take $p_{0}=q_{l}$ which is special and $p_{1}=\sum_{\mu=0}^{l-1} m_{\mu} z_{i_{\mu} i_{\mu}} m_{\mu}^{\prime}$ which belongs to T. If $p \notin T$ then $p_{0} \neq 0$ and $\operatorname{deg} p_{0}=\operatorname{deg} p$. Similarly, if $p \notin S$ then $p_{1} \neq 0$ and $\operatorname{deg} p_{1}=\operatorname{deg} p$.

Since every $p \in P$ can be expressed as a sum of its homogeneous components and S, T are additive groups, it follows immediately that

Theorem 9. Every residue class of P / T contains a special polynomial.
Using the above corollary we prove here one additional lemma which will be used in the next section.

Lemma 10. If $r \in T$, then r can be written as a sum of the form $\Sigma m_{i j} \boldsymbol{m}^{\prime}{ }^{\prime}$, where $m, m^{\prime} \in P$ are monomials and all first terms m are special.

Proof. We shall prove that $r=\Sigma p z_{i} p^{\prime}$ where $p \in S, p^{\prime} \in P$ and our result will follow by replacing p and p^{\prime} by the sum of their monomials.

Since $r \in T$ we can write $r=\Sigma p z_{i j} p^{\prime}$, where $p, p^{\prime} \in P$ and clearly we may assume that they are homogeneous. If all the polynomials p in this sum are special the result is proved. Assume that this is not the case and look at the polynomials $p \notin S$ of maximal degree ν, say. Write $p=p_{0}+p_{1}$ with $p_{0} \in S, p_{1} \in T$ and if $p_{1} \neq 0$ then $\operatorname{deg} p_{1}=\operatorname{deg} p=\nu$. Note that since $p_{1}=\Sigma p_{1_{\mu}} z_{i_{\mu_{\mu}}} p_{1 \mu}^{\prime}$ and all summands are of the same degree, then $\operatorname{deg} p_{1 \mu}<\operatorname{deg} p_{1}$. Now, we write

$$
r=\Sigma p z_{i j} p^{\prime}=\Sigma^{\prime} p z_{i j} p^{\prime}+\Sigma^{\prime \prime} p z_{i} p^{\prime}
$$

where in Σ^{\prime} we take all summands of Σ with $p \notin S$ and $\operatorname{deg} p=\nu$, and for those p we have: $p=p_{0}+\Sigma p_{1_{\mu}} z_{i_{\mu}{ }^{5}} p_{1 \mu}^{\prime}$. Hence,

$$
r=\Sigma^{\prime} p_{0} z_{i}, p^{\prime}+\Sigma^{\prime} \Sigma p_{1 \mu} z_{i_{\mu} s_{\mu}}\left(p_{1 \mu}^{\prime} z_{i j} p^{\prime}\right)+\Sigma^{\prime \prime} p z_{i j} p^{\prime}
$$

This can be written in the form $\Sigma q z_{i i} q^{\prime}$ with q equal to $p_{0}, p_{1 \mu}$ or p which appears in $\Sigma^{\prime \prime}$. Now $p_{0} \in S, \operatorname{deg} p_{1 \mu}<\operatorname{deg} p=\nu$, and for those $p \notin S$ which appear in $\Sigma^{\prime \prime}$, $\operatorname{deg} p<\nu$ (by the maximality of ν). Hence we have $r=\Sigma q z_{i j} q^{\prime}$ with $q, q^{\prime} \in P$ and the degree of a $q \notin S$ is $<\nu$. Repeating the above process several times, the maximal degree ν lowers in each step and the final representation of r is the required for obtaining our lemma.

5. Uniqueness

In this section we prove the following theorem.
Theorem 11. Every residue class of P / T contains only one special polynomial.

Proof. The theorem will follow if we prove that $S \cap T=\{0\}$. Indeed let p_{1} and p_{2} be any two special polynomials of the same residue class. Then $p_{1}-p_{2} \in T$ and since S is an additive group we have $p_{1}-p_{2} \in S$. Thus, if $S \cap T=\{0\}$ it follows $p_{1}-p_{2}=0$ and hence $p_{1}=p_{2}$.

Assume that $S \cap T \neq\{0\}$. Let $q \neq 0$ be a non-zero element of (cl) minimal degree in $S \cap T$, such that it has a representation $q=\Sigma m z_{i j} m^{\prime}$ as in Lemma 10 ($m, m^{\prime} \in P$ are monomials and $m \in S$) with a (c2) minimal number of summands d, say. Among the representations of q with d summands we choose one with (c3) $\Sigma \mathrm{deg} m$ maximal, and let us write it in the form

$$
\begin{equation*}
=\sum_{-1}^{d} m_{\lambda} z_{i \lambda \lambda} m_{\lambda}^{\prime} . \tag{4}
\end{equation*}
$$

We shall obtain a contradiction by proving in six steps (A)-(F) that (4) cannot exist.

For convenience we set

$$
\begin{equation*}
q_{\lambda}=m_{\lambda} z_{i_{\lambda} j_{\lambda}} m_{\lambda}^{\prime}, \quad \lambda=1, \ldots, d \tag{5}
\end{equation*}
$$

and so (4) has the form: $q=\sum_{\lambda=1}^{d} q_{\lambda}$. Note that $q_{\lambda} \neq q_{\lambda}$ for $\lambda \neq \lambda^{\prime}$ since the characteristic is 2 .
(A) There exists x_{i} such that $q_{\lambda}=x_{i} q_{\lambda}^{\prime}$ for all q_{λ} of (4) and without loss of generality we may assume $x_{i}=x_{1}$.

Proof. We write, as in the proof of Lemma 5 (b),

$$
q=\sum_{\lambda=1}^{d} q_{\lambda}=\sum_{j=1}^{n} \Sigma_{(j)} q_{\lambda},
$$

where in $\Sigma_{(i)}$ we take the summands q_{λ} of the form $x_{j} q_{\lambda}^{\prime}$. Thus $q=\sum_{j=1}^{n} x_{j} \Sigma_{(j)} q_{\lambda}^{\prime}$, and by Lemma 3(b) we have $q_{(j)}=\Sigma_{(j)} q_{\lambda}=x_{j} \Sigma_{(j)} q_{\lambda}^{\prime} \in S$ and, as all $q_{\lambda} \in T$ by (5), we have $q_{(j)} \in S \cap T$. By the minimality of d, $q_{(j)} \neq 0$ only for one j.

If $q=q_{(i)}$ and $i \neq 1$, let $q^{\prime}=x_{1} \sum_{\lambda=1}^{d} q_{\lambda}^{\prime}$. Clearly q^{\prime} satisfies all conditions (c1)-(c3) with the same d [by Lemma 3(a)].

We assume henceforth: $q_{\lambda}=x_{1} q_{\lambda}^{\prime}$ for $\lambda=1, \ldots, d$.
(B) There exists a m_{λ} in (4) equals to 1 and so $q_{\lambda}=z_{1 j_{\lambda}} m_{\lambda}^{\prime}$.

Proof. Assume the assertion (B) is not true. Then $\operatorname{deg} m_{\lambda}>0$ for $1 \leqslant \lambda \leqslant d$ and since $\operatorname{deg} m_{\lambda}$ is cven we have: $m_{\lambda}=x_{1} x_{j} m_{\lambda}^{\prime \prime}$. Thus, $q=\sum_{j=1}^{n} \Sigma_{(j)} q_{\lambda}$, where $\Sigma_{(j)} q_{\lambda}$ is the sum of the q_{λ} 's with $m_{\lambda}=x_{1} x_{j} m_{\lambda}^{\prime}$. By Lemma 3(c) we have $\Sigma_{(j)} q_{\lambda} \in S$ and since all $q_{\lambda} \in T, \Sigma_{(j)} q_{\lambda} \in S \cap T$ for $1 \leqslant j \leqslant n$. By the minimality of d we must have $q=\Sigma_{(j)} q_{\lambda}$ for some j and therefore $q=x_{1} x_{j} \sum_{\lambda=1}^{d} m_{\lambda}^{\prime \prime} z_{i_{\lambda}{ }_{\lambda}} m_{\lambda}^{\prime}$. But $q^{\prime}=\Sigma m_{\lambda}^{\prime \prime} z_{i_{\lambda} \lambda_{\lambda}} m_{\lambda}^{\prime} \in T$ and it is clear that $0 \neq q^{\prime} \in S$, hence we have $0 \neq q^{\prime} \in S \cap T$. But $\operatorname{deg} q^{\prime}<\operatorname{deg} q$ and this contradicts the minimality of the degree of q which proves that some $m_{\lambda}=1$.

The second part of (B) follows immediately. Indeed, some $q_{\lambda}=z_{i_{\lambda} j_{\lambda}} m_{\lambda}^{\prime}$ and $i_{\lambda}=1$ since $q_{\lambda}=x_{1} q_{\lambda}^{\prime}$ by assumption.
(C) The sum (4) does not contain n summands $q_{\lambda_{2}}, 1 \leqslant l \leqslant n$, such that $q_{\lambda_{l}}=m_{0} z_{i l}\left(x_{l} x_{j} m_{0}^{\prime}\right)$ where $m_{0}, m_{0}^{\prime}, i, j$ are the same for all $q_{\lambda_{l}}$ and such that $\operatorname{deg} m_{0} \leqslant 2 k-2\left(m_{\lambda_{t}}=m_{0}, i_{\lambda_{t}}=i, j_{\lambda_{t}}=l, m_{\lambda_{t}}=x_{t} x_{j} m_{0}^{\prime}\right)$.

Proof. If this is not the case we shall construct a representation of q with the same number of summands and for which $\Sigma \operatorname{deg} m>\sum_{\lambda=1}^{d} \operatorname{deg} m_{\lambda}$ which will contradict the assumption of maximality of $\sum_{\lambda=1}^{d} \operatorname{deg} m_{\lambda}$.

