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On arcs in projective Hjelmslev planes
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Abstract

A (k; n)-arc in the projective Hjelmslev plane PHG(R3
R) is de4ned as a set of k points in

the plane such that some n but no n + 1 of them are collinear. In this paper, we consider the
problem of 4nding the largest possible size of a (k; n)-arc in PHG(R3

R). We present general
upper bounds on the size of arcs in the projective Hjelmslev planes over chain rings R with
|R| = q2; R=rad R ∼= Fq. We summarize the known values and bounds on the cardinalities of
(k; n)-arcs in the chain rings with |R|625 (|R| = q2; R=rad R ∼= Fq). c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Let R be a chain ring and let R3
R be the right free module of rank 3 over R. Denote

by P the set all free rank 1 submodules of R3
R and by L the set of all free rank 2

submodules of R3
R. The incidence structure (P;L; I) with incidence relation I ⊂P×L

given by set-theoretical inclusion is called the right projective Hjelmslev plane over R
and is denoted by PHG(R3

R).
In this paper, we consider the problem of 4nding the largest size of a (k; n)-arc in

PHG(R3
R) for chain rings R with |R| = q2; R=rad R ∼= Fq. The interest in this problem

comes from coding theory. Multisets of points in projective Hjelmslev geometries are
equivalent to fat linear codes over 4nite chain rings, i.e. codes for which the entries in
no coordinate position are contained in a proper ideal of the ring. Thus, the optimal arc
problem in a projective Hjelmslev geometry is equivalent to determining the minimal
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length of a (left) linear code over R of 4xed rank and 4xed minimum distance with
respect to the Hamming metric [10,13].
Linear codes over 4nite chain rings can be mapped into codes (not necessarily linear)

over a q-ary alphabet. This leads sometimes to codes which are better than any known
linear codes, the most striking example being the families of the Kerdock and Preparata
codes [5,19].
In what follows, we present some general bounds on the size of an arc in a projective

Hjelmslev plane and summarize the known constructions and bounds for arcs in the
small Hjelmslev planes over the chain rings with 4, 9, 16 and 25 elements.

2. Basic facts

A ring (associative, with identity 1 �= 0; ring homomorphisms preserving the identity)
is called a left (right) chain ring if its lattice of left (right) ideals forms a chain. The
most important properties of 4nite chain rings are summarized in the following theorem
[2,17,18]).

Theorem 2.1. For a &nite ring R with radical N �= 0 the following conditions are
equivalent:

(i) R is a left chain ring;
(ii) the principal left ideals of R form a chain;
(iii) R is a local ring; and N = R	 for any 	 ∈ N \N 2;
(iv) R is a right chain ring.

Moreover; if R satis&es the above conditions; then every proper left (right) ideal
of R has the form Ni = R	 i = 	 iR for some positive integer i.

Henceforth, the symbols R; N; 	 will be as in Theorem 2.1. We restrict ourselves
to chain rings with index of nilpotency m = 2. Thus we will always have |R| = q2,
R=N ∼= Fq. The chain rings with this property have been classi4ed in [3] (cf. also
[20]). If q=pr , then there are exactly r+1 isomorphism classes of such rings. These
are:

• for every � ∈ Aut(Fq) the rings R� = Fq ⊕ Fqt of �-dual numbers over Fq with
componentwise addition and multiplication (x0 + x1t)(y0 + y1t) = x0y0 + (x0y1 +
x1�(y0)) · t;

• the Galois ring GR(q2; p2)=(Z=p2Z)[x]=(f(x)), where f(x) ∈ (Z=p2Z)[x] is monic
of degree r and irreducible modulo p.

