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APSAICIN-SENSITIVE PRIMARY SENSORY NEURONS IN THE
OUSE EXPRESS N-Acyl PHOSPHATIDYLETHANOLAMINE
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bstract—Our previous finding, that the capsaicin- and KCl-
nduced Ca2�-dependent production of the intra- and inter-
ellular signaling molecule N-arachidonoyl ethanolamine
anandamide) in cultured primary sensory neurons could be
bolished and reduced by �2/3 by capsaicin-induced degen-
ration of capsaicin-sensitive neurons, respectively sug-
ests that a major sub-population of capsaicin-sensitive cells
ogether with a group of non-capsaicin-sensitive cells should
xpress enzymes involved in Ca2�-dependent anandamide
ynthesis. N-acyl phosphotidylethanolamine phospholipase

(NAPE-PLD) is known to be involved in Ca2�-dependent
nandamide production. Hence, here, we used reverse tran-
criptase and quantitative real time polymerase chain reac-
ion to study NAPE-PLD expression in dorsal root ganglia
nd to clarify the sub-population of cells expressing this
nzyme. Cultures prepared from mouse dorsal root ganglia
ere grown either in the absence or presence of the neuro-

oxin, capsaicin (10 �M) overnight. We report, that NAPE-PLD
s expressed both in dorsal root ganglia and cultures pre-
ared from dorsal root ganglia and grown in the absence of
apsaicin. Furthermore, we also report that capsaicin appli-
ation downregulates the expression of NAPE-PLD as well as
he capsaicin receptor, transient receptor potential vanilloid
ype 1 ion channel, by about 70% in the cultures prepared from
orsal root ganglia. These findings indicate that a major sub-
opulation of capsaicin-sensitive primary sensory neurons ex-
resses NAPE-PLD, and suggest that NAPE-PLD is expressed
redominantly by capsaicin-sensitive neurons in dorsal root
anglia. These data also suggest that NAPE-PLD might be a
arget to control the activity and excitability of a major sub-
opulation of nociceptive primary sensory neurons. © 2009

BRO. Published by Elsevier Ltd.

ey words: anandamide, dorsal root ganglion, transient re-
eptor vanilloid type 1, TRPV1, nociceptive, pain.
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abinoid 1; CB2, cannabinoid 2; DRG, dorsal root ganglia; FAAH, fatty
cid amide hydrolase; GAPDH, glyceraldehyde-3-phosphate dehydro-
enase; NAPE-PLD, N-acyl phosphotidylethanolamine phospholip-
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se D; PCR, polymerase chain reaction; RT, reverse transcriptase;
RPV1, transient receptor potential vanilloid type 1.
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he great majority of nociceptive primary sensory neurons
re sensitive to capsaicin, the agent that is responsible for
he hotness of the chili pepper (Porszasz and Jancso,
959; Jancso et al., 1977; Lynn and Carpenter, 1982;
eyman and Rang, 1985; Wood et al., 1988). Capsaicin-
ensitivity of cells is underlain by the expression of the
apsaicin receptor, transient receptor potential vanilloid
ype 1 ion channel (TRPV1; Caterina et al., 1997, 2000;
avis et al., 2000). In addition to capsaicin, TRPV1 is also

esponsive to a series of other activators such as moderate
eat, protons, post-translational modifications, depolariza-
ion and other exogenous and endogenous agents, inclu-
ing N-arachidonoyl ethanolamine (anandamide; Cate-
ina et al., 1997; Zygmunt et al., 1999; Huang et al., 2002;
hin et al., 2002; Chu et al., 2003; Voets et al., 2004;
ovahed et al., 2005). Anandamide, in addition to TRPV1,

s also an activator of other receptors, including the can-
abinoid 1 (CB1) and cannabinoid 2 (CB2) receptors, and
he orphan G protein-coupled receptor 55 (GPR 55) (Mat-
uda et al., 1990; Devane et al., 1992; Munro et al., 1993;
ygmunt et al., 1999; Ryberg et al., 2007). Of these, the
B1 and CB2 receptors are co-expressed with TRPV1 in a
ajor sub-population of primary sensory neurons (Ahluwa-

ia et al., 2000; Ross et al., 2001; Agarwal et al., 2007;
nand et al., 2008). Previous findings suggest that anan-
amide, by activating TRPV1 and the cannabinoid recep-
ors, may be involved in the regulation of the activity and
xcitability of the TRPV1/CB1 receptor-expressing cells
Ellington et al., 2002; Ahluwalia et al., 2003a; Németh et
l., 2003; Anand et al., 2008).