Thus, let $q_{\lambda_{l}}=m_{0} z_{i l}\left(x_{i} x_{j} m_{0}^{\prime}\right), 1 \leqslant l \leqslant n$, and $\operatorname{deg} m_{0} \leqslant 2 k-2$ We recall that the matrix $A=\left(x_{i} x_{j}\right)$ and $A^{k+1}=\left(z_{i j}\right)$. Since $A^{k+1} A=A^{k+2}=A A^{k+1}$ we obtain for the (i, j)-entry of A^{k+2}

$$
\sum_{l=1}^{n} z_{i l} x_{l} x_{j}=\sum_{l=1}^{n} x_{i} x_{l} z_{l j}
$$

Using this equation we obtain

$$
\begin{aligned}
\sum_{l=1}^{n} q_{\lambda_{l}} & =\sum_{l=1}^{n} m_{0} z_{i l} x_{l} x_{j} m_{0}^{\prime}=m_{0}\left(\sum_{l=1}^{n} z_{i l} x_{l} x_{j}\right) m_{0}^{\prime} \\
& =m_{0}\left(\sum_{l=1}^{n} x_{i} x_{l} z_{l j}\right) m_{0}^{\prime}=\sum_{l=1}^{n}\left(m_{0} x_{i} x_{l}\right) z_{l j} m_{0}^{\prime}
\end{aligned}
$$

Since $\operatorname{deg} m_{0} \leqslant 2 k-2$ we have $\operatorname{deg}\left(m_{0} x_{i} x_{l}\right) \leqslant 2 k$ and hence $m_{0} x_{i} x_{l}$ is special. Replacing the partial sum $\sum_{l=1}^{n} q_{\lambda_{l}}$ of (4) by the equal sum $\sum_{l=1}^{n}\left(m_{0} x_{i} x_{l}\right) z_{l j} m_{0}^{\prime}$ we obtain a new representation of the same q (of the form $\Sigma m z_{i j} m^{\prime}, m, m^{\prime} \in P$ monomials, $m \in S$) with the same number of summands (since d is minimal). For this representation we have:

$$
\sum \operatorname{deg} m=\sum_{\lambda \neq \lambda_{l}} \operatorname{deg} m_{\lambda}+\sum_{l=1}^{n} \operatorname{deg} m_{\lambda_{l}}+2 n>\sum_{\lambda=1}^{d} \operatorname{deg} m_{\lambda} .
$$

The next two steps deal with common monomials of two and of three summands of (4).
(D) Let q_{α}, q_{β} be summands of (4) such that $\left\{q_{\alpha}\right\} \cap\left\{q_{\beta}\right\} \neq \emptyset$. If $\operatorname{deg} m_{\beta}=\operatorname{deg} m_{\alpha}$ then $q_{\alpha}=q_{\beta}$ and if $0<\operatorname{deg} m_{\beta}-\operatorname{deg} m_{\alpha}=2 \nu \leqslant 2 k$ then

$$
\begin{equation*}
\left\{q_{\alpha}\right\} \cap\left\{q_{\beta}\right\}=\left\{m_{\beta} x_{i_{\beta}} y^{k-v} x_{j_{\alpha}} m_{\alpha}^{\prime}\right\} \tag{6}
\end{equation*}
$$

Proof. By (1) and (5) we have

$$
\begin{equation*}
q_{\alpha}=m_{\alpha} x_{i_{\alpha}} y^{k} x_{j_{\alpha}} m_{\alpha}^{\prime} ; \quad q_{\beta}=m_{\beta} x_{i_{\beta}} y^{k} x_{j_{\beta}} m_{\beta}^{\prime} . \tag{7}
\end{equation*}
$$

By assumption $\left\{q_{\alpha}\right\} \cap\left\{q_{\beta}\right\} \neq \emptyset$, thus let $m \in\left\{q_{\alpha}\right\} \cap\left\{q_{\beta}\right\}$. Since $m \in\left\{q_{\alpha}\right\}$ we have $m=m_{\alpha} x_{i} x_{s_{1}}^{2} \cdots x_{s_{k}}^{2} x_{j} m_{\alpha}^{\prime}$ for some $1 \leqslant s_{1}, \ldots, s_{k} \leqslant n$, and also $m \in\left\{q_{\beta}\right\}$, hence $m=m_{\beta} x_{i} x_{t_{k}}^{2} \cdots x_{i_{1}}^{2} x_{j_{\beta}} m_{\beta}^{\prime}$ for some $1 \leqslant t_{1}, \ldots, t_{k} \leqslant n$. (Note that for convenience we have written the indices in the two representations of m in reverse order.) Thus

$$
\begin{equation*}
m-m_{\alpha} x_{i_{\alpha}} x_{s_{1}}^{2} \cdots x_{s_{k}}^{2} x_{j_{\alpha}} m_{\alpha}^{\prime}=m_{\beta} x_{i_{\beta}} x_{i_{k}}^{2} \cdots x_{i_{1}}^{2} x_{j_{\beta}} m_{\beta}^{\prime} \tag{8}
\end{equation*}
$$

If $\operatorname{deg} m_{\alpha}=\operatorname{deg} m_{\beta}$, we deduce
$m_{\alpha}=m_{\beta}, \quad x_{i_{\alpha}}=x_{i_{\beta}}, \quad x_{s_{1}}^{2} \cdots x_{s_{k}}^{2}=x_{t_{k}}^{2} \cdots x_{i_{1}}^{2}, \quad x_{j_{\alpha}}=x_{i_{\beta}}, \quad m_{\alpha}^{\prime}=m_{\beta}^{\prime}$.
Hence by (7) $q_{\alpha}=q_{\beta}$ and the first assertion of (D) is proved.
Next, let $\operatorname{deg} m_{\beta}=\operatorname{deg} m_{\alpha}-2 \nu$ and $0<\nu \leqslant k$. In this case it follows from (8) that $m_{\beta}-m_{x} x_{i} x_{A_{1}}^{2} \cdots x_{s_{v-1}}^{2} x_{s_{v}}$ and therefore

$$
x_{s_{v}} x_{x_{v+1}}^{2} \cdots x_{s_{k}}^{2} x_{j_{\alpha}} m_{\alpha}^{\prime}=x_{i \beta} x_{t_{k}}^{2} \cdots x_{t_{v+1}}^{2} x_{t_{v}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\beta}} m_{\beta}^{\prime} ;
$$

from this we obtain

$$
\begin{gathered}
x_{s_{\nu}}=x_{i_{\beta}}, \quad x_{s_{v+1}}^{2} \cdots x_{s_{k}}^{2}=x_{t_{k}}^{2} \cdots x_{i_{\nu+1}}^{2}, \quad x_{j_{\alpha}}=x_{i_{\nu}}, \\
m_{\alpha}^{\prime}=x_{i_{v}} x_{t_{\nu-1}}^{2} \cdots x_{i_{1}}^{2} x_{i_{\beta}} m_{\beta}^{\prime} .
\end{gathered}
$$

Thus

$$
\begin{equation*}
m_{\alpha} x_{i_{\alpha}} x_{i_{1}}^{2} \cdots x_{s_{\nu-1}}^{2} x_{i_{\beta}}=m_{\beta} ; \quad m_{\alpha}^{\prime}=x_{j_{\alpha}} x_{i_{\nu-1}}^{2} \cdots x_{i_{1}}^{2} x_{j_{\beta}} m_{\beta}^{\prime} \tag{9}
\end{equation*}
$$

and for the first representation of m in (8) we get

$$
m=m_{\beta} x_{i_{\beta}}\left(x_{s_{v+1}}^{2} \cdots x_{i_{k}}^{2}\right) x_{j_{\alpha}} m_{\alpha}^{\prime} .
$$

Since $x_{\varepsilon_{v+1}}^{2} \cdots x_{s_{k}}^{2}$ is a monomial of $y^{k-\nu,}$, we deduce that $m \in\left\{m_{\beta} x_{i_{\beta}} y^{k-\nu} x_{j_{\alpha}} m_{\alpha}^{\prime}\right\}$. This relation is true for any monomial of $\left\{q_{\alpha}\right\} \cap\left\{q_{\beta}\right\}$, and hence

$$
\left\{q_{\alpha}\right\} \cap\left\{q_{\beta}\right\} \subseteq\left\{m_{\beta} x_{i \beta} y^{k-\nu} x_{j_{\alpha}} m_{\alpha}^{\prime}\right\} .
$$

To prove the inclusion in the other direction, let $x_{r_{1}}^{2} \cdots x_{r_{k-\nu}}^{2}$ be any monomial of $y^{k-\nu}$. Since (9) still holds we have

$$
\begin{aligned}
m_{\beta} x_{i_{\beta}} x_{r_{1}}^{2} \cdots x_{r_{k-\nu}}^{2} x_{j_{\alpha}} m_{\alpha}^{\prime} & =\left(m_{\alpha} x_{i_{\alpha}} x_{s_{1}}^{2} \cdots x_{s_{v-1}}^{2} x_{i_{\beta}}\right) x_{i_{\beta}} x_{r_{1}}^{2} \cdots x_{r_{k-\nu}}^{2} x_{j_{\alpha}} m_{\alpha}^{\prime} \\
& =m_{\alpha} x_{i_{i_{\alpha}}}\left(x_{s_{1}}^{2} \cdots x_{s_{\nu-1}}^{2} x_{i_{i}}^{2} x_{r_{1}}^{2} \cdots x_{r_{k-v}}^{2}\right) x_{i_{\alpha}} m_{\alpha}^{\prime}
\end{aligned}
$$

and this monomial belongs to $\left\{q_{\alpha}\right\}$ by (7). Similarly, it belongs to $\left\{q_{\beta}\right\}$ since

$$
m_{\beta} x_{i_{\beta}} x_{r_{1}}^{2} \cdots x_{r_{k-v}}^{2} x_{j_{\alpha}} m_{\alpha}^{\prime}=m_{\beta} x_{i_{\beta}}\left(x_{r_{1}}^{2} \cdots x_{r_{k-\nu}}^{2} x_{j_{\alpha}}^{2} x_{i_{\nu-1}}^{2} \cdots x_{t_{1}}^{2}\right) x_{i_{\beta}} m_{\beta}^{\prime}
$$

Hence $m_{\beta} x_{i_{\beta}}\left(x_{r_{1}}^{2} \cdots x_{r_{L-}}^{2}\right) x_{j_{\alpha}} m_{\alpha}^{\prime} \in\left\{q_{\alpha}\right\} \cap\left\{q_{\beta}\right\}$ for all $r_{1}, \ldots, r_{k-\nu}$ and this completes the proof of (D).
(E) If $q_{\lambda_{1}}, q_{\lambda_{2}}, q_{\lambda_{2}}$ appear in (4), $\left\{q_{\lambda_{i}}\right\} \cap\left\{q_{\lambda_{j}}\right\} \neq \emptyset$ for all i, j and $\operatorname{deg} m_{\lambda_{1}}<\operatorname{deg} m_{\lambda_{2}}<\operatorname{deg} m_{\lambda_{3}} \leqslant 2 k$, then

$$
\left\{q_{\lambda_{1}}\right\} \cap\left\{q_{\lambda_{3}}\right\} \subseteq\left\{q_{\lambda_{8}}\right\} \cap\left\{q_{d_{8}}\right\} .
$$

Proof. Let $\operatorname{deg} m_{\lambda_{2}}-\operatorname{deg} m_{\lambda_{1}}=2 \nu$ and $\operatorname{deg} m_{\lambda_{g}}-\operatorname{deg} m_{\lambda_{2}}=2 \mu$. Then $\operatorname{deg} m_{\lambda_{3}}-\operatorname{deg} m_{\lambda_{1}}=2(\mu+\nu) \leqslant \operatorname{deg} m_{\lambda_{3}} \leqslant 2 k$. Since $\left\{q_{\lambda_{1}}\right\} \cap\left\{q_{\lambda_{2}}\right\} \neq \emptyset$, we obtain by (9) with $\alpha=\lambda_{1}, \beta=\lambda_{2}$,

$$
\begin{equation*}
m_{\lambda_{1}}^{\prime}=x_{j_{\lambda_{1}}} x_{t_{\nu-1}}^{2} \cdots x_{t_{2}}^{2} x_{j_{\lambda_{3}}} m_{\lambda_{2}}^{\prime} . \tag{10}
\end{equation*}
$$