Note that the ring GR(q2; p2) is commutative, while R� is commutative if and only if
� = 1. We denote the rings Rid = Fq ⊕ Fqt by Sq, the ring R� = F4 ⊕ F4t by T4 with
� : a → a2 and the ring GR(42; 22) = Z4[x]=(x2 + x + 1) by G16.
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Let R be a 4nite (left) chain ring and consider the module H=R3
R. Let H

∗:=H \H	.
De4ne the sets P and L by

P= {xR | x ∈ H∗};
L= {xR+ yR | x; y linearly independent}

as well as an incidence relation I ⊆P×L by set-theoretical inclusion. For the incidence
structure (P;L; I) de4ne also the neighbour relation as follows:
(N1) the points X; Y ∈ P are neighbours (X Y ) iK there exist two diKerent lines

incident with both of them;
(N2) the lines s; t ∈ L are neighbours (s t) iK there exist two diKerent points

incident with both of them.

De�nition 1. The incidence structure �= (P;L; I) with the neighbour relation is
called the (right) projective Hjelmslev plane over R and is denoted by PHG(R3

R).

The relation is an equivalence relation on both P and L. The class [X ] of all
points which are neighbours to the point X =xR consists of all free rank 1 submodules
contained in xR + H	. Similarly, the class [s] of all lines which are neighbours to
s= xR+ yR consists of all free rank 2 submodules contained in xR+ yR+H	. For a
rigorous approach to general projective Hjelmslev spaces, see [14–16,22].
The next theorems provide some basic knowledge about the structure of

projective Hjelmslev planes over 4nite chain rings. They are part of more general results
[1,4,9,14–16,22].

Theorem 2.2. Let � = PHG(R3
R); where R is a chain ring with |R| = q2; R=N ∼= Fq.

Then

(i) |P|= |L|= q2(q2 + q+ 1);
(ii) every point (line) has q2 neighbours;
(iii) every point (line) is incident with q(q+ 1) lines (points);
(iv) given a point P and a line l with PIl; there exist exactly q points on l which

are neighbours to P and exactly q lines through P which are neighbours to l.

Let � denote the natural homomorphism � :R3 → R3=R3	 and L� the mapping induced
by � on the submodules of R3. For every point X and every line l we have

[X ] = {Y ∈ P | L�(Y ) = L�(X )};
[s] = {t ∈ L | L�(t) = L�(s)}:

Let P′ (resp. L′) be the set of all neighbour classes of points (resp. lines).

Theorem 2.3. The incidence structure (P′;L′; I ′) with I ′ de&ned by

[X ]I ′[s] ⇔ ∃X ′ ∈ [X ]; ∃s′ ∈ [s] : X ′Is′

is isomorphic to the projective plane PG(2; q).
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Let � = (P;L; I) = PHG(R3
R). Given a point P, let L(P) be the set of all lines

of L incident with points in [P]. For two lines s; t ∈ L we write s ∼ t if s and
t coincide on [P] and let L1 be a complete set of representatives of the lines from
L(P).

Theorem 2.4.

�P = ([P];L1; I |[P]×L1 ) ∼= AG(2; q):

Let l be a line in � and P = {s ∩ [X ] |X l; s ∈ L; s l} ∪ {P∞}. De4ne an
incidence relation I ⊆P ×L by

(s ∩ [P])I t ⇔ t ∩ (s ∩ [P]) �= ∅;
(P∞)I t ⇔ t l:

For two lines l1; l2 ∈ L, write l1 ∼ l2 if they are incident under I with the same
elements of P . Denote by L a set of lines containing exactly one representative
from each equivalence class of L under ∼. The following theorem can be found in a
diKerent form in [1,6, Satz 1(b); Proposition 3:2].

Theorem 2.5. The incidence structure (P ;L ;I |P ×L ) is isomorphic to PG(2; q).

Let the points X1; X2; : : : ; Xs; 26s6q, be collinear points from the same neighbour
class, say [P]. Then every line incident with two of the points Xi is incident with
all of them. There exist exactly q such lines, say l1; l2; : : : ; lq, and all these lines are
neighbours. The neighbour class [l] ∈ L′ with li ∈ [l] is said to have the direction of
the pointset {X1; X2; : : : ; Xs}.

3. Arcs and blocking multisets in projective Hjelmslev planes

Let � = (P;L; I) be a projective Hjelmslev plane.