Interestingly, primary sensory neurons, including the
apsaicin-sensitive cells are capable of producing anand-
mide (Ahluwalia et al., 2003b; van der Stelt et al., 2005;
ellani et al., 2008). Anandamide-production in primary
ensory neurons could depend on, or could be indepen-
ent of, Ca2� (Ahluwalia et al., 2003b; van der Stelt et al.,
005; Vellani et al., 2008). The Ca2�-dependent anand-
mide production could be triggered by capsaicin, KCl-

nduced depolarization or by Ca2� release from the intra-
ellular stores (Ahluwalia et al., 2003b; van der Stelt et al.,
005). While the capsaicin-induced anandamide produc-
ion is completely abolished, the KCl-induced anandamide
ynthesis is reduced to about one third of the control value,
y overnight capsaicin treatment, which induces Ca2�-
ependent cytotoxicity and cellular death (Jancso et al.,
977, 1995; Gamse et al., 1982; Chard et al., 1995; Wood
t al., 1988; Olah et al., 2001; Ahluwalia et al., 2003b).

The enzyme, N-acyl phosphotidylethanolamine phos-

holipase D (NAPE-PLD), belongs to the zinc metallohy-

nse.
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rolase family of the �-lactamase fold (Okamoto et al.,
004) and is known to produce various long and medium
hain bioactive N-acylethanolamines, including anandam-
de in a Ca2�-dependent fashion (Okamoto et al., 2004;
un et al., 2004; Leung et al., 2006; Liu et al., 2006; Simon
nd Cravatt, 2006, 2008). Therefore, we hypothesized that
APE-PLD could be expressed by a major sub-population
f capsaicin-sensitive cells in addition to a group of non-
apsaicin-sensitive cells, which could belong to the non-
ociceptive sub-population of primary sensory neurons.
ccordingly, here, we studied the expression of NAPE-
LD in dorsal root ganglia (DRG) and cultures prepared

rom DRG. In order to find out whether NAPE-PLD is
xpressed by the capsaicin-sensitive cells, half of the cul-

ures were grown in the presence of capsaicin.

EXPERIMENTAL PROCEDURES

nimals and preparation of primary sensory
euronal cultures

ll procedures in this work were performed in accordance with the
K Animals (Scientific Procedures) Act 1986, and its ethical
uidelines and every effort was taken to minimize the number and
uffering of animals used. Measurements were performed on
issue homogenates of DRG, heart and total brain, collected from
0- to 12-week-old male C57BL/6 mice and on cultures, which
ere prepared from DRG collected also from 10- to 12-week-old
ale C57BL/6 mice.

Tissues were quickly dissected out from terminally anesthe-
ized (Enflurane; Abbott Laboratories, Kent, UK) animals and
hopped into small pieces in RNAlater (QIAGEN, Crawley, UK).
issue samples were stored in RNAlater at 4 °C until they were
sed for RNA isolation.

Cultures were prepared following terminal anesthesia (Enflu-
ane, Abbott Laboratories) as described previously (Nagy and
ang, 1999). Briefly, ganglia were removed from the first cervical

o the first sacral segment from both sides and placed into Dul-
ecco’s Modified Eagle’s Medium F12 (Sigma, Gillingham, UK)
upplemented with 2 mM l-glutamine (Invitrogen, Paisley, UK),
000 IU/ml penicillin (Invitrogen, Paisley, UK), 5000 �g/ml strep-

omycin (Invitrogen, Paisley, UK) and 2% Ultroser G (BioSepra
A, Cergy-Pontoise, France). Connective tissues in the DRG were
igested by 0.125% type IV collagenase (Lorne Diagnostics, Bury
t. Edmunds, UK) for 3 h at 37 °C in 5% CO2. Ganglia were

riturated with a fire-polished Pasteur pipette, and cells were
lated on poly DL-ornithine-coated glass coverslips (Sigma). Cells
ere cultured at 37 °C in a humidified atmosphere gassed with 5%
O2 for a day in the supplemented F12 medium to which 50 ng/ml
erve growth factor was added (Promega, Southampton, UK).
alf of the cultures prepared from three mice were grown in the
resence of 10 �M capsaicin, which was dissolved in dimethyl
ulfoxide (final concentration 3 mM).