From $\left\{q_{\lambda_{2}}\right\} \cap\left\{q_{\lambda_{2}}\right\} \neq \emptyset$ and $\operatorname{deg} m_{\lambda_{2}}-\operatorname{deg} m_{\lambda_{2}}=2 \mu$ we obtain, by (6) with $\alpha=\lambda_{2}, \beta=\lambda_{3}$ and μ replacing ν,

$$
\begin{equation*}
\left\{q_{\lambda_{2}}\right\} \cap\left\{q_{\lambda_{3}}\right\}=\left\{m_{\lambda_{2}} x_{i_{\lambda_{2}}} y^{\left.k-\mu_{x_{\lambda_{1}}} m_{\lambda_{2}}^{\prime}\right\} .}\right. \tag{11}
\end{equation*}
$$

Since $2(\mu+\nu) \leqslant 2 k$ and $\left\{q_{\lambda_{1}}\right\} \cap\left\{q_{\lambda_{2}}\right\} \neq \emptyset$, then by (6) with $\alpha=\lambda_{1}, \beta=\lambda_{3}$ and $\mu+\nu$ replacing ν,

$$
\left\{q_{\lambda_{1}}\right\} \cap\left\{q_{\lambda_{3}}\right\}=\left\{m_{\lambda_{2}} x_{i_{\lambda_{1}}} y^{k-(\mu+\nu)} x_{j_{\lambda_{1}}} m_{\lambda_{1}}^{\prime}\right\}
$$

and by (10) this is equal to $\left\{m_{\lambda_{2}} x_{i_{1}} y^{k-(\mu+v)} x_{j_{\lambda_{1}}^{2}}^{2} x_{i_{\nu-1}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\lambda_{2}}} m_{\lambda_{1}}^{\prime}\right\}$. But $x_{j_{1}}^{2} x_{i_{\nu-1}}^{2} \cdots x_{i_{1}}^{2}$ is a monomial of y^{ν} and therefore

$$
\begin{aligned}
\left\{q_{\lambda_{1}}\right\} \cap\left\{q_{\lambda_{2}}\right\} \subseteq\left\{m_{\lambda_{3}} x_{i_{\lambda_{2}}} y^{k-(\mu+\nu)} y^{\nu} x_{j_{\lambda_{2}}} m_{\lambda_{3}}^{\prime}\right\} & =\left\{m_{\lambda_{3}} x_{i_{\lambda_{2}}} y^{k-\mu_{i_{\lambda_{2}}}} m_{\lambda_{2}}^{\prime}\right\} \\
& =\left\{q_{\lambda_{\mathbf{2}}}\right\} \cap\left\{q_{\lambda_{3}}\right\},
\end{aligned}
$$

by (11), which proves (E).
Our final step is.
(F) The sum (4) does not contain a summand q_{τ} for which

$$
m_{r} x_{i_{7}}=x_{1} x_{n}^{2(k+1-\nu)}, \quad 0 \leqslant \nu \leqslant k+1 .
$$

Proof. The result is true for $\nu=0$ since otherwise we have $m_{\tau}=x_{1} x_{n}^{2 k+1}=x_{1}\left(x_{n}^{2 k}\right) x_{n}$ which is not special, but by assumption on the representation (4) all m_{λ} are special.

Assume the assertion (F) is true for all μ with $0 \leqslant \mu \leqslant \nu<k+1$ and we proceed to prove it for $\nu+1$. If it is not true for $\nu+1$, let q_{τ} be such that $m_{\tau} x_{i_{\tau}}=x_{1} x_{n}^{2(k+1-(\nu+1))}=x_{1} x_{n}^{2(k-\nu)}$. Hence,

$$
q_{\tau}=m_{\tau} x_{i_{\tau}} y^{k} x_{f_{\tau}} m_{\tau}^{\prime}=x_{1} x_{n}^{2(k-\nu)} y^{k} x_{j_{\tau}} m_{\tau}^{\prime} .
$$

Since $y^{k}=y^{\nu} y^{k-\nu}$ and y^{ν} contains $x_{n}^{2 \nu}$, the polynomial

$$
\begin{equation*}
r=x_{1} x_{n}^{2(k-\nu)} x_{n}^{2 \nu} y^{k-\nu} x_{j_{\tau}} m_{\tau}^{\prime}=x_{1} x_{n}^{2 k} y^{k-\nu} x_{j_{\tau}} m_{\tau}^{\prime} \tag{12}
\end{equation*}
$$

contains all monomials of $\left\{q_{7}\right\}$ that begin with $x_{1} x_{n}^{2 k}$ and these are not special; now q is special, hence every monomial of r must also appear in another summand of (4).

Thus, let $V=\left\{q_{\lambda_{1}}, \ldots, q_{\lambda_{n}}\right\}$ be a set of summands of (4) such that $q_{\tau} \notin V$ and $\{r\} \subseteq\left\{q_{\lambda_{1}}\right\} \cup \cdots \cup\left\{q_{\lambda_{h}}\right\}$. For simplicity we assume that $V=\left\{q_{1}, \ldots, q_{n}\right\}$. We also assume that V is minimal in the sense that, by omitting any $\left\{q_{\mu}\right\}$, $\{\boldsymbol{r}\} \nsubseteq \bigcup_{\lambda \neq \mu}\left\{q_{\lambda}\right\}$.

From the minimality of V it follows that

$$
\begin{equation*}
\left\{q_{\lambda}\right\} \cap\{r\} \neq \emptyset \quad \text { for } \quad 1 \leqslant \lambda \leqslant h ; \tag{13}
\end{equation*}
$$

otherwise we omit q_{λ} from V. Since $\{r\} \subset\left\{q_{\tau}\right\}$ we have

$$
\begin{equation*}
\left\{q_{\lambda}\right\} \cap\left\{q_{r}\right\} \neq \emptyset \quad \text { for } \quad 1 \leqslant \lambda \leqslant h . \tag{14}
\end{equation*}
$$

We prove now two additional properties of V :
(a) $\operatorname{deg} m_{\lambda}<2(k-\nu)$ for $1 \leqslant \lambda \leqslant h$;
(b) if $q_{\lambda}, q_{\lambda^{\prime}} \in V$ and $\lambda \neq \lambda^{\prime}$, then $\left\{q_{\lambda}\right\} \cap\left\{q_{\lambda^{\prime}}\right\}=\emptyset$.

Proof of (a). First deg $m_{\lambda} \leqslant 2 k$, since if $\operatorname{deg} m_{\lambda}>2 k$ we obtain $\operatorname{deg} m_{\lambda} \geqslant 2 k+2$ and taking a monomial of (13) we see by (12) that it begins with $x_{1} x_{n}^{2 k}$ and therefore m_{λ} begins with $x_{1} x_{n}^{2 k}$, contradicting the fact that it is special. Thus, $\operatorname{deg} m_{\lambda} \leqslant 2 k$ and therefore

$$
\operatorname{deg}\left(m_{\lambda} x_{i_{\lambda}}\right) \leqslant 2 k+1=\operatorname{deg}\left(x_{1} x_{n}^{2 k}\right)
$$

from which it follows, again by (13) and (12), that $x_{1} x_{n}^{2 k}$ begins with $m_{\lambda} x_{i_{\lambda}}$.
We have also $\operatorname{deg} m_{\lambda} \neq 2(k-\nu)=\operatorname{deg} m_{\tau}$, since if equality holds, then from (14) we obtain by (D) that $q_{\lambda}=q_{\tau}$, but $q_{\lambda} \in V$ and $q_{\tau} \notin V$.
If $2(k-\nu)<\operatorname{deg} m_{\lambda}(\leqslant 2 k)$, then $\operatorname{deg} m_{\lambda} \geqslant 2(k+1-\nu)$ and hence $\operatorname{deg} m_{\lambda}=2(k+1-\mu)$ for some $\mu, 1 \leqslant \mu \leqslant \nu$. Since $x_{1} x_{n}^{2 k}$ begins with $m_{\lambda} x_{i_{\lambda}}$ we obtain $m_{\lambda} x_{i_{\lambda}}=x_{1} x_{n}^{2(k+1-\mu)}$ with $1 \leqslant \mu \leqslant \nu$, but this contradicts the induction hypothesis. Hence $\operatorname{deg} m_{\lambda} \not \geqslant 2(k-\nu)$ and (a) is proved.

Proof of (b). Since $\lambda \neq \lambda^{\prime}$ we have $q_{\lambda} \neq q_{\lambda^{\prime}}$. If we assume that $\left\{q_{\lambda}\right\} \cap\left\{q_{\lambda^{\prime}}\right\} \neq \emptyset$ then $\operatorname{deg} m_{\lambda} \neq \operatorname{deg} m_{\lambda^{\prime}}$ since otherwise $q_{\lambda}=q_{\lambda^{\prime}}$ by (D). Thus, suppose $\operatorname{deg} m_{\lambda}<\operatorname{deg} m_{\lambda^{\prime}}$. By (a) we have $\operatorname{deg} m_{\lambda^{\prime}}<2(k-\nu)=\operatorname{deg} m_{\tau}$. Hence $\operatorname{deg} m_{\lambda}<\operatorname{deg} m_{\lambda^{\prime}}<\operatorname{deg} m_{\tau}=2(k-\nu) \leqslant 2 k$ and $\left\{q_{\lambda}\right\} \cap\left\{q_{\lambda^{\prime}}\right\} \neq \emptyset$. By (14) it follows that $\left\{q_{1}\right\} \cap\left\{q_{7}\right\} \neq \emptyset$ and $\left\{q_{\lambda^{\prime}}\right\} \cap\left\{q_{7}\right\} \neq \emptyset$. Thus, the conditions of
(E) are valid for $\lambda_{1}=\lambda, \lambda_{2}=\lambda^{\prime}, \lambda_{3}=\tau$. Hence $\left\{q_{\lambda}\right\} \cap\left\{q_{7}\right\} \subseteq\left\{q_{\lambda_{\lambda}}\right\} \cap\left\{q_{7}\right\}$ and since $\{r\} \subset\left\{q_{\tau}\right\}$ we obtain $\left\{q_{\lambda}\right\} \cap\{r\} \subseteq\left\{q_{\lambda}\right\} \cap\{r\}$. From this it follows that $\{r\} \subseteq \bigcup_{\mu \neq \lambda}\left\{q_{\mu}\right\}$, which contradicts the minimality of V and (b) is proved.

Having the above properties at our disposal we continue with the proof of (F).