De�nition 2. A multiset in � is a mapping k :P → N0.

The integer k(P) is called the multiplicity of the point P. The mapping k can be
extended to the subsets of P by

k(Q) =
∑
P∈Q

k(P); for Q⊆P:

The integer k(P) =
∑

P∈P k(P) is called the cardinality of the multiset k. The support
Supp k of k is de4ned by Supp k = {P ∈ P | k(P)¿ 0}.

De�nition 3. Two multisets k′ and k′′ in the projective Hjelmslev planes �′ and �′′,
respectively, are said to be equivalent if there exists an isomorphism �: �′ → �′′ such
that k′(P) = k′′(�(P)), for every P ∈ P.
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De�nition 4. The multiset k :P → N0 is called a (k; n)-arc if k(P) = k and k(l)6n
for any line l ∈ L. A (k; n)-arc is said to be complete if there is no (k ′; n)-arc k with
k ′ ¿k and k′(P)¿k(P) for every P ∈ P.

Arcs with k(P) ∈ {0; 1} are called projective arcs. They can be considered as sets of
points by identifying them with their support. In this paper, we consider only projec-
tive arcs. We denote by mn(R3

R) the cardinality of the largest (k; n)-arc in PHG(R3
R).

Similarly, we denote by mn(q) (�n(q), respectively) the largest size of a (k; n)-arc in
PG(2; q) (AG(2; q), respectively).
Given a (k; n)-arc in PHG(R3

R), let �i be the number of neighbour classes [P] with
k([P]) = i. We have∑

�i = q2 + q+ 1; (1)

∑
i�i = n: (2)

Theorem 3.1. Let k be a (k; n)-arc in PHG(R3
R); where |R|= q2; R=N ∼= Fq. Suppose

that there exists a neighbour class [P] with k([P]) = u and let ui; i = 0; : : : ; q; be the
maximum number of points on a line from the ith parallel class in the a=ne plane
�P . Then

k6q(q+ 1)n− q
q∑

i=0

ui + u:

Proof: Let li be a line from the ith parallel class in �P with k(li ∩ [P]) = ui. Denote
by l(i)j , j= 1; : : : ; q, the q lines in PHG(R3

R) containing all points of li ∩ [P]. We have

k = k([P]) +
q∑

i=0

q∑
j=1

k(l(i)j \ (li ∩ [P]))

6 u+
q∑

i=0

q(n− ui)

= u+ q(q+ 1)n− q
q∑

i=1

ui:

Remark 3.2. The numbers ui depend on the restriction of k to [P] and are generally
unknown. However, we may use some simple estimates to get a more convenient form
of the above bound.
(1) Fix a point Q ∈ [P] with k(Q) = 1. Let s0; : : : ; sq be the lines in �P through Q,

arranged in such a way that si li. If we set bi= k(si∩ [P]) then 1+bi6ui, i=0; : : : ; q.
We have

k6 q(q+ 1)n− q
q∑

i=0

ui + u
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6 q(q+ 1)n− q
q∑

i=0

(1 + bi) + u

= q(q+ 1)n− q(q+ 1)− q(u− 1) + u

= q2(n− 1) + q(n− u) + u:

(2) We can also use the obvious inequality ui¿�u=q� to get

k6q(q+ 1)
(
n−

⌈
u
q

⌉)
+ u:

Corollary 3.3.

mn(R3
R)6 max

16u6min{�n(q);q2}
min{u(q2 + q+ 1);

q2(n− 1) + q(n− u) + u; q(q+ 1)(n− �u=q�) + u}:

The exact value of mn(R3
R) is known [9,12] for values of n close to q2 + q.

Theorem 3.4. Let R be a chain ring with |R|= q2 and R=N ∼= Fq. Then
mq2+s(R

3
R) = q4 + q2s+ qs; 06s6q− 1:

For arcs with n= 2 we have the following bounds.

Theorem 3.5.

m2(R3
R)6

{
q2 + q+ 1 for q even;
q2 for q odd:

If k([X ]) = 1 for all [X ] ∈ P′ and q odd; then the neighbour classes with k([X ]) = 0
are collinear in L�(�).