solation of mRNA and reverse transcriptase (RT)
eaction

issue samples were weighed and homogenized by a tissue
omogenizer. Cell lysates were further homogenized using
IAshredder columns (QIAGEN, Crawley, UK). Cultured cells
ere scraped from the coverslips and homogenized using
IAshredder columns. RNA from the homogenates was extracted
sing the RNeasy Mini Kit (QIAGEN) according to the manufac-

urer’s instructions. Following elution the RNA was quantified and

tored at �80 °C until further use. p
Total RNA (600 ng) was reverse transcribed with SuperScript
I (Invitrogen), using oligo (dT)15 primer (Promega), dNTP (Pro-
ega), SUPERasin (Ambion, Huntington, UK), first-strand buffer

Invitrogen) and DTT (Invitrogen).

olymerase chain reaction (PCR)

rimers were designed to amplify mouse NAPE-PLD and the
ousekeeping gene, glyceraldehyde-3-phosphate dehydroge-
ase (GAPDH). The sequences of the primers (MWG Biotech,
bersberg, Germany) were as follows: NAPE-PLD: forward 5=-
GC CAA CAT GGA AAA ACA TC-3=; reverse: 5=-ATG AGC TCG
CC ATT TCC AC-3=; GAPDH: forward: 5=-GGT GAA GGT CGG
GT CAA CG-3=; reverse: 5=-CAA AGT TGT CAT GGA TTG
CC-3=. The predicted product sizes were 222 and 370 bp for
APE-PLD and GAPDH, respectively. The PCR reaction mixture
ontained 3 mM MgCl2, 1� reaction buffer (5 mM Tris–HCl, 50
M KCl, 1.5 mM MgCl2, pH 8.3), 0.2 mM deoxynucleotide mix and
.25 U of Go-Taq Flexi DNA polymerase (Promega). The ampli-
cation reaction consisted of 30 cycles with 30 s of denaturation at
6 °C, 1 min annealing, and 3 min extension at 72 °C in a thermal
ycler (Eppendorf-Mastercycler Personal, UK). The annealing
emperatures for both NAPE-PLD and GAPDH were 55 °C. PCR
roducts were separated on agarose gels and visualized with
thidium bromide.

uantitative real time PCR

or quantitative real-time PCR, specific assays were obtained
PrimerDesign, Ltd., UK). The primers were designed and vali-
ated by the manufacturer. In these experiments we assessed
he effect of capsaicin treatment on the expression of NAPE-
LD and TRPV1 relative to the expression of GAPDH. The pri-
ers for TRPV1 were designed against the GenBank sequence
M_001001445 and were as follows; forward: 5=-CCT GCA TTG
CA CCT GTG AA-3=; reverse: 5=-AGT CGG TTC AAG GGT TCC
-3=. Primers for NAPE-PLD were designed using GenBank se-
uence NM_178728: forward: 5=-GGG CGG CTC TCA CTT TCT
-3; reverse: 5=-ACA CTT GTG CTT ATA GGT CAT TTA AT-3=.
or GAPDH a pre-designed primer set was provided by the man-
facturer. The reaction was performed in triplicate using Precision
PCR master mix with SYBR green and ROX (PrimerDesign, Ltd.)
n an ABI 7900HT real-time PCR machine. These reactions were
nzyme-activated by heating at 95 °C for 10 min (hot start), then
enaturing at 95 °C for 15 s followed by cooling to 60 °C for data
ollection (50 cycles). The “crossover” threshold (ct) was deter-
ined in each sample for each DNA. The average GAPDH mea-

urement in each sample was used to establish the relative ex-
ression of NAPE-PLD and TRPV1 in the respective sample.

RESULTS

irst, we aimed to establish whether NAPE-PLD is ex-
ressed in DRG and in cultures prepared from DRG. In
ddition to cDNA from DRG and cultures, cDNA from the
eart, where NAPE-PLD has been cloned from (Okamoto
t al., 2004), and the brain, where NAPE-PLD expression
as been reported recently (Morishita et al., 2005; Leung
t al., 2006), was also included in the reaction, for control.