If $q_{\lambda} \in V$ we have $\left\{q_{\lambda}\right\} \cap\left\{q_{\tau}\right\} \neq \emptyset$, and by (a), $\operatorname{deg} m_{\lambda}<2(k-\nu)=\operatorname{deg} m_{\tau}$. Let $\operatorname{deg} m_{\tau}-\operatorname{deg} m_{\lambda}=2 \delta>0$, then $\operatorname{deg} m_{\lambda}=\operatorname{deg} m_{\tau}-2 \delta=$ $2(k-v-\delta) \geqslant 0$. By (D) with $\alpha=\lambda, \beta=\tau, \nu=\delta$, we obtain $\left\{q_{\lambda}\right\} \cap\left\{q_{T}\right\}=\left\{m_{\tau} x_{i_{\tau}} y^{k-\delta} x_{j_{\lambda}} m_{\lambda}^{\prime}\right\}$, and by (9), $m_{\lambda}^{\prime}=x_{j_{\lambda}} x_{t_{t_{-1}}^{2}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\tau}} m_{\tau}^{\prime}$. But $m_{\tau} x_{i \tau}=x_{1} x_{n}^{2(k-\nu)}$; hence

$$
\left\{q_{\lambda}\right\} \cap\left\{q_{7}\right\}=\left\{x_{1} x_{n}^{2(k-\nu)} y^{k-8} x_{j_{\lambda}}^{2} x_{t_{\delta-1}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\tau}} m_{7}^{\prime}\right\}
$$

Since $k-\nu-\delta \geqslant 0, y^{k-\delta}=y^{\nu} y^{k-\delta-\nu}$ and recalling that $\{r\}$ contains all those monomials of $\left\{q_{7}\right\}$ that begin with $x_{1} x_{n}^{2 k}$, we obtain

$$
\begin{equation*}
\left\{q_{\lambda}\right\} \cap\{r\}=\left\{x_{1} x_{n}^{2 k} y^{k-\nu-8} x_{j_{\lambda}}^{2} x_{t_{\delta-1}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\tau}} m_{\tau}^{\prime}\right\} . \tag{15}
\end{equation*}
$$

Now, let λ be such that $\operatorname{deg} m_{\lambda}=\min \left\{\operatorname{deg} m_{\mu} \mid 1 \leqslant \mu \leqslant h\right\}$. In the righthand side of (15) we replace $x_{j_{\lambda}}^{2}$ by $x_{l}{ }^{2}$ for every $l \neq j_{\lambda}$ and obtain the polynomial

$$
r_{l}=x_{1} x_{n}^{2 k} y^{k-\nu-\delta} x_{l}^{2} x_{t_{\delta-1}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\tau}} m_{\tau}^{\prime}
$$

We have $\left\{q_{\lambda}\right\} \cap\left\{r_{l}\right\}=\emptyset$. Indeed, all monomials of $\left\{q_{\lambda}\right\}$ end with $m_{\lambda}^{\prime}=x_{j_{\lambda}} x_{t_{\delta-1}}^{2} \cdots x_{i_{1}}^{2} x_{j_{\tau}} m_{\tau}^{\prime}$ and all monomials of $\left\{r_{l}\right\}$ end with $x_{l} x_{t_{j-1}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\tau}} m_{\tau}^{\prime} \neq m_{\lambda}^{\prime}$ since $x_{l} \neq x_{j_{\tau}}$.
We have

$$
\left\{r_{l}\right\} \subseteq\left\{x_{1} x_{n}^{2 k} y^{k-} x_{j_{T}} m_{7}^{\prime}\right\}=\{r\} \subseteq \bigcup_{\mu=1}^{n}\left\{q_{\mu}\right\} ;
$$

hence if $m \in\left\{r_{l}\right\}$, then $m \in\left\{q_{\mu_{1}}\right\}$ for some $q_{\mu_{l}} \in V$, and $q_{\mu_{l}} \neq q_{\lambda}$ since $\left\{q_{\lambda}\right\} \cap\left\{r_{\imath}\right\}=\emptyset$. By the minimality of $\operatorname{deg} m_{\lambda}$ we have $\operatorname{deg} m_{\mu_{l}} \geqslant \operatorname{deg} m_{\lambda}$ and we assert that $\operatorname{deg} m_{\mu_{2}}=\operatorname{deg} m_{\lambda}$. Indeed, if $\operatorname{deg} m_{\mu_{l}}>\operatorname{deg} m_{\lambda}$, then since $\operatorname{deg} m_{\mu_{\tau}}<\operatorname{deg} m_{\tau} \quad$ [by (a)] it follows that $\operatorname{deg} m_{\tau}-\operatorname{deg} m_{\mu_{t}}=$ $2 \epsilon<2 \delta=\operatorname{deg} m_{\tau}-\operatorname{deg} m_{\lambda}$. Then by (15), with $q_{\mu_{1}}$ replacing q_{λ} and ϵ replacing δ, we have

$$
\begin{equation*}
\left\{q_{\mu_{l}}\right\} \cap\{r\}=\left\{x_{1} x_{n}^{2 k} y^{\left.k-\nu-x_{j_{\mu_{1}}}^{2} x_{s_{s_{-1}}}^{2} \cdots x_{s_{1}}^{2} x_{j_{\tau}} m_{7}^{\prime}\right\} .}\right. \tag{16}
\end{equation*}
$$

Now, $m \in\left\{q_{\mu_{l}}\right\} \cap\left\{r_{l}\right\} \subseteq\left\{q_{\mu_{l}}\right\} \cap\{r\}$; hence, comparing (16) with $\left\{r_{l}\right\}$ and since $\epsilon<\delta$, we obtain

$$
x_{s_{1}}^{2}=x_{t_{1}}^{2}, \quad \cdots, \quad x_{s_{\epsilon-1}}^{2}=x_{t_{\epsilon-1}}^{2}, \quad x_{i_{\mu_{l}}}^{2}=x_{t_{\epsilon}}^{2}
$$

From this it follows that $\left\{q_{\mu_{r}}\right\} \cap\{r\} \supseteq\left\{q_{\lambda}\right\} \cap\{r\}$, hence $\{r\} \subseteq \bigcup_{\mu \neq \lambda}\left\{q_{\mu}\right\}$, which contradicts the minimality of V. Thus, we have $\operatorname{deg} m_{\lambda}=\operatorname{deg} m_{\mu_{l}}$ and hence $x_{j_{\mu_{l}}}=x_{l}$ and $m_{\mu_{l}}^{\prime}=x_{l} x_{t_{\delta-1}}^{2} \cdots x_{i_{1}}^{2} x_{j_{\tau}} m_{\tau}^{\prime}$. Let us define $q_{\mu_{l}}$ for $l=j_{\lambda}$ by putting $\mu_{j_{\lambda}}=\lambda$, so $q_{\mu_{l}}$ has been defined for $l=1, \ldots, n$, and $\operatorname{deg} m_{\mu_{l}}=\operatorname{deg} m_{\lambda}=2(k-\nu-\delta)<\operatorname{deg} m_{\tau}$. Since $\left\{q_{\mu_{l}}\right\} \cap\left\{q_{\tau}\right\} \neq \emptyset, \quad m_{\tau}$ begins with $m_{\mu_{l}} x_{i_{\mu_{l}}}$, then $m_{\mu_{l}} x_{i_{\mu}}=x_{1} x_{n}^{2(k-\nu-\delta)}$ does not depend on l. We denote $m_{\mu_{l}}$ by m_{0} and $x_{i_{\mu_{l}}}$ by $x_{i}\left(x_{i}=x_{1}\right.$ if $k-\nu-\delta=0$ and $x_{i}=x_{n}$ if $k-v-\delta>0$). We also denote $x_{i_{\delta-1}}$ by x_{j} and $x_{t_{\delta-1}} x_{t_{\delta-2}}^{2} \cdots x_{t_{1}}^{2} x_{j_{\tau}} m_{\tau}^{\prime}$ by m_{0}^{\prime} (if $\delta=1$, then we take $m_{\tau}^{\prime}=m_{0}^{\prime}$ and $x_{j_{\tau}}=x_{j}$) and obtain $m_{\mu_{l}}^{\prime}=x_{l} x_{j} m_{0}^{\prime}$. Thus,

$$
\begin{equation*}
q_{\mu_{l}}=m_{\mu_{l}} x_{i_{\mu_{l}}} y^{k} x_{j_{\mu_{l}}} m_{\mu_{l}}^{\prime}=m_{0} x_{i} y^{k} x_{l}\left(x_{l} x_{j} m_{0}^{\prime}\right)=m_{0} z_{i l}\left(x_{l} x_{j} m_{0}^{\prime}\right) \tag{17}
\end{equation*}
$$

for $l=1, \ldots, n$. But by (C) the sum (4) does not contain n summands of the form (17). Thus, from the assumption that (F) is not valid for $v+1$ but is true for all $0 \leqslant \mu<\nu+1$, we have obtained a contradiction. Hence (F) is valid for $\nu+1$, which completes the induction on the validity of (F).

We complete now the proof of Theorem 11.
Choose in (F) $v=k+1$, then it follows that the representation (4) of q does not contain a summand q_{τ} such that $m_{\tau} x_{i_{\tau}}=x_{1}$ and which is necessarily of the form: $q_{\tau}=z_{1 j_{\tau}} m_{\tau}^{\prime}$. This contradicts (B) which proves that the sum (4) does not exist; hence $S \cap T=\{0\}$ and Theorem 11 follows.

6. R has no Zero-Divisors

We have proved that every residue class of $R=P / T$ contains one and only one representative which is a special polynomial. For $p \in P$, we denote by $S(p)$ the unique special polynomial of $\bar{p}=p+T$. Thus, if q is special, then $\bar{p}=\bar{q}$ if and only if $S(p)=q$.

Definition. If $0 \neq p \in S$ and $p^{(\omega)}$ is its nonzero homogeneous component of least degree, then α will be called the value of p and we shall write $v(p)=\alpha$. For $p=0$ we set $v(0)=\infty$. If $\bar{p} \in R$ we define $v(\bar{p})=v(S(p))$.

Note that $v(\tilde{p})$ is well defined since $S(p)$ is the unique special polynomial of \bar{p}.

We shall prove that if $\bar{p}, \bar{q} \in R$, then $v(\bar{p} \tilde{q})=v(\bar{p})+v(\bar{q})$, from which it follows that R has no zero divisors. (In fact, v is a valuation on R.) We first need some lemmas.

Lemma 12. If $p_{1}, \ldots, p_{1}, p, q \in P$, then
(a) $S\left(\sum_{i=1}^{l} p_{i}\right)=\sum_{i=1}^{l} S\left(p_{i}\right) ;$
(b) $S(p q)=S(p S(q))$;
(c) for every $\alpha \geqslant 0, S\left(p^{(a)}\right)=(S(p))^{(\alpha)}$.

Proof. (a) and (b) are evident; let us prove (c).
Let $p=\Sigma p^{(\alpha)}$, then by (a) we have $S(p)=\Sigma S\left(p^{(\alpha)}\right)$. By the corollary to Lemma 8 it is seen that, since $p^{(\alpha)}$ is homogeneous, then either $S\left(p^{(\alpha)}\right)=0$ or $S\left(p^{(\alpha)}\right)$ is homogeneous and $\operatorname{deg}\left(S\left(p^{(\alpha)}\right)\right)=\operatorname{deg}\left(p^{(\alpha)}\right)=\alpha$. This implies that $(S(p))^{(\alpha)}=S\left(p^{(\alpha)}\right)$ by the uniqueness of the decomposition of a polynomial as a sum of homogeneous polynomials.

