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Lie Algebraic Approaches to Classical Partition Identities
J. LEpowsky* AND S. MILNE'

Department of Mathematics, Yale University, New Haven, Connecticut 06520

1. INTRODUCTION

In this paper we study new relationships between Lie algebra theory and
certain partition formulas which are important in combinatorial analysis.
Specifically, we interpret Macdonald’s identities [14] as multivariable vector
partition theorems and we relate the Rogers—Ramanujan partition identities
to the Weyl-Kac character formula. We would like to emphasize that the rather
technical Lie theory that we need has already appeared in earlier papers. This
work began when one of us, a combinatorialist (S.M.), asked certain questions
of the other one, a Lie theorist. At the end of the Introduction we shall say how
the key ideas developed.

Our starting point is the two-variable *“Jacobi theta-function identity”

[10 — (1 — gl —gmieh) = 3 (—Iygen. (L)

n=1 neZ

Cheema [4] makes the substitution ¢* = uv, $* = u/v and obtains

1_[ (1 . u"v")(l . un.vn—l)(l — un—-l.vn) — Z (_l)nun(n+l)/2.vn(n—l)/2. (12)

n=1 neZ

He then interprets (1.2) combinatorially and deduces:

THEOREM 1.3. The excess of the number of partitions of (m, n) into an even
number of distinct parts of the type (a, a — 1), (b — 1, b) or (¢, ¢) over those into
an odd number of such parts is (—1)" or O according as (m,n) is of the type (r(r + 1)/2,
r(r—1)/2), or not.
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16 LEPOWSKY AND MILNE

If we set # = g and v = ¢% in (1.2) we obtain Euler’s identity

olg) = ), (—1)ygnemvr, (1.4)
nez
where by definition, (g) = [T, (1 — ¢")-

This identity relates the partitions of a natural integer into an odd or an even
number of distinct positive integers. A combinatorial proof of (1.4) was first
given by Franklin [8]. A recent exposition may be found in [1b]. The essential
notion is the definition of a ““dot map,” or array of dots, which corresponds to a
partition, and associated operations to be performed on these arrays.

Cheema suggests looking for a direct proof of Theorem 1.3 using dot maps.
Zolnowsky [19], supplies just such a proof which extends the notion of dot maps
to two-dimensional vector partitions.

Theorem 1.3 has an elegant analog that may be deduced from the “quintuple
product identity”

oK

[T (1 =gt — gL — g=22)(1 — g1 — g-ie-2)

n=1

— z q(3n2+n)/2(t3n — t-8n-1), (1.5)
neZ
This identity, the origin of which may be traced to an elliptic sigma formula
of Weierstrass, has a very interesting history, which can be found in the last
section of [3]. If we set t = v~ and ¢ = ue? we find that

H (1 — un.v2n)(1 —_ unQZn—l)(l — un——l.v2n—1)(1 —_ u2n—1.v4n——4)(1 —_— u2n—1,v4n)
n=1

— z L8n41) 2o (3n—2) __ Z un(3n+1)/2v(n+l)(3ﬁ+l). (1.6)

nezZ nek

A combinatorial interpretation of (1.6) immediately gives:

Tueorem 1.7. The excess of the number of partitions of (m, n) into an even
number of distinct parts of the type (a, 2a), (b, 2b — 1), (c — 1, 2c — 1), (2d — 1,
4d — 4), or (2¢ — 1, 4e) over those into an odd number of such parts is 1 or —1
if (m, n) is of the type (r(3r + 1)/2, r(3r — 2)) or (r(3r + 1)/2, (r + D)(3r + 1)),
respectively, and O otherwise.

Cheema [4] states similar results.Using Zolnowsky’s dot map proof of Theorem
1.3 as a guide, we give in [15] a direct combinatorial proof of Theorem 1.7.
One main stimulus for our work has been to look for a generalization of
Theorems 1.3 and 1.7 to higher-dimensional vector partitions. Ideally, this
generalization would result from extending (1.2) and (1.6) to any number of
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variables in such a way that the coefficients of the monomials on the sum side
are always 1, —1, or 0. In the last few years, there has been a remarkable gene-
ralization of Jacobi’s f-function identity, in the setting of Lie algebras, which
enables us to carry out our extension of Theorems 1.3 and 1.7.

To motivate this recent development, consider Euler’s identity (1.4) and
Jacobi’s identity

WaP = 3 (—1)(@n + 1) g (18)
nez,
(Z, is the set of nonnegative integers.) These are both obtained by one-variable
specialization of (1.2).

Dyson discovered a family of multivariable identities generalizing (1.1).
From these, he derived formulas, generalizing (1.8), for a certain infinite set of
powers of ¢(q). But as he describes amusingly in his article “Missed Oppor-
tunities” [6], he did not recognize these powers as the dimensions of the simple
“classical” Lie algebras, so he missed the connection with Lie theory. Inde-
pendently, Macdonald [14] found formulas for ¢dim¢ for all complex simple
Lie algebras g, and in fact he obtained these identities as one-variable specializa-
tions of respective multivariable identities. He also obtained multivariable
identities generalizing (1.5).