RT-PCR produced distinct products with sizes be-
ween 350 and 400 bp, and 200 and 250 bp in all samples
Fig. 1A, B). While the larger product (Fig. 1A) corre-
ponded with the predicted size of the GAPDH, the smaller
roduct (Fig. 1B) corresponded with that expected for the
APE-PLD RT-PCR product. These findings indicated that
APE-PLD is expressed both in DRG and cultures pre-

ared from DRG.
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In addition to primary sensory neurons, both DRG and
ultures prepared from DRG contain cells other then pri-
ary sensory neurons. However, only a sub-population of
rimary sensory neurons is susceptible to degeneration by
he neurotoxin, capsaicin in both intact DRG and cultures
repared from DRG (Porszasz and Jancso, 1959; Jancso
t al., 1977; Lynn and Carpenter, 1982; Heyman and
ang, 1985; Wood et al., 1988). Thus, in order to find out

he cell type expressing NAPE-PLD, we induced capsa-
cin-evoked degeneration of capsaicin-sensitive cells by
rowing the cultures in 10 �M of this neurotoxin overnight
Gamse et al., 1982; Chard et al., 1995; Jancso et al.,
995). In agreement with results of the previous experi-
ent, RT-PCR produced NAPE-PLD amplicon when

DNA of control cultures served as a template (Fig. 1C,
ane 1). However, very little PCR product was detected
hen cDNA from the capsaicin-treated cultures was used
s a template for the reaction (Fig. 1D, lane 1).

In order to ascertain that capsaicin treatment indeed
ownregulated NAPE-PLD expression, we next measured
he relative expression of NAPE-PLD, and TRPV1, which
ediates the capsaicin-induced neurotoxic Ca2� influx

ig. 1. RT-PCR analysis of NAPE-PLD gene expression. (A) Agarose
el electrophoresis of RT-PCR products for GAPDH (370 bp) from
DNA made to RNA from brain, heart, DRG and cultures prepared
rom DRG (lanes 1, 2, 3, and 4, respectively). (B) Agarose gel elec-
rophoresis of RT-PCR products for NAPE-PLD (222 bp) from cDNA
ade to RNA from brain, heart, DRG and cultures prepared from DRG

lanes 1, 2, 3, and 4, respectively). Note that NAPE-PLD is expressed
n all the tissues we examined. (C) NAPE-PLD (lane 1) and GAPDH
lane 4) gene expression in mouse dorsal root ganglion cultures grown
nder control conditions (without capsaicin). Lane 2 shows NAPE-PLD
xpression in a brain sample collected from the same animal used to
erive the cultures analyzed in lanes 1 and 4. Lane 3 is a control PCR
eaction, where RNA equivalent to the cDNA used in lane 1 has been
sed as template. (D) NAPE-PLD (lane 1) and GAPDH (lane 4) gene
xpression in mouse dorsal root ganglion cultures grown in the pres-
nce of 10 �M capsaicin overnight. Lane 2 shows NAPE-PLD expres-
ion in the brain sample collected from the same animal. Lane 3 is a
ontrol PCR reaction, where RNA equivalent to the cDNA used in lane
has been used as template. Note that the treatment of cultures with

apsaicin significantly downregulated NAPE-PLD expression (lane 1
n C and D.)
Caterina et al., 1997), in control and capsaicin-treated
t
a

ultures with real time quantitative PCR. We found that
apsaicin treatment reduced NAPE-PLD mRNA expres-
ion by about 70% (Fig. 2). The capsaicin treatment down-
egulated TRPV1 mRNA expression by the same extent.

DISCUSSION

t present, TRPV1 is the only molecule, which is known to
electively and specifically respond to capsaicin (Caterina
t al., 1997, 2000; Davis et al., 2000). Immunohistochem-

cal and functional data show that only a sub-population of
eurons expresses TRPV1 in DRG and cultures prepared
rom DRG (Nagy et al., 1993; Caterina et al., 1997, 2000;
uo et al., 1999; Michael and Priestley, 1999; Ahluwalia et
l., 2000; Singh Tahim et al., 2005). Thus, capsaicin treat-
ent can induce degeneration only in the TRPV1-express-

ng sub-population of neurons in cultures prepared from
RG.