Lemma 13. If $p=x_{1} p^{\prime}$ then there exists $u \in F[x]$ such that the monomials of $\left\{p+x_{1} y^{k} u\right\}$ do not begin woith $x_{1} x_{n}^{2 k}$.

Proof. Let p_{1} be the sum of all monomials of $\{p\}$ which begin with $x_{1} x_{n}^{2 k}$; then $p_{1}=x_{1} x_{n}^{2 k} u$ for some $u \in F[x]$ (which is 0 if $p_{1}=0$). Let p_{0} be such that $p=p_{0}+p_{1}$, then the monomials of $\left\{p_{0}\right\}$ do not begin with $x_{1} x_{n}^{2 k}$. Thus,

$$
p+x_{1} y^{k} u=p_{0}+x_{1} x_{n}^{2 k} u+x_{1} y^{k} u=p_{0}+x_{1}\left(x_{n}^{2 k}+y^{k}\right) u .
$$

Since $\left\{y^{k}\right\}$ contains $x_{n}^{2 k},\left\{y^{k}+x_{n}^{2 k}\right\}$ does not contain $x_{n}^{2 k}$, and hence the monomials of $\left\{x_{1}\left(x_{n}^{2 k}+y^{k}\right) u\right\}$ do not begin with $x_{1} x_{n}^{2 k}$, and since the same is true for $\left\{p_{0}\right\}$ the required result follows.

Lemma 14. If $p \in P$ is homogeneous and the monomials of $\{p\}$ do not begin woith $x_{n}^{2 k-1}$ then the same is true for $\{S(p)\}$.

Proof. If $S(p)=p$ there is nothing to prove. Assume $S(p) \neq p$, then by Lemma 8 there exists a finite chain $p=q_{0}, q_{1}, \ldots, q_{i}$ such that $S(p)=q_{1}$ and $q_{\mu+1}=q_{\mu}+m_{\mu} x_{i_{\mu}{ }_{\mu}} m_{\mu}^{\prime}$, where $m_{\mu} x_{i_{\mu}} x_{n}^{2 k} x_{s_{\mu}} m_{\mu}^{\prime} \in\left\{q_{\mu}\right\}, \mu=0,1, \ldots, l-1$. Since $q_{0}=p$ does not contain a monomial which begins with $x_{n}^{2 k-1}$, we can obtain our result by induction; assume the monomials of $\left\{q_{\mu}\right\}$ do not begin with $x_{\mu}^{2 k-1}$. Since $q_{\mu+1}=q_{\mu}+m_{\mu} z_{i_{\mu} j_{\mu}} m_{\mu}^{\prime}$, it is sufficient to prove that $\left\{m_{\mu} z_{i_{\mu} \mu_{\mu}} m_{\mu}^{\prime}\right\}$ does not contain a monomial that begins with $x_{n}^{2 k-1}$. Let
$m_{\mu} x_{i_{\mu}} x_{l_{1}}^{2} \cdots x_{l_{k}}^{2} x_{j_{\mu}} m_{\mu}^{\prime}$ be any monomial of $\left\{m_{\mu} z_{i_{\mu} j_{\mu}} m_{\mu}^{\prime}\right\}$. If it begins with $x_{n}^{2 k-1}$, then clearly the same is true for $m_{\mu} x_{i} x_{n}^{2 k} x_{j_{\mu}} m_{\mu}^{\prime}$; but $m_{\mu} x_{i_{\mu}} x_{n}^{2 k} x_{j_{\mu}} m_{\mu}^{\prime} \in\left\{q_{\mu}\right\}$, which contradicts the induction hypothesis.

Lemma 15. If $p=\sum_{j=1}^{n} x_{1} x_{j} p_{j} \in T$ is homogeneous and the monomials of $\{p\}$ do not begin with $x_{1} x_{n}^{2 k}$, then all $p_{j} \in T$.

Proof. By Lemma 12(a) we have

$$
S(p)=S\left(\sum_{j=1}^{n} x_{1} x_{j} p_{j}\right)=\sum_{j=1}^{n} S\left(x_{1} x_{j} p_{j}\right)
$$

and since $p \in T$ we obtain $S(p)=\sum_{j=1}^{n} S\left(x_{1} x_{j} p_{j}\right)=0$. We shall show that $S\left(x_{1} x_{j} p_{j}\right)=x_{1} x_{j} S\left(p_{j}\right)$ for $1 \leqslant j \leqslant n$. Hence $\sum_{j-1}^{n} x_{1} x_{j} S\left(p_{j}\right)=0$ and since $\left\{x_{1} x_{j} S\left(p_{j}\right)\right\} \cap\left\{x_{1} x_{j^{\prime}} S\left(p_{j^{\prime}}\right)\right\}=\emptyset$ for $j \neq j^{\prime}$, we have $x_{1} x_{j} S\left(p_{j}\right)=0$ which implies $S\left(p_{j}\right)=0$ and therefore $p_{j} \in T$.

To prove that $S\left(x_{1} x_{j} p_{j}\right)=x_{1} x_{j} S\left(p_{j}\right)$ it suffices to show by Lemma 12(b) that $x_{1} x_{j} S\left(p_{j}\right)$ is special. For $j \neq n, x_{1} x_{j} S\left(p_{j}\right) \in S$ since $S\left(p_{j}\right) \in S$. It remains to prove that $x_{1} x_{n} S\left(p_{n}\right)$ is special. By assumption the monomials of $\{p\}$ do not begin with $x_{1} x_{n}^{2 k}$ and since $\left\{x_{1} x_{n} p_{n}\right\} \subseteq\{p\}$ the same is true for $\left\{x_{1} x_{n} p_{n}\right\}$. Hence the monomials of $\left\{p_{n}\right\}$ do not begin with $x_{n}^{2 k-1}$ and by the previous lemma it follows that the monomials of $\left\{S\left(p_{n}\right)\right\}$ do not begin with $x_{n}^{2 k-1}$ and consequently the monomials of $\left\{x_{1} x_{n} S\left(p_{n}\right)\right\}$ do not begin with $x_{1} x_{n}^{2 k}$. Furthermore, $S\left(p_{n}\right)$ is special so $x_{1} x_{n} S\left(p_{n}\right)$ is special which proves our assertion and hence our lemma.

The following are common assumptions for Lemmas 16, 17, 18 :

$$
\alpha, \beta, \gamma, h \text { are integers } \geqslant 0 \text { and } \alpha \geqslant \beta .
$$

$$
\begin{gathered}
p, q, r, s \in S \text { are homogeneous and } p=p^{(2 \alpha)}, r=r^{(2 \beta)} \neq 0, \\
p q=(p q)^{(2 \gamma)}, \quad r s=(r s)^{(2 \gamma)} .
\end{gathered}
$$

(Note that if $p=0$ then the assumption $p=p^{(2 \alpha)}$ still holds.)

$$
v \in F[x] \quad \text { is homogeneous such that } \quad x_{j} y^{h} v=\left(x_{j} y^{h} v\right)^{(2 v)} .
$$

Lemma 16. If $\beta>0$ and $p q+r s+x_{j_{0}} y^{h} v \in T$ for some j_{0}, then there exist $p_{0}, r_{0} \in S$ with $p_{0}=p_{0}^{(2 \alpha)}=x_{1} p_{0}^{\prime}, r_{0}=r_{0}^{(2 \beta)}=x_{1} r_{0}^{\prime} \neq 0$ and $p_{0}=0$ if $p=0$ such that: $p_{0} q+r_{0} s+x_{1} y^{h} v_{0} \in T$, where either $v_{0}=v$ or $v_{0}=0$.

Proof. Since $\alpha \geqslant \beta>0$ we have $p=\sum_{i=1}^{n} x_{i} p_{i}, r=\sum_{i=1}^{n} x_{i} r_{i}$. Hence $p q+r s+x_{j_{0}} y^{h} v=\Sigma x_{i} p_{i} q+\Sigma x_{i} r_{i} s+x_{j_{0}} y^{h} v \in T$ and this relation can be written in the form

$$
x_{j_{0}}\left(p_{j_{0}} q+r_{j_{0}} s+y^{h} v\right)+\sum_{i \neq j_{0}} x_{i}\left(p_{i} q+r_{i} s\right) \in T
$$

By Lemma 5(b) we obtain
$x_{j_{0}}\left(p_{j_{0}} q+r_{j_{0}} s+y^{h} v\right) \in T \quad$ and $\quad x_{i}\left(p_{i} q+r_{i} s\right) \in T \quad$ for $\quad i \neq j_{0}$,
and by (a) of the same lemma,

$$
x_{1}\left(p_{j_{0}} q+r_{j_{0}} s+y^{h} v\right) \in T \text { and } x_{1}\left(p_{i} q+r_{i} s\right) \in T \text { for } i \neq j_{0} .
$$

Since $r \neq 0$ we have $r_{i} \neq 0$ for some i. If $i=j_{0}$ we take $p_{0}=x_{1} p_{j_{0}}, r_{0}=x_{1} r_{j_{0}}$ and $v_{0}=v$. If $i \neq j_{0}$ we take $p_{0}=x_{1} p_{i}, r_{0}=x_{1} r_{i}$ and $v_{0}=0$. In both cases we also obtain that $p_{0}=p_{0}^{2 \alpha)}=x_{1} p_{0}^{\prime} \in S, 0 \neq r_{0}=r_{0}^{(2 \beta)}=x_{1} r_{0}^{\prime} \in S$ by Lemma 3. Clearly, if $p=0$, then all $p_{i}=0$ and $p_{0}=0$.

Lemma 17. If $\beta>0,0<h \leqslant k$ and $p q+r s+x_{1} y^{h} v \in T$, with $p=x_{1} p_{0}^{\prime}$, $r=x_{1} r_{0}^{\prime}$, then for $j=1,2, \ldots, n$ there exist $p_{j}=p_{j}^{(2 \alpha-2)} \in S$ which is 0 if $p=0, r_{j}=r_{j}^{(2 p-2)} \in S$ which is $\neq 0$ for at least one j, and $w \in F[x]$ with the same property as v such that: $p_{j} q+r_{j} s+x_{j} y^{h-1} w \in T$ for all j.