Remark 3.6. There exists a (7; 2)-arc in the plane over Z4, but there is no such arc
in the plane over F2[x]=(x2). There exist (9; 3)-arcs in the projective Hjelmslev planes
over both chain rings with 9 elements. For larger chain rings, it is possible to get large
(k; 2)-arcs with more than one point in some of the neighbour classes. A computer
search revealed that there exist (18; 2)-arcs in the planes over the chain rings S4

and G16. These are obtained by choosing two points in neighbour classes lying on a
Hermitian curve in L�(�). Below we give examples for (18,2)-arcs in the planes over
each one of the rings S4 and G16:

(1; 1; 0) (1; 1; t) (1; (; 0) (1; (; (2t) (1; (2; t) (1; (2; (2t)
(1; 0; 1) (1; t; 1) (1; 0; () (1; (2t; () (1; t; (2) (1; (2t; (2)
((t; 1; 1) ((2t; 1; 1) (t; 1; (+ t) ((t; 1; (+ t) (t; 1; (2 + (t) ((2t; 1; (2 + (t)

(1; 1; 0) (1; 1; 2) (1; x; 0) (1; x; 2x + 2) (1; x + 1; 2) (1; x + 1; 2x + 2)
(1; 0; 1) (1; 2; 1) (1; 0; x) (1; 2x + 2; x) (1; 2; x + 1) (1; 2x + 2; x + 1)
(2x; 1; 3) (2x + 2; 1; 3) (0; 1; x) (2x + 2; 1; x) (0; 1; 3x + 3) (2x; 1; 3x + 3):
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Unfortunately, we were unable to construct an (18,2)-arc in the plane over T4. The best
arc we know of is a (12,2)-arc: it is easy to see that we can construct (2m2(q); 2)-arcs
in all PHG(R3

R), where |R|= q2.
Some (20,2)-arcs in the plane over Z25 have been constructed by Hemme and

Weijand [7]. These arcs have k([P])61. One example of such a (20,2)-arc is given
below:

(1; 0; 0) (0; 1; 0) (0; 0; 1) (1; 1; 1) (1; 7; 21) (5; 1; 11) (1; 8; 2)
(1; 9; 19) (1; 10; 24) (1; 12; 13) (20; 1; 17) (1; 2; 5) (1; 15; 22) (1; 4; 6)
(1; 6; 23) (1; 14; 15) (1; 5; 3) (1; 18; 9) (1; 23; 11) (1; 21; 12):

For the projective Hjelmslev plane over S5 there exist (15,2)-arcs. They are easily
constructed, for example, by taking the points to lie in three quintuples of collinear (in
L�(�)) point classes meeting in an empty class.

For projective Hjelmslev planes over chain rings R containing a subring isomorphic
to the residue 4eld of R, the following result holds [6].

Theorem 3.7. Let R be a chain ring with |R|= q2; R=N ∼= Fq; q even; which contains
a subring isomorphic to the residue &eld Fq. Then m2(R3

R)6q2 + q.

4. Constructions for arcs in PHG(R3
R)

In this section we give some general procedures for construction of arcs in PHG(R3
R).

Example 4.1. There exist (q3 + 2q2; 2q)-arcs in all Hjelmslev planes PHG(R3
R), with

|R|= q2 and R=N ∼= Fq.

Let [P] be a 4xed neighbour class of points and [l0]; [l1]; : : : ; [lq] the neighbour
classes of lines incident with [P] in L�(�). In each neighbour class of points incident
with [li]; i = 1; 2; : : : ; q, and diKerent from [P] choose q collinear points having the
direction of [li]. Arrange the line segments in the point classes incident with [li] in
such a way that no more than two of them belong to the same line. This is possible
by Theorem 2.5. In each of the neighbour classes of points incident with [l0] diKerent
from [P] choose 2q points contained in two parallel lines having direction diKerent
from that of [l0]. The neighbour class [P] is empty. It is easy to check that a set so
constructed turns out to be a (q3 + 2q2; 2q)-arc.