We found in the present study that overnight exposure
f cultured primary sensory neurons to capsaicin reduced
RPV1 mRNA expression by �70%. This degree of down-
egulation in TRPV1 mRNA expression is comparable with
he �70%–80% reduction in TRPV1 protein expression
nd in the number of TRPV1-expressing neurons pro-
uced by prolonged (�48 h) application of the ultrapotent
RPV1 activator, resiniferatoxin to primary sensory neu-
ons (Olah et al., 2001; Tender et al., 2005). In parallel with
he reduction in TRPV1 mRNA expression, NAPE-PLD
RNA expression was also reduced by �70%. These

ndings indicate that a major proportion of capsaicin-sen-
itive primary sensory neurons expresses NAPE-PLD, and
uggest that the majority of the NAPE-PLD-expressing
rimary sensory neurons are capsaicin sensitive. How-
ver, assuming that the TRPV1 mRNA we detected in our
ultures following the capsaicin treatment, was expressed

n neurons, which, in spite of their TRPV1 expression, were

ig. 2. Relative gene expression of NAPE-PLD and TRPV1 in cul-
ures prepared from DRG and grown either in the absence (control) or
resence of 10 �M capsaicin overnight. The expression of the NAPE-
LD and TRPV1 mRNA was normalized to that of GAPDH mRNA.
ach set shows an average from three cultures, each prepared from
ifferent animals, with standard errors of the mean shown. Note that
he treatment of cultures with capsaicin downregulated both TRPV1
nd NAPE-PLD-expression relative to that seen in untreated cultures.
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ot responsive to capsaicin, or alternatively, they were
esponsive to capsaicin but resistant to the subsequent
xcitotoxicity, it is tempting to propose that TRPV1 and
APE-PLD could be co-expressed to a high degree, in
rimary sensory neurons.

Based on the similarity between the overnight 10 �M
apsaicin exposure-evoked downregulation of NAPE-PLD
RNA expression, and the previously demonstrated down-

egulation in KCl-evoked anandamide release (�60%–
0%; Ahluwalia et al., 2003b), it is also tempting to propose
hat only NAPE-PLD could be responsible for Ca2�-depen-
ent anandamide production in primary sensory neurons.
owever, in addition to the Ca2�-evoked anandamide syn-

hesis (Ahluwalia et al., 2003b; van der Stelt et al., 2005),
rimary sensory neurons, also produce anandamide in a
a2�-independent manner (Vellani et al., 2008). There-

ore, NAPE-PLD must represent only one of the anandam-
de-synthesizing enzymatic pathways present in these
ells. To the best of our knowledge, this is the first report
emonstrating the expression of an enzyme that is in-
olved in anandamide synthesis in primary sensory neu-
ons, and it is not known which other anandamide-produc-
ng enzymatic pathways are expressed, and whether any
f the other pathways are involved in anandamide synthe-
is in a Ca2�-dependent fashion, in these neurons (Di
arzo and Petrosino, 2007). Therefore, further studies are
eeded to elucidate these issues.

Nevertheless, the presence of NAPE-PLD in capsa-
cin-sensitive primary sensory neurons raises the question,
hat role does this enzyme play in these neurons. Several
f the NAPE-PLD products, including oleoylethanolamide,

inoleoylethanolamide and anandamide, activate TRPV1
Zygmunt et al., 1999; Okamoto et al., 2004; Movahed et
l., 2005). However, the finding that among these prod-
cts, anandamide also activates a series of inhibitory re-
eptors, which are co-expressed with TRPV1 in primary
ensory neurons (Matsuda et al., 1990; Devane et al.,
992; Munro et al., 1993; Zygmunt et al., 1999; Ahluwalia
t al., 2000; Ross et al., 2001; Agarwal et al., 2007; Anand
t al., 2008) suggests that anandamide production by
APE-PLD could be the most important in relation to reg-
lating the activity and excitability of a major sub-popula-
ion of capsaicin-sensitive, thus, nociceptive cells.

