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Abstract

A novel molecular beacon-based fluorescence in situ hybridization

(FISH) test allowing for the identification of a wide range of

bacterial pathogens directly in positive blood cultures (BCs) was

evaluated with positive BCs of 152 patients. Depending on the

Gram stain, either a Gram-negative or a Gram-positive panel was

used. The time to result was 30 min, and the hands-on time was

only 10 min. Seven per cent of the cultured microorganisms were

not included in the FISH panels; the identification rate of those

included was 95.2%. Overall, the FISH test enabled accurate

pathogen identification in 88.2% of all cases analysed.
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Blood culture (BC) still represents the reference standard for

the detection and identification of bloodstream pathogens [1].

In routine clinical practice, as soon as growth is detected in a

BC bottle, a Gram stain is performed [2]. With conventional

microbiological techniques, it usually takes several hours or

even days from the time of microscopy to definite pathogen

identification [2]. On the other hand, the importance of rapid

diagnosis of sepsis and septic shock allowing for adequate

therapeutic measures such as the initiation or adjustment of a

targeted treatment has been well documented [3,4]. Apart

from molecular technologies for the detection of pathogen

DNA directly from whole blood specimens [5–7], laboratory

methods accelerating the definite identification of microor-

ganisms grown in BCs are also of crucial importance, and have

been the subject of intensive research and development during

recent years [8–16].

Today, in addition to a multitude of home-made molecular

assays, several commercially available tests already exist,

allowing for a culture-independent identification of pathogens

grown in BCs. Molecular tests based on multiplex PCR

accurately detect bloodstream pathogens accounting for >90%

of sepsis episodes; moreover, detection of important resis-

tance markers, such as those for methicillin in staphylococci

and those for vancomycin in enterococci, may also be feasible

[8,9]. However, considering the time to result of >4 h, the

prolonged hands-on time, and the high risk of DNA contam-

ination, the usefulness of these tests in daily laboratory routine

may be questionable. With due consideration of time and cost

savings, matrix-assisted laser desorption ionization time-of-

flight mass spectrometry (MALDI-TOF MS), e.g. with the

Sepsityper kit (Bruker Daltonics, Bremen, Germany), may

represent the method of choice allowing for direct pathogen

identification in >80% of positive BCs [10]; the main drawbacks

of this method are the cost of acquisition of the system,

meaning that it is affordable only for larger laboratories, and

the exclusive assignment for research use. Other tests for

rapid isolate identification in positive BCs, such as the tube

coagulase test, Staphylococcus aureus real-time PCR, including

detection of methicillin resistance, antigen detection (e.g. for

Streptococcus pneumoniae), and molecular fluorescence in situ

hybridization (FISH) assays, are appropriate for integration

into daily routine analysis [11–16]; however, they are only

capable of detecting either a single pathogen or a limited

number of microorganisms.

Here, we evaluated a novel commercially available FISH

assay (hemoFISH; Miacom Diagnostics, D€usseldorf, Germany)

allowing for the direct identification of a wide range of

Gram-positive and Gram-negative bloodstream pathogens in

positive BCs accounting for more than 90% and 80% of cases,

respectively (Fig. 1) [17,18]. The test uses molecular beacons

as DNA probes binding to the rRNA of microbial ribosomes.

Analysis was conducted during a period of three months. One

positive BC per patient of consecutive patients was analysed by

FISH with the bottle (aerobic FA or anaerobic FN) becoming

positive first with the BacT ALERT 3D system (BioMerieux,

Marcy l’Etoile, France). In the case of neonates and infants, only

the paediatric PF bottle was available. Samples were stored at

room temperature until FISH analysis, which was performed

once daily. The test was performed by an experienced

technician, who was aware only of the Gram stain result.
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Depending on the latter, either a Gram-negative or a

Gram-positive panel was used (Fig. 1), as recommended by

the manufacturer. Briefly, 10 lL of a 1/20 dilution of a BC

aliquot was applied to each of the eight fields on a microscopy

slide. After being dried on a heat block, bacterial cells were

perforated with lysis buffer and fixed in an ethanol bath, prior

to a 10-min hybridization step with the fluorescent DNA

probes. After termination of the reaction by briefly dipping the

slide in a stop buffer, mounting medium was added, and reading

was performed on a fluorescence microscope (Olympus

BX41; Olympus Deutschland, Hamburg, Germany) equipped

with rhodamine and fluorescein filters. The time to result was

30 min, and the hands-on time only 10 min.

As for Enterobacteriaceae, fluorescence should not be

limited to the species-specific field, if available, but should

also include the field of the family-specific probe. Similarly,

the field of the respective genus-specific probe should

be also positive with Staphylococcus aureus or Streptococcus

pneumoniae, Streptococcus agalactiae, and Streptococcus pyogenes

(Fig. 1). Subcultured isolates were routinely identified to the

species level by MALDI-TOF MS (microflex; Bruker Dalton-

ics). When MALDI-TOF MS identification failed or was not

certain, molecular identification with a broad-range PCR and

sequence-analysis protocol was performed, as described

previously [19]. Streptococcus pneumoniae isolates were always

confirmed by optochin testing. This study was approved by the

institutional review board at the Medical University Vienna.

During the evaluation period, 157 bacterial isolates (59

Gram-negatives and 98 Gram-positives) were identified from

152 positive BCs analysed by FISH. Eleven of 157 micro-

organisms (7%) were not included in the FISH panels, and in

one case staphylococci were not detected, because only the

Gram-negative panel was used, owing to overgrowth by

Bacteroides stercoris (Table 1). Of the remaining 145 microor-

ganisms, 138 were identified correctly, three were misidenti-

fied, two were identified to the family but not to the species

level, although the species-specific probes were included in the

panel, and one was not identified at all by FISH (Table 1). In

only one case of Enterococcus faecalis monoculture, fluores-

cence was also detected with the specific DNA probe for

Streptococcus agalactiae (but not with that for the genus

Streptococcus), suggesting cross-reactivity (Table 1). In cases of

discrepancy between FISH and the result obtained routinely,

the latter was confirmed by molecular analysis of the

respective isolate. Overall, the FISH test identification rate

for microorganisms contained in the FISH panels was 95.2%

(138/145; 95% CI 90.3–98%). The identification rates with the

Gram-negative and Gram-positive panels were 92.7% (51/55;

95% CI 82.4–98%) and 96.7% (87/90; 95% CI 90.6–99.3%),

respectively. There was no appreciable difference in test

performance between aerobic and anaerobic BC bottles (data

not shown). The somewhat lower performance of the

Gram-negative panel was solely attributable to incorrect or

insufficient identification of some isolates of the genus

Klebsiella. Beyond that, it would be useful if the Gram-negative

panel also allowed for the detection of the genera Acinetobacter

and Enterobacter; regarding the latter genus, however, an

isolate belonging to the family Enterobacteriaceae, without

belonging to any of the species identified by this panel, is very

likely to produce chromosomal AmpC b-lactamases, and thus

show a predictable resistance pattern [20].

Overall, the FISH test enabled accurate pathogen identifi-

cation in 88.2% (134/152) of all analysed cases of bacterial

growth in the BC. We believe that, because of the fast and
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FIG. 1. Slide composition of the Gram-negative and Gram-positive panels.
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flexible analytical procedure, this test can be integrated into

the daily routine and repeatedly performed during the day for

early BC diagnostic purposes. Furthermore, it may represent a

useful complementary test to MALDI-TOF MS if the latter is

used for direct pathogen identification in positive BCs.
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