Proof. By assumption, $p q+r s+x_{1} y^{h} v$ is of the form $x_{1} p^{\prime}$ ($p^{\prime}=p_{0}^{\prime} r+r_{0}^{\prime} s+y^{h} v$) and for the u of Lemma 13 we obtain that $\left.x_{1} y^{k} u=\left(x_{1} y^{k} u\right)^{(2 \gamma \gamma}\right)$ and the monomials of $\left\{x_{1} p^{\prime}+x_{1} y^{k} u\right\}$ do not begin with $x_{1} x_{n}^{2 k}$. Let $v+y^{k-h} u=w$, then w has the same property as v and we have

$$
p q+r s+x_{1} y^{h} w=\left(p q+r s+x_{1} y^{h} v\right)+x_{1} y^{k} u \in T
$$

Let $p=\sum_{j=1}^{n} x_{1} x_{j} p_{j}, r=\sum_{j=1}^{n} x_{1} x_{j} r_{j}$; then since $h>0$,

$$
\begin{aligned}
p q+r s+x_{1} y^{h} w & =\sum_{j=1}^{n} x_{1} x_{j} p_{j} q+\sum_{j=1}^{n} x_{1} x_{j} r_{j} s \mid x_{1}\left(\sum_{j=1}^{n} x_{j}{ }^{2}\right) y^{h-1} w \\
& =\sum_{j=1}^{n} x_{1} x_{j}\left(p_{j} q+r_{j} s+x_{j} y^{n-1} w\right) .
\end{aligned}
$$

Now, $p q+r s+x_{1} y^{h} w=x_{1} p^{\prime}+x_{1} y^{k^{k}} u$ does not contain monomials which begin with $x_{1} x_{n}^{2 k}$, it is homogeneous and belongs to T; hence Lemma 15 implies that

$$
p_{j} q+r_{j} s+x_{j} y^{h-1} w \in T \quad \text { for } \quad j=1,2, \ldots, n .
$$

Clearly p_{j}, r_{j} satisfy all the requirements of the lemma.
Remark. If the assumptions in the previous lemma hold for $v=0$, i.e. $p q+r s \in T$, and if $p q+r s$ does not contain monomials which begin with $x_{1} x_{n}^{2 k}$ then the u of Lemma 13 is 0 and hence $v=v+y^{k-h} u=0$ and $p_{j} q+r_{j} s \in T$ for $j=1,2, \ldots, n$.

Lemma 18. If $p q+r s \in T$, then for $0 \leqslant \nu<\min (\beta, k)$ there exist $f_{\nu}=f_{\nu}^{(2 \alpha-2 \nu)}=x_{1} f_{\nu}^{\prime} \in S, g_{\nu}=g_{\nu}^{(2 \beta-2 \nu)}=x_{1} g_{\nu}^{\prime} \in S$ with $f_{\nu}=0$ if $p=0$ and $g_{v} \neq 0$ such that

$$
\begin{equation*}
f_{\nu} q+g_{v} s+x_{1} y^{k-v_{v} w_{\nu} \in T} \tag{18}
\end{equation*}
$$

where w_{ν} has the same property as $v($ for $h=k)$.
Proof. We prove the lemma by induction on ν. For $\nu=0$ we obtain the result by Lemma 16 with $v=0$, if we take $f_{0}=p_{0}, g_{0}=r_{0}, v_{0}=0$.
If (18) holds for some ν such that $\nu+1<\min (\beta, k)$ then since $\alpha-\nu \geqslant \beta-\nu>0$ and $k-\nu>0$ we obtain (by Lemma 17 with $p=f_{v}$, $r=g_{\nu}, v=w_{\nu}$, and $\alpha-\nu, \beta-\nu, k-\nu$, replacing α, β, h, respectively)

$$
p_{j} q+r_{j} s+x_{j} y^{k-\nu-1} w \in T \quad \text { for } \quad j=1, \ldots, n .
$$

Let j be such that $r_{j} \neq 0$ then since $\beta-(\nu+1)>0$ we obtain the result by Lemma 16 with p_{j}, r_{j}, x_{j}, w replacing $p, q, x_{j_{0}}, v$, if we take $f_{v+1}=p_{0}$, $g_{\nu+1}=r_{0}, w_{v+1}=v_{0}$.

Now we turn to the main result of this section which is
Theorem 19. R has no zero-divisors.
Proof. The theorem will follow if we prove that, for $\bar{p}, \bar{q} \in R$,

$$
\begin{equation*}
v(\bar{p} \bar{q})=v(\bar{p})+v(\bar{q}) . \tag{19}
\end{equation*}
$$

Indeed, let $\bar{p}, \bar{q} \neq 0$ then by definition it follows that $v(\bar{p}), v(\bar{q})$ are finite and hence by (19) $v(\bar{p} \bar{q})$ is finite and therefore $\bar{p} \bar{q} \neq 0$.

Let us prove first the following assertion [which implies (19) for p, q homogeneous]:

If r, s are homogeneous and special, $r \neq 0$ and $r \in T(S(r s)=0)$ then $s \in T(s=0)$.

We shall prove this assertion by induction on $\operatorname{deg} r=2 \beta$ using the above lemmas with $p=0$.

If $\beta \leqslant k$, then Lemma 18 holds for $0 \leqslant \nu<\beta$. Hence for $\nu=\beta-1$ we obtain $g_{\beta-1} s+x_{1} y^{k-(\beta-1)} v_{v_{\beta-1}} \in T$ such that $0 \neq g_{\beta-1}=g_{\beta-1}^{(2)}=x_{1} g_{\beta-1}^{\prime}$. Apply Lemma 17 with $p=0, r=g_{\beta-1}, h=k-(\beta+1)>0$ and obtain

$$
r_{j} s+x_{i} y^{k-\beta} w \in T, \quad \text { for } \quad j=1, \ldots, n,
$$

and since $\operatorname{deg} g_{\beta-1}=2$, all the r_{j} are constants, 0,1 , and at least one of them equals 1 . Let j be such that $r_{j}=1$, thus $s+x_{j} y^{k-\beta} \beta_{w} \in T$. If $x_{i} y^{k-\beta} \boldsymbol{\beta}_{w} \notin T$ then for any $i \neq j$ (there exists $i \neq j$ since $n \geqslant 2$) it follows by Lemma 5(a) that $x_{i} y^{k-\beta} \beta_{w} \notin$ and since $r_{i} s+x_{i} y^{k-\beta_{w}} \in T$ we must have $r_{i}=1$, so $s+x_{i} y^{k-\beta} \boldsymbol{v}_{v} \in T$. Finally we have

$$
x_{i} y^{k-\beta} w+x_{i} y^{k-\beta_{z}}=\left(s+x_{i} y^{k-\beta} w\right)+\left(s+x_{i} y^{k-\beta} w\right) \in T
$$

and by Lemma 5(b) we deduce that also $x_{j} y^{k-\beta_{w}} \in T$, contrary to our assumption. It remains therefore that $x_{i} y^{k-\beta_{w}} \in T$ and hence $s \in T$ as required.

Let $\beta>k$ and assume the result is true for $\beta-1$. We have $r s \in T$ and by Lemma 16 with $p=0, v=0$ we may assume $r=x_{1} r_{0}^{\prime}$. Now, $r=r^{(2 \beta)}$ is special and $2 \beta \geqslant 2 k+2$, so r and hence also rs cannot contain monomials which begin with $x_{1} x_{n}^{2 k}$. Then by the remark to Lemma 17 we obtain $r_{j} s \in T$ for $j=1, \ldots, n$. Let j be such that $r_{j} \neq 0$, then since $\operatorname{deg} r_{j}=2(\beta-1)$ we obtain the result $s \in T$ by the induction hypothesis.

We can turn now to the proof of (19).
Let $\bar{p}, \bar{q} \neq 0$ and w.l.g. we may assume that p, q are special. Let $v(\bar{p})=\alpha$ and $v(\bar{q})=\beta$; hence by definition,

$$
p=p^{(a)}+p^{(\alpha+1)}+\cdots ; \quad q=q^{(\beta)}+q^{(\beta+1)}+\cdots
$$

and $p^{(\alpha)}, q^{(\beta)} \neq 0$. By the above assertion with $r=p^{(\alpha)}, s=q^{(\beta)}$, we obtain $S\left(p^{(\alpha)} q^{(\beta)}\right) \neq 0$ and since $p^{(\alpha)} q^{(\beta)}$ is homogeneous of degree $\alpha+\beta$, it follows by the corollary to Lemma 8 that $\operatorname{deg}\left(S\left(p^{(\alpha)} q^{(\beta)}\right)\right)=\alpha+\beta$. Now we have

$$
p q=p^{(\alpha)} q^{(\beta)}+\left(p^{(\alpha)} q^{(\beta+1)}+p^{(\alpha+1)} q^{(\beta)}\right)+\cdots,
$$

and hence the nonzero homogeneous component of least degree of $S(p q)$ is $S\left(p^{(\alpha)} q^{(8)}\right)$ which is of degree $\alpha+\beta$. Thus, by definition of v it follows that $v(S(p q))=\alpha+\beta=v(\bar{p})+v(\bar{q})$ and we obtain (19) since $v(\bar{p} \bar{q})=v(\overline{p q})=$ $v(S(p q))$, and our theorem is proved.

The following lemma will be used in the next section and it is proved here since it is also a result of Lemmas 16-18.

Lemma 20. Let $0 \neq p, q, r, s \in S$, homogeneous and $p=p^{(2 \alpha)}, r=r^{(2 \beta)}$, $\alpha \geqslant \beta, \operatorname{deg}(p q)=\operatorname{deg}(r s)$. If $n \geqslant 3$ and $p q+r s \in T$, then there exists $t \in S$ such that $t q+s \in T$ and $t=t^{(2 \alpha-2 \beta)}$.

Proof. As in Theorem 19 we first prove the result for $\beta \leqslant k$.
Apply Lemma 18 and Lemma 17 as before and obtain

$$
\begin{equation*}
p ; q+r_{s} s+x_{i} y^{k-s_{w}} \in T, \quad j=1,2, \ldots, n ; \tag{20}
\end{equation*}
$$

all $r_{\text {f }}$ are constants 0,1 , and at least one of them equals 1 .
Consider two cases: (a) $x_{1} y^{k-\beta_{v v}} \in T$; (b) $x_{1} y^{k-\beta_{v o}} \notin T$.
(a) Let j be such that $r_{j}=1$, then $p_{j} q+s+x_{j} y^{k-\beta} \beta_{v} \in T$. Since $x_{1} y^{k-\beta_{w}} \in T$ it follows $x_{j} y^{k-\beta_{w}} \in T$ by Lemma 5 and hence $p_{p q} q+s \in T$ and the theorem is proved with $t=p_{j} \in S$.
(b) By Lemma 5 also $x_{i} y^{k-\beta} \beta \notin T$ for $j=1,2, \ldots, n$ and also every subsum of $\sum_{j=1}^{n} x_{j} y^{k-\beta} w$ does not belong to T. If $\Sigma^{\prime} x_{j} y^{k-\beta} w$ is such a subsum, then from (20) we obtain by summation

$$
\begin{equation*}
\Sigma^{\prime} p_{j} q+\Sigma^{\prime} r_{j} s+\Sigma^{\prime} x_{j} y^{k-\beta} w \in T \tag{21}
\end{equation*}
$$

From this it follows that $\alpha \neq \beta$. Indeed if $\alpha=\beta$ then the $p_{j}{ }^{\prime}$'s are also constants. Since $n \geqslant 3$ the two-dimensional vectors $\left(p_{1}, r_{1}\right),\left(p_{2}, r_{2}\right), \ldots$, (p_{n}, r_{n}) over the field $\{0,1\}$ are dependent and therefore there exists a subsum of $\sum_{j=1}^{n}\left(p_{j}, r_{j}\right)$ which is 0 . Denote this subsum by $\Sigma^{\prime}\left(p_{j}, r_{j}\right)$, then $\Sigma^{\prime} p_{j}=0, \Sigma^{\prime} r_{j}=0$ and from (21) it follows that $\Sigma^{\prime} x_{j} y^{k-\beta_{z}} \in T$, which is a contradiction.