Example 4.2. Let k0 be a (k0; n0)-arc in PG(2; q). If Supp k0 = {X1; : : : ; Xk0}, let
{l1; : : : ; lk0} be a set of diKerent lines in PG(2; q) with Xi ∈ li, i = 1; : : : ; k0. Then,
for each 16(6q and 16s6q there exists an ((sk0;min06i6k0)i)-arc in PHG(R3

R),
where )0 = (n0, )i = s+ (|li ∩ Supp k0| − (, for i = 1; : : : ; k0.
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Fix k0 neighbour classes from P′ in L�(�) which form a (k0; n0)-arc equivalent to
k0. Without loss of generality, we can denote the points from the support of this arc
by [X1]; : : : ; [Xk0 ]. In each class [Xi] choose (s points so that they are contained in
( parallel lines (s points on a line) and the parallel lines have the direction of the
neighbour class of lines [li]. It is straightforward to check that the so-de4ned multiset
has the required parameters.

Example 4.3. Assume that for each Xi ∈ Supp k0 there is an 1-secant to k0 at Xi. If
we take these 1-secants as the lines l1; : : : ; lk0 in the above construction we get an
((sk0;min{(n0; s})-arc.

Take k0 to be a Hermitian curve, that is, a (9,3)-arc in PG(2; 4). For (=1; s=3 we
get a (27,3)-arc and for (=2; s=4 we get a (72,6)-arc in PHG(R3

R), where R=S4; T4

or G16. If we take k0 to be an oval, that is, a (5,2)-arc in PG(2; 4) then for (=2; s=4
we get (40,4)-arcs in the planes over all rings with 16 elements.

Example 4.4. Take Supp k0 to be the set of all points in PG(2; q) and l1; : : : ; lq2+q+1 the
set of all lines. Then, for s=q we get a ((q(q2+q+1); q((+1))-arc. Deleting the points
in the neighbour classes from a 4xed line in L�(�) we get an ((q3; (q + q − ()-arc.
In particular, for ( = 2; q = 4 this gives a (128,10)-arc in PHG(R3

R), R = S4;T4

or G16. If we add four points to the 4ve empty neighbour classes in such a way
that

(1) the four points in each neighbour class are collinear;
(2) the four points in each neighbour class have the direction of the empty class of

lines;
(3) the line segments are arranged in such a way that no three of them lie on the

same line in PHG(R3
R) (cf. Theorem 2.5).

Then we get a (148,11)-arc.

Example 4.5. We can use the ((q(q2+q+1); q((+1))-arcs form the previous example
to get some further construction. Start with such an arc and add * line segments of
q points (parallel to the existing ones) to a set of neighbour classes which form a
(k1; n1)-arc in L�(�). Of course, ( + *6q. Then we get an ((q(q2 + q + 1) + *qk1;
q((+ 1) + *n1)-arc.

Example 4.6. We can take Supp k0 to be the union of an oval and an external line to
this oval. We allow *s points (resp. +s points) in each of the neighbour classes which
are external points (resp. internal points) to the 4xed oval. These points are contained
in * parallel lines (resp. + parallel lines) with s points on each line having the direction
of another external line. Then we obtain an arc with parameters

(((+ *=2 + +=2)s(q+ 1);min{2(+ *; 2(+ +; s+ +; * + +(q+ 1)=2})
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if q is odd and q¿ 3, and an ((s(q+ 2) + *s(q+ 1);min{2( + *; *(q+ 1)})-arc if q
is even, q¿ 2.

Example 4.7. There exist (q4 − (s + 1)q2 − ( s+1
2 ); q2 − s)-arcs in PHG(R3

R) for all
16s6q− 1 for q odd and for all 16s6q for q even.

Choose lines l; l1; : : : ; ls, s6q for q odd and s6q+ 1 for q even, to obtain an oval
in the dual plane of L�(�). De4ne k by

k(X ) =
{
0 X I li or X I l′ ∈ [l];
1 otherwise:

(3)

Then k is an arc with the desired parameters.