The expression pattern of the anandamide-responding
eceptors in nociceptive primary sensory neurons (Ahlu-
alia et al., 2000; Ross et al., 2001; Agarwal et al., 2007;
nand et al., 2008) together with previous functional data

Ellington et al., 2002; Ahluwalia et al., 2003b; Németh et
l., 2003; Nagy et al., 2006; Anand et al., 2008) suggests
hat NAPE-PLD activity may provide a CB1- and/or CB2-
ediated brake on the responsiveness and activity of, the

ells, and TRPV1. Alternatively, NAPE-PLD might be part
f a signal amplification pathway in TRPV1-expressing
ells, which has been suggested recently by van der Stelt
nd Di Marzo (2005). The presence of such an amplifica-
ion system in capsaicin-sensitive primary sensory neu-
ons is supported by recent findings. First, van der Stelt
nd co-workers (2005) have reported that the Ca2�-de-

endent anandamide production results in TRPV1 activity fi
n cultured primary sensory neurons. Second, we found
hat inhibition of the anandamide-hydrolysing enzyme,
atty acid amide hydrolase (FAAH), which is also ex-
ressed by a major sub-population of TRPV1-expressing
rimary sensory neurons results in TRPV1 activity (Lever
t al., 2009). Third, repeated application of anandamide to
RPV1 sensitizes the responses of this ion channel (Prem-
umar and Ahern, 2000).

In primary sensory neurons, TRPV1 seems to have a
ivotal role in signaling peripheral inflammatory events to
he CNS through getting activated directly or indirectly by
nflammatory mediators, which are produced and released
rom the inflamed tissues (Caterina et al., 2000; Davis et
l., 2000; Ji et al., 2004; Ma and Quirion, 2007; Nagy et al.,
008, 2009). A series of inflammatory mediators induces
a2� influx into primary sensory neurons, including into

he capsaicin-sensitive cells (Thayer et al., 1998; Cesare
t al., 1999; Smith et al., 2000; Moriyama et al., 2005).
omparison of the increase in the intracellular Ca2� con-
entration produced by some of the inflammatory media-
ors, including bradykinin and prostaglandin E2, to those
hich can evoke anandamide production (van der Stelt et
l., 2005) suggests that inflammatory mediators should be
apable of inducing anandamide production. In addition to

nducing Ca2� influx, inflammatory mediators also induce
ost-translational changes in TRPV1 (for references see
agy et al., 2008, 2009). These changes together with the
ensitizing effect of anandamide on TRPV1 (Premkumar
nd Ahern, 2000) result in a significant increase in the
therwise modest efficacy and potency of anandamide on
RPV1 (Zygmunt et al., 1999; Ahluwalia et al., 2003b;
ingh Tahim et al., 2005). Thus, anandamide produced
ven in small concentrations inside the TRPV1-expressing
ells can induce a significant increase in TRPV1 open
robability and subsequent action potential generation. In
ddition to anandamide, however, the production of other
RPV1-activating N-acylethanolamines by NAPE-PLD
ay also contribute to TRPV1 activity in inflammatory

onditions (Movahed et al., 2005).
Based on the considerations above, we propose that

APE-PLD expression and activity in capsaicin-sensitive
rimary sensory neurons could serve as a vital part of the
nandamide-mediated signal amplification process (van
er Stelt and Di Marzo, 2005). That signal amplification,
ence NAPE-PLD activity, could be fundamental for the
evelopment of increased responsiveness of these cells in
athological conditions, and subsequently, for sending in-
ormation about inflammatory processes at the periphery
o the CNS. However, the signal amplification process by
APE-PLD may not be unique in capsaicin-sensitive pri-
ary sensory neurons, because increasing anandamide

oncentration, for example by inhibiting FAAH activity, also
esults in TRPV1 activity in the brain (Maione et al., 2006;
orgese et al., 2007). Thus, NAPE-PLD may also play a
ivotal role in signal amplification in neurons expressing
oth NAPE-PLD and TRPV1 (Cristino et al., 2006, 2008),

n various areas of the CNS. Nevertheless, if anandamide
roduced by NAPE-PLD indeed has a fundamental ampli-

cation role, which contributes to the development of
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RPV1 activation and sensitization, targeting this enzyme
n primary sensory neurons may provide a novel approach
o reduce the activity and excitability of capsaicin-sensitive
rimary sensory neurons, thus, to reduce pain, in inflam-
atory conditions.
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