Since $\alpha \geqslant \beta$ and $\alpha \neq \beta$, we have $\alpha>\beta$.
Let $r_{j}=1$ and let $i \neq j$, then by (20) we have

$$
p_{i} q+s+x_{i} y^{k-\beta} w \in T ; \quad p_{i} q+r_{i} s+x_{i} y^{k-\beta_{w}} \in T
$$

Since $\alpha>0$, we can write

$$
p_{j}=x_{1} p_{1}^{\prime}+\cdots+x_{n} p_{n}^{\prime} ; \quad p_{i}=x_{1} p_{1}^{\prime \prime}+\cdots+x_{n} p_{n}^{\prime \prime} .
$$

Now, if $r_{i}=0$, from $x_{1} p_{1}^{\prime q} q+\cdots+x_{n} p_{n}^{\prime \prime} q+x_{i} y^{k-\beta} \beta_{v} \in T$ it follows by Lemma 5 that $x_{i} p_{i}^{\prime \prime} q+x_{i} y^{k-\beta} w_{w} \in T$ and also $x_{i} p_{i}^{\prime \prime} q+x_{j} y^{k-\beta} w \in T$; hence

$$
\left(p_{j}+x_{j} p_{i}^{\prime \prime}\right) q+s=\left(p_{j} q+s+x_{j} y^{k-\beta} w\right)+\left(x_{j} p_{i}^{\prime \prime} q+x_{j} y^{k-\beta} \beta^{k}\right) \in T
$$

and the result is obtained with $t=p_{j}+x_{j} p_{i}^{\prime \prime}$.
If $r_{i}=1$, then $p_{i} q+s+x_{i} y^{k-\beta} w \in T$; hence

$$
\left(p_{j}+p_{i}\right) q+x_{i} y^{k-\beta} w+x_{i} y^{k-\beta_{w}} \in T
$$

and again by Lemma 5 we obtain $x_{j}\left(p_{j}^{\prime}+p_{j}^{\prime \prime}\right) q+x_{j} y^{k-\beta} z \in T$, from which it follows that $\left(p_{j}+x_{j} p_{j}^{\prime}+x_{j} p_{j}^{\prime \prime}\right) q+s \in T$. Thus, the result is obtained with $t=p_{j}+x_{j} p_{j}^{\prime}+x_{j} p_{j}^{\prime \prime}$.
It is readily verified that in each case $\operatorname{deg} t=\operatorname{deg} p_{j}$ and by Lemmas 18 and $17 \operatorname{deg} p_{j}=2 \alpha-2 \beta$. Hence we have $t=t^{(2 \alpha-2 \beta)}$.

This completes the proof of the lemma for $\beta \leqslant k$.
Let $\beta>k$ and assume the result is true for $\beta-1$. We have $p q+r s \in T$ and by Lemma 16 with $v=0$ we may assume $p=x_{1} p_{0}^{\prime}, r=x_{1} r_{0}^{\prime}$. Now, $r=r^{(2 \beta)}$ is special and $2 \beta \geqslant 2 k+2$, so r and hence also $r s$ cannot contain monomials which begin with $x_{1} x_{n}^{2 k}$. Since $p=p^{(2 \alpha)}$ is special and $\alpha \geqslant \beta$ the same is true for $p q$. Then by the remark to Lemma 17 we obtain $p_{j} q+r_{j} s \in T$ and let j be such that $r_{j} \neq 0$. Since $\operatorname{deg} r_{j}=2(\beta-1)$, the result follows by induction.

7. The Embedding of R^{*} in a Group

Our next aim is to show that for $n \geqslant 3, R^{*}$ is embeddable in a group. The proof of this fact is based on the following result due to Doss [2]:

A semigroup which satisfies the cancellation laws is embeddable in a group, if for any two elements with a common left-multiple, one of them is a right-divisor of the other.

The semigroup R^{*} does not satisfy this condition as is readily seen by considering the equation $\left(x_{1}{ }^{2} x_{2}{ }^{2}+1\right) x_{1}{ }^{2}=x_{1}{ }^{2}\left(x_{2}{ }^{2} x_{1}{ }^{2}+1\right)\left(\overline{x_{1}{ }^{2}}\right.$ is not a multipl of $\overline{x_{2}{ }^{2} x_{1}{ }^{2}+1}$ and $\overline{x_{2}{ }^{2} x_{1}{ }^{2}+1}$ is not a multiple of $\left.\overline{x_{1}{ }^{2}}\right)$. However we can apply Doss' result to a larger semigroup $\mathscr{R}^{*}=\mathscr{R}-\{0\}$, where \mathscr{R} is the ring defined in Section 2.

First we shall prove that R is embeddable in \mathscr{R}. We recall that the injection $F[x] \rightarrow F[[x]]$ induces the injections $P \rightarrow \mathscr{P}$ and $T \rightarrow \mathscr{T}$. Let ϕ be the composition of the injection $P \rightarrow \mathscr{P}$ with the natural homomorphism $\mathscr{P} \rightarrow \mathscr{P} \mid \mathscr{T}$. Thus, $\phi: P \rightarrow \mathscr{P} \mid \mathscr{T}=\mathscr{R}$ and ker $\phi=P \cap \mathscr{T}$. We assert that $P \cap \mathscr{T}=T$ which implies that $R=P / T$ is embeddable in \mathscr{R}. Clearly we have $T \subseteq P \cap \mathscr{T}$ since $T \subseteq P$ and $T \subseteq \mathscr{T}$. On the other hand, by the remark to Lemma $4, \mathscr{T}$ is homogeneous and its homogeneous polynomials belong to T. Hence, if $p=\Sigma p^{(\alpha)} \in P \cap \mathscr{T}$ then all $p^{(\alpha)} \in T$ and also $p=\Sigma p^{(\alpha)} \in T$. Thus, $P \cap \mathscr{T} \subseteq T$ and our assertion is proved.

To prove that \mathscr{R} is an integral domain (\mathscr{R}^{*} is a semigroup with cancellation laws) we observe that the valuation defined on R can be extended to \mathscr{R} in the following way:
If $p \in \mathscr{P}$ is such that all its homogeneous components are special, then p will be called special, and if $p \neq 0$ and $p^{(\alpha)}$ is its nonzero homogeneous component of least degree we set: $v(p)=\alpha$.
If $p=\Sigma p^{(\alpha)} \in P$, then let $S(p)=\Sigma S\left(p^{(\alpha)}\right)$. Clearly $S(p)$ is special and it is the unique special element of $\bar{p}=p+\mathscr{T}$.
Thus, for $\bar{p} \in \mathscr{R}$ we define $v(\bar{p})=v(S(p))$.
The equation $v(\bar{p} \bar{q})=v(\bar{p})+v(\bar{q})$ for $\bar{p}, \bar{q} \in \mathscr{R}$ is proved as in Theorem 19 and this clearly implies that \mathscr{R} is an integral domain.
It remains to prove that \mathscr{R}^{*} satisfies Doss' condition. First we prove the following consequence of Lemma 20.

Lemma 21. Let $p, q, r, s \in P$ be homogeneous, $q, r \notin T$ and $v(\bar{p})=\alpha \geqslant \gamma=v(\bar{r})$. If $\bar{p} \bar{q}=\bar{r} \bar{s}$ and $n \geqslant 3$, then there exists $t=t^{(\alpha-\gamma)} \in P$ such that $\bar{p}=\bar{v} \bar{t}$ and $\bar{t} \bar{q}=\bar{s}$.

Proof. If $\bar{p} \bar{q}=\bar{r} \bar{s}=0$, then since R is an integral domain and since $\bar{q} \neq 0, \bar{r} \neq 0$, we obtain $\bar{p}=\bar{s}=0$ and the result follows with $t=0$.

Let $\bar{p} \bar{q}=\bar{r} \bar{s} \neq 0$, then we have also $p, s \notin T$ and $S(p), S(q), S(r), S(s)$ are nonzero, special, and homogeneous. Since

$$
\overline{S(p) S(q)}=\overline{S(p)} \overline{S(q)}=\bar{p} \bar{q}=\bar{r} \bar{s}=\overline{S(r)} \overline{S(s)}=\overline{S(r) S(s)}
$$

it follows that $S(p) S(q)+S(r) S(s) \in T$. By lemma 12 (c) $S(p)=S\left(p^{(\alpha)}\right)=$ $(S(p))^{(\alpha)}$ and $S(r)=(S(r))^{(\gamma)} \neq 0$. Thus, all the conditions of Lemma 20 are satisfied for $S(p), S(q), S(r), S(s)$, α, γ replacing $p, q, r, s, 2 \alpha, 2 \beta$ respectively, and therefore there exists $t=t^{(\alpha-\gamma)} \in S$ such that $t S(q)+S(s) \in T$. Hence $\bar{t} \bar{q}=\overline{t S(q)}=\overline{S(s)}=\bar{s}$ and therefore $\bar{p} \bar{q}=\bar{r} \bar{q} \bar{q}$ from which it follows that $\bar{p}=\bar{r} \bar{t}$ since $\bar{q} \neq 0$, and our lemma is proved.
If $p_{1}, p_{2} \in P$ and $\bar{p}_{1}=\bar{p}_{2}$, then for convenience we shall write $p_{1} \equiv p_{2}$ meaning $\equiv \bmod T$.

We extend Lemma 21 to power series.

Theorem 22. Let $0 \neq p, q, r, s \in \mathscr{P}$ be special and $\bar{p} \bar{q}=\bar{r} \bar{s}$. If $n \geqslant 3$ and $v(p) \geqslant v(r)$, then there exists $\bar{t} \in \mathscr{R}{ }^{*}$ such that $\bar{p}=\bar{r} \bar{t}, \bar{t} \bar{q}=\bar{s}$.