5. Nonexistence results for arcs in PHG(R3
R)

In this section, we improve the general bound of Corollary 3.3 for some small values
of n. From Corollary 3.3, we get the following two inequalities for the largest size of
an arc with n= 3 or 4:

m3(R3
R)62q2 + q+ 2;

m4(R3
R)63q2 + q+ 3:

Theorem 5.1. Let R be a chain ring with |R|= q2; R=N ∼= Fq; q¿4. Then

m3(R3
R)62q2:

Proof: Suppose on the contrary that k is a (2q2 + 1; 3)-arc in PHG(R3
R). Then by

Theorem 3.1 we have k([P])63 for all [P] ∈ P′. The same theorem implies also that
for every neighbour class [P] with k([P]) = 3 the points of Supp k ∩ [P] are collinear.
Otherwise, we would have

2q2 + 1 = |k|63 + 3q1 + (q− 2)q2 = 2q2 − q+ 3;

a contradiction.
If [P] is a neighbour class of points with k([P]) = 3 and [l] is the neighbour class

of lines incident with [P] having the direction of the points of Supp k ∩ [P], then
k([l]) = 3. If [P] has k([P]) = 2 and [l] is the neighbour class having the direction of
the points of Supp k∩ [P] then k([l])6q+2. For all other classes of lines [l], we have
k([l])6m3(q)62q+ 1 (cf. [21].

Counting the Nags (P; [l]) in two ways, where P ∈ Supp k, [l] ∈ L′ and P I l′ ∈ [l],
we get

3�3 + (q+ 2)�2 + (q2 + q+ 1− �2 − �3)(2q+ 1)¿(2q2 + 1)(q+ 1);

whence

(2q− 2)�3 + (q− 1)�26q2 + 2q: (4)
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On the other hand, identities (1) and (2) yield 2�3 +�2 = (q2−q)+�0, which together
with (4) gives

(q− 1)(q2 − q)62(q− 1)�3 + (q− 1)�26q2 + 2q;

a contradiction to q¿4.

In case of q= 4 we can further improve on this bound.

Theorem 5.2. There is no (31; 3)-arc in PHG(R3
R) with R= S4;T4 or G16.

Proof: Suppose that k is a (31,3)-arc in PHG(R3
R). By Theorem 3.1 we have k([P])62

for each class [P] ∈ P′. It is easy to check that k([l])68 if no two neighbour points
are incident with a line from [l] and that k([l])66 otherwise. We have

31 = |k|6 1
5 (6�2 + 8(21− �2));

whence �266. On the other hand, by (1) and (2), �2¿10, a contradiction.

Theorem 5.3. Let R be a chain ring with |R|= q2, R=N ∼= Fq. Then

m4(R3
R)6

{
3q2 + 3 for q odd;
3q2 + 4 for q even:

Proof: Assume that q is odd and that k is a (3q2 +4; 4)-arc in PHG(R3
R): By Theorem

3.1 we have k([P])64 for every [P] ∈ P′. Let [P] be neighbour class with k([P]) = 4
and let {X1; : : : ; X4}⊂Supp k ∩ [P]. If exactly three among the Xi’s are collinear then
the numbers ui from Theorem 3.1 are (3; 2; 2; 2; 1; : : : ; 1) and

|k|64 + q1 + 3q2 + (q− 3)q3 = 3q2 − 2q+ 4¡ 3q2 + 4;

a contradiction. If no three of the Xi’s are collinear, then the ui’s are (2; : : : ; 2︸ ︷︷ ︸
¿4

; 1; : : : ; 1):

(Note that the number of parallel classes of lines in [P], which have lines with two
points on them, is at least 4 due to the fact that the diagonals of a quadrangle cannot
be collinear in a projective geometry over a 4eld of odd characteristic.) Now we have

|k|64 + 4q2 + (q− 3)q3 = 3q2 − q+ 4¡ 3q2 + 4:

Thus we conclude that the Xi’s are collinear. Using similar arguments, we can prove
that for a neighbour class [P] with k([P]) = 3 the three points in Supp k ∩ [P] are
collinear.
If [P] is a neighbour class of points with k([P]) = 4 and if [l] is the neighbour

class of lines incident with [P] and having the direction of the points of Supp k ∩
[P], then k([l]) = 4. If [P] has k([P]) = 3 and [l] is the neighbour class having the
direction of Supp k ∩ [P] then k([l])6q+ 3. For all other classes of lines [l], we have
k([l])6m4(q)63q+ 4.
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Counting the number of pairs (P; [l]) with P ∈ Supp k, P I l′ ∈ [l], we get

4�4 + (q+ 3)�3 + (q2 + q+ 1− �3 − �4)(3q+ 4)¿(q+ 1)(3q2 + 4);

whence

3q�4 + (2q+ 1)�364q2 + 3q: (5)

By (1) and (2), we have �3 + 2�4 = (q2 − 2q+2)+ �1 + 2�0. If �4 ¿ 0, then �0¿q
and �3 + 2�4¿q2 + 2; while, if �4 = 0, then �1 + 2�0¿q and �3 + 2�4¿q2 − q+2. By
(5) we obtain

4q2 + 3q¿3q�4 + (2q+ 1)�3¿3q�4 + 3
2q�3¿

3
2q(q

2 − q+ 2);

which is impossible unless q= 3.
If q= 3, then �4 = 0 and (5) becomes 7�3645, i.e. �366. This implies:

(i) �3 = 6; �2 = 6; �1 = 1; �0 = 0;
(ii) �3 = 5; �2 = 8; �1 = 0; �0 = 0:
Consider a class of lines [l] which has the same direction as the points in Supp k∩ [P],
where [P] is a point class with k([P])=3. Denote by [P]i the other three point classes
on [l]. Since in both cases �0 = 0, we must have k([Pi]) = 1. This is a contradiction
since �161.
Now assume that q is even and that k is a (3q2 + 5; 4)-arc. Then k([P])63 for all

[P] ∈ P′. As before, for a class [P] with k([P]) = 3, the points of Supp k ∩ [P] are
collinear. This gives

(q+ 3)�3 + (q2 + q+ 1− �3)(3q+ 4)¿(q+ 1)(3q2 + 5);

whence �362q− 1. Now

3q2 + 5 = |k|63(2q− 1) + 2(q2 − q+ 2) = 2q2 + 4q+ 1;

i.e. (q − 2)260 and q = 2. By Theorem 3.4, there is no (17,4)-arc for q = 2. This
completes the proof.

There is a special interest in arcs with the numbers k(Supp k ∩ [P]) constant for all
[P] ∈ P′ which meet the bound of Corollary 3.3. The next theorem demonstrates the
nonexistence of such an arc.

Theorem 5.4. There is no (52; 6)-arc in PHG(R3
R) with R= S3 or Z9.

Proof: Suppose that k is a (52,6)-arc in PHG(R3
R). By Theorem 3.1, each neighbour

class of points contains at most four points from k. Therefore k([P])=4 for all [P] ∈ P′.
No three points in the same neighbour class are collinear, for it would imply

|k|64 + 33 + 334 = 49;

a contradiction. Hence the points in each neighbour class of points form an oval in the
aPne plane described in Theorem 2.4.
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Let [P] be a neighbour class of points and [l] a neighbour class of lines such
that [P]I ′[l]. The lines of [l] either coincide or are disjoint on the points of [P]. Let
l1; l2; l3 ∈ [l] be lines such that

l1 ∩ l2 ∩ [P] = l1 ∩ l3 ∩ [P] = l2 ∩ l3 ∩ [P] = ∅;

in other words, these lines form a parallel class of lines in the aPne plane de4ned on
the points of [P] (cf. Theorem 2.4). We call the (unordered) triple