Proof. Let $\alpha, \beta, \gamma, \delta$ be the values of p, q, r, s, respectively, then $p^{(\varepsilon)}$, $q^{(\beta)}, r^{(\gamma)}, s^{(\delta)} \neq 0$, and

$$
\alpha+\beta=v(\bar{p})+v(\bar{q})=v(\bar{p} \bar{q})=v(\bar{r} \bar{s})=v(\bar{r})+v(\bar{s})=\gamma+\delta .
$$

$\bar{p} \tilde{q}=\bar{r} \tilde{s}$ means $p q \equiv r s(\bmod \mathscr{T})$ and since \mathscr{T} is homogeneous and its homogeneous polynomials belong to T we have

$$
\begin{equation*}
(p q)^{(\tau)} \equiv(r s)^{(r)} \quad \text { for each } \quad \tau \geqslant 0 \tag{22}
\end{equation*}
$$

For $\tau=\alpha+\beta=\gamma+\delta$ we obtain $p^{(\alpha)} q^{(\beta)} \equiv r^{(\gamma)} s^{(\delta)}$ and by the previous lemma there exists a homogeneous polynomial of degree $\epsilon=\alpha-\gamma=\delta-\beta$ such that, if we denote it by $t^{(\epsilon)}$, then

$$
\begin{equation*}
p^{(\alpha)} \equiv r^{(\gamma)} t^{(\epsilon)} ; \quad t^{(\epsilon)} q^{(\beta)} \equiv s^{(\delta)} \tag{23}
\end{equation*}
$$

Assume that for $\mu=0,1, \ldots, \nu, t^{(\epsilon+\mu)}$ (which is 0 or homogeneous of degree $\epsilon+\mu$) has already been defined such that $t_{\nu}=t^{(\epsilon)}+\cdots t^{(\epsilon+\nu)}$ satisfies

$$
\begin{equation*}
p^{(\alpha+\mu)} \equiv\left(r t_{\nu}\right)^{(\alpha+\mu)} ; \quad\left(t_{\nu} q\right)^{(\delta+\mu)} \equiv s^{(\delta+\mu)} \tag{24}
\end{equation*}
$$

for $\mu=0,1, \ldots, \nu$, and note that, for $\mu=0$, (24) is identical with (23).
We proceed to define $t^{(\epsilon+\nu+1)}$ such that (24) will hold for $t_{\nu+1}=t_{\nu}+t^{(\epsilon+\nu+1)}$ replacing t_{ν} and for $\mu=0,1, \ldots, \nu+1$.

If this is proved then $t=t^{(\epsilon)}+t^{(\epsilon+1)}+\cdots$ will satisfy:

$$
p^{(\alpha+\mu)} \equiv(r t)^{(\alpha+\mu)} ; \quad(t q)^{(\delta+\mu)} \equiv s^{(\delta+\mu)}
$$

for each $\mu \geqslant 0$. This means $p \equiv r t(\bmod \mathscr{T}), t q \equiv s(\bmod \mathscr{F})$ as required in the theorem. It is also clear that $t \in \mathscr{P}$ and $\bar{t} \in \mathscr{R} *$.

For $\tau=\alpha+\beta+\nu+1=\gamma+\delta+\nu+1$ we have, by (22),

$$
\begin{equation*}
(p q)^{(\alpha+\beta+\nu+1)} \equiv(r s)^{(\gamma+\delta+\nu+1)} . \tag{25}
\end{equation*}
$$

Let us calculate both sides of (25) using (24):

$$
\begin{aligned}
&(p q)^{(\alpha+\beta+\nu+1)}=p^{(\alpha+\nu+1)} q^{(\beta)}+\sum_{\mu=0}^{\nu} p^{(\alpha+\mu)} q^{(\beta+\nu+1-\mu)} \\
& \equiv p^{(\alpha+\nu+1)} q^{(\beta)}+\sum_{\mu=0}^{\nu}\left(r t_{\nu}\right)^{(\alpha+\mu)} q^{(\beta+\nu+1-\mu)} \\
&=p^{(\alpha+\nu+1)} q^{(\beta)}+\left(r t_{\nu}\right)(\alpha+\nu+1) \\
& q^{(\beta)}+\sum_{\mu=0}^{\nu+1}\left(r t_{v}\right)^{(\alpha+\mu)} q^{(\beta+\nu+1-\mu)} \\
&=\left[p^{(\alpha+\nu+1)}+\left(r t_{\nu}\right)^{(\alpha+\nu+1)}\right] q^{(\beta)}+\left[\left(r t_{\nu}\right) q\right]^{(\alpha+\beta+\nu+1)} .
\end{aligned}
$$

Similarly we have

$$
(r s)^{(\nu+\delta+\nu+1)} \equiv r^{(\gamma)}\left[\left(t_{\nu} q\right)^{(8+v+1)}+s^{(\delta+\nu+1)}\right]+\left[r\left(t_{\nu}\right)\right]^{(\gamma+8+\nu+1)} .
$$

But $\left[\left(r t_{\nu}\right) q\right]^{(\alpha+\beta+\nu+1)}=\left[r\left(t_{\nu} q\right)\right]^{(\nu+\delta+\nu+1)}$, and therefore by (25) we obtain

$$
\left[p^{(\alpha+\nu+1)}+\left(r t_{\nu}\right)^{(\alpha+\nu+1)}\right] q^{(\beta)} \equiv r^{(\nu)}\left[\left(t_{\nu} q\right)^{(\delta+\nu+1)}+s^{(\delta+\nu+1)}\right] .
$$

Since $q^{(\beta)}, r^{(\gamma)} \notin T$ we can use the previous lemma and obtain a polynomial which is 0 or homogeneous of degree $\alpha+\nu+1-\gamma=\epsilon+\nu+1$ such that, if we denote it by $t^{(\epsilon+\nu+1)}$, then
$p^{(\omega+\nu+1)}+\left(r t_{\nu}\right)^{(\alpha+\nu+1)} \equiv r^{(\gamma)} t^{(\epsilon+\nu+1)} ; \quad t^{(\epsilon+\nu+1)} q^{(\beta)} \equiv\left(t_{\nu} q\right)^{(\delta+\nu+1)}+s^{(\delta+\nu+1)}$.
Now, for $t_{\nu+1}=t_{\nu}+t^{(\epsilon+\nu+1)}$ we obtain

$$
p^{(\alpha+\nu+1)} \equiv r^{(\gamma)} t^{(\alpha+v+1)}+\left(r t_{\nu}\right)^{(\alpha+\nu+1)} \equiv\left(r t_{\nu+1}\right)^{(\alpha+\nu+1)}
$$

and similarly,

$$
\left(t_{v+1} q\right)^{(\delta+v+1)} \equiv s^{(\delta+v+1)},
$$

which proves (24) for $t_{\nu+1}$ replacing t_{ν} and $\mu=\nu+1$; but for $\mu<\nu+1$,

$$
p^{(\alpha+\mu)}=\left(r t_{\nu}\right)^{(\alpha+\mu)}=\left(r t_{\nu+1}\right)^{(\alpha+\mu)}
$$

and also

$$
\left(t_{\nu+1} q\right)^{(\delta+\mu)} \equiv s^{(\delta+\mu)}
$$

and this completes the induction.
From the previous theorem and Doss' result [2] it follows that \mathscr{R}^{*} is embeddable in a group if $n \geqslant 3$, and since R^{*} is embeddable in \mathscr{R}^{*} we have:

Theorem 23. If $n \geqslant 3$, then R^{*} is embeddable in a group.
In Theorem 1 we have proved that if $k \geqslant n$, then R cannot be embedded in a field. Thus, Theorem 1 together with Theorem 23 give our main result which is:

Theorem 24. If $k \geqslant n$ and $n \geqslant 3$, then the ring R cannot be embedded in a field, but the multiplicative semigroup R^{*} is embeddable in a group.

Finally we note that if $n=2$ and $k \geqslant 2$, then R^{*} cannot be embedded in a group. It suffices to show that R^{*} does not satisfy the following necessary condition for a semigroup to be embeddable in a group, given by Malcev [4]:
If $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ are elements of a semigroup that can be embedded in a group and if

$$
a a^{\prime}=b b^{\prime}, \quad a c^{\prime}=b d^{\prime}, \quad c a^{\prime}=d b^{\prime}, \quad \text { then } \quad c c^{\prime}=d d^{\prime} .
$$

Let us denote the elements of $A^{k} \in P_{2}$ by $w_{i j}$ and let

$$
\begin{array}{rlrlrl}
a & =\bar{w}_{11}, & b & =\bar{w}_{12}, & c & =\overline{x_{1}^{2}}, \\
a^{\prime} & =\bar{w}_{11}, & b^{\prime} & =\overline{x_{1} x_{2}}, & c^{\prime} & =\overline{x_{1}^{2}}, \\
& d^{\prime} & =\overline{x_{2} x_{1}} .
\end{array}
$$

$w_{11} w_{11}+w_{12} w_{21}$ is the $(1,1)$ entry of $A^{2 k}$ and therefore belongs to T (which is generated by the entries of A^{k+1}). Hence,

$$
a a^{\prime}=\overline{w_{11} w_{11}}=\overline{w_{12} w_{21}}=b b^{\prime}
$$

Since $A \cdot A^{k}=A^{k+1}=A^{k} \cdot A$ we obtain

$$
x_{1}{ }^{2} w_{11}+x_{1} x_{2} w_{21}=z_{11} \in T \quad \text { and } \quad w_{11} x_{1}^{2}+w_{12} x_{2} x_{1}=z_{11} \in T .
$$

Hence,

$$
c a^{\prime}=\overline{x_{1}^{2} w_{11}}=\overline{x_{1} x_{2} w_{21}}=d b^{\prime} ; \quad a c^{\prime}=\overline{w_{11} x_{1}{ }^{2}}=\overline{w_{12} x_{2} x_{1}}=b d^{\prime} .
$$

T does not contain polynomials of degree $<2 k+2$ and in particular, since $k \geqslant 2$, it does not contain $x_{1}{ }^{4}+x_{1} x_{2}{ }^{2} x_{1}$ which is of degree $4<2 k+2$. Hence $\overline{x_{1}^{4}} \neq \overline{x_{1} x_{2}{ }^{2} x_{1}}$ and therefore $c c^{\prime} \neq d d^{\prime}$.

Thus, in R^{*} we have $a a^{\prime}=b b^{\prime}, a c^{\prime}=b d^{\prime}, c a^{\prime}=d b^{\prime}$, but $c c^{\prime} \neq d d^{\prime}$ and therefore R^{*} cannot be embedded in a group.

Acknowledgment

The author wishes to thank Professor Amitsur for his remarks and help in the preparation of this work.

References

1. Сонn, P. M. "Universal Algebra." Harper \& Row, New York, 1965.
2. Doss, R. Sur l'immersion d'un semi-groupe dans un groupe. Bull. Sci. Math. 72 (1949), 139-150.
3. Kurosh, A. G. "Lectures on General Algebra." Chelsea, New York, 1963.
4. Mal'cev, A. I. On the immersion of an algebraic ring into a field. Math. Ann. 113 (1937), 686-691.
5. Mal'cev, A. I. Úber die Einbettung von assoziativen Systemen in Gruppen. Math. Sb. 6 (1939), 331-336.

[^0]: * This is a part of the author's Ph.D. thesis prepared at the Hebrew University of Jerusalem under the supervision of Professor S. A. Amitsur.
 ${ }^{1}$ Editor's note: The problem discussed here (first raised by Mal'cev in the 1930's) was solved by three people this summer (1966), all working independently and obtaining different proofs. They are the author, L. A. Bokut', and A. J. Bowtell. Mr. Bowtell's solution (which is comparatively brief) was also submitted to this Journal and appears as the paper immediately following.