(k(l1 ∩ [P]); k(l2 ∩ [P]); k(l3 ∩ [P])) (6)

the type of [P] with respect to [l]. In our case, (6) is either (2,2,0) or (2,1,1). More-
over, the type of [P] is (2,2,0) or (2,1,1) with respect to exactly two classes of
lines [l] incident with [P] in (P′;L′; I ′). This follows from the fact that an exter-
nal line to an oval in PG(2; 3) is incident with two internal and two external points
(cf. [8]).
Now consider a neighbour class of lines [l] ∈ L′ and let [Pi], i = 0; 1; 2; 3, be the

point classes incident with [l] in (P′;L′; I ′). For the types of the classes [Pi] with
respect to [l] we have the following cases:

(i) 4 classes of type (2,2,0);
(ii) 1 classes of type (2,2,0) and 3 classes of type (2,1,1);
(iii) 4 classes of type (2,1,1).

It is impossible to have 3 classes of type (2,2,0) and one of type (2,1,1) or two
classes of type (2,2,0) and two of type (2,1,1) since then there would exist a line from
[l] containing more than 6 points of Supp k.
Let A (resp. B; C) the number of neighbour classes of lines for which the possibility

(i) (resp. (ii) and (iii)) occurs. We have

A+ B+ C = 13;

4A+ B= 26:

The second equality is obtained by counting the Nags ([P]; [l]) [P]I ′[l], such that the
type of [P] with respect to [l] is (2,2,0). This implies 3A= 13 + C and A¿5. There
is neighbour class of points, say [P], which lies on at least three neighbour classes of
lines for which (i) occurs. This is a contradiction since the type of [P] is (2,2,0) with
respect to exactly two line classes.

6. Table of exact values and bounds for mn(R3
R)

In Table 1 we summarize our knowledge about the values of mn(R3
R) for the chain

rings R with |R|= q2625, R=N ∼= Fq.
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Table 1
Values and bounds for mn(R3

R)
a

R S2 Z4 S3 Z9 S4 T4 G16 S5 Z25
n

2 a6af 7ae a9ae a9ae H 18–20f H 12–20f H 18–21ae H 15–25e H 20–25e

3 a10a a10a a18–19a a18–19a D27–30h D27–30h D27–30h G27–50g G27–50g

4 16ab 16ab a24–30ai a24–30ai D40–52i D40–52i D40–52i B48–83i B48–83i

5 22ab 22ab a31–40a a31–40a G56–72d G56–72d G56–72d G75–109d G75–109d

6 28ab 28ab A45–51j A45–51j D72–84d D72–84d D72–84d B90–135d B90–135d

7 C51–62d C51–62d D76–106d D76–106d D76–106d G105–157d G105–157d

8 C64–75d C64–75d A96–126d A96–126d A96–126d B120–187d B120–187d

9 81b 81b G116–143d G116–143d G116–143d G150–217d G150–217d

10 93b 93b E128–160f E128–160f E128–160f A175–243d A175–243d

11 105b 105b E148–171d E148–171d E148–171d G180–269d G180–269d

12 117b 117b C186–191d C186–191d C186–191d D220–295d D220–295d

13 C198–211d C198–211d C198–211d E250–313d E250–313d

14 C211–231d C211–231d C211–231d E275–343d E275–343d

15 C225–248d C225–248d C225–248d E310–373d E310–373d

16 256b 256b 256b F315–403d F315–403d

17 276b 276b 276b F340–429d F340–429d

18 296b 296b 296b F365–455d F365–455d

19 316b 316b 316b F390–469d F390–469d

20 336b 336b 336b C465–499d C465–499d

21 C510–529d C510–529d

22 C531–559d C531–559d

23 C553–589d C553–589d

24 C576–615d C576–615d

aNote: a [10,13], b Theorem 3.4, c Theorem 3.1, d Corollary 3.3, e Theorem 3.5, f Theorem 3.7,
g Theorem 5.1, h Theorem 5.2, i Theorem 5.3, j Theorem 5.4, A Example 4.1, B Example 4.2, C Example 4.7,
D Example 4.3, E Example 4.4, F Example 4.5, G Example 4.6, H Remark 3.6.
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