Kac [I11b] and Moody [17b] independently recognized Macdonald’s un-
specialized identities as the precise analogs of Weyl’s denominator formulas,
for the infinite-dimensional “Euclidean” GCM Lie algebras (defined by gene-
rators and relations using a symmetrizable ‘“‘generalized Cartan matrix’). The
GCM Lie algebras were introduced independently by Kac [11aj and Moody
[17a], and they are alternatively known as the Kac—-Moody Lie algebras. Kac
[11b] also proved Weyl’s character and denominator formulas for all GCM Lie
algebras. (For a bibliography on GCM Lie algebras, see [9, 12b].)

As the reader may be unfamiliar with these ideas, we give a brief survey of
GCM Lie algebras, and the Weyl-Kac denoninator and character formulas
in Section 2. .

Macdonald’s unspecialized identities are just what one needs to generalize
Theorems 1.3 and 1.7. Recall, however, that to obtain Theorem 1.3, we must
rewrite (1.1) in the form (1.2). The same kind of reformulation is needed for the
quintuple product identity (recall (1.5) and (1.6)). Similarly, Macdonald’s
unspecialized identities must first be analogously rewritten before we may
regard them as higher-dimensional vector partition generating function identities
and *‘read off” analogs of Theorems 1.3 and 1.7. The relevant rewriting procedure
has already been introduced in [12b]. The method is to use as new variables the
formal exponentials e(—«), where o ranges through the simple roots of the
GCM Lie algebra. When applied to the Lie algebras sl(2, C)* and A;? (see
Section 3), this procedure gives (1.2) and (1.6), respectively. (sI(2, C)* is also
known as A4!V.) The situation for these two Lie algebras is typical. For example,
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a direct application of 2 general Lie algebra principle implies that the minomials
in the sum side of every Macdonald identity (using as variables e(-simple roots))
always have as coefficients 1, —1, or 0. When viewed combinatorially, this fact
says that in the context of our general multivariable vector partition theorem,
the excess of the number of suitably restricted partitions of a vector into an even
number of allowable parts over those into an odd number of such parts is 1,
—1 or O (cf. [17b]). The types of parts allowed in the partition are controlled
by the roots of the Lie algebra. Any number of variables can be achieved.

In Section 4 we state and prove an abstract vector partition theorem. In
addition, we study the important special cases 4.

In [9], Macdonald’s identities are shown to be a consequence of the Euler-
Poincaré principle and certain involved computations of homology. A vector
partition interpretation of the constructions used suggests that there should be
a conceptually simpler ‘‘combinatorial” proof of the denominator formula.
Such a proof is given in [16] for the case of A(". This simpler proof of the
denominator formula for A{" suggests that the Euler-Poincaré principle combined
with elementary homology computations provides an alternative to using direct
one-to-one correspondences to show that two collections of objects are the same
size.

To this point, we have used Lie algebra theory to greatly extend the scope of
classical results dealing with higher-dimensional vector partittions. Now we
reverse the situation, and exploit what are perhaps the two most famous partition
identities in combinatorics to discover new results about Lie algebras.

Consider the Rogers—Ramanujan identities

1 _ © g
7:!_;_[1 (1 — qu—l)(l - qsn—4) =1+ El (1 — q) (1 — qn) s (19)
L =1+ i gntn 10)
I a-— qsn—z)(l — ¢*"3) = T—q) (1 — 7 .

n>1

These identities have a long and colorful history. For a combinatorial inter-
pretation and background, see [1b, Chap. 7].

So far, only the denominator formula for infinite-dimensional GCM Lie
algebras has been mentioned. While this formula gives a product expansion of the
denominator in the multivariable Weyl-Kac character formula, there is in
general no such expansion for the numerator. However, the search for a Lie
algebraic context in which to study the Rogers~Ramanujan identities leads to a
product expansion for the numerator suitably specialized, of the character formula
of every ‘‘standard” irreducible module for 4" and AP. (The standard modules
were introduced by Kac in [11b].) Indeed, when we set all the variables equal
in the numerator, it turns out that we obtain the denominator with each variable
replaced by a certain nonnegative integral power of a single variable. Thus,
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by the denominator formula, the appropriately specialized numerator factors
into an infinite product. The exact formulation and proof of this “numerator
formula” are given in Sections 5 and 6. In particular, when all the variables are
set equal, the character of the module may be written as a single infinite product.
The process of setting all the variables equal is called “principal specialization,”
as this specialization arises in a canonical way from Kostant’s “principal”
automorphism; see [12b, Sect. 17].
With our numerator formula in mind we can state:

TueoreM 1.11. After multiplication by

1
—_——— = 1+ ¢, 1.12
s = 0+ (112)
720
the left-hand sides of the Rogers—Ramanujan identities (1.9) and (1.10) become the
principally specialized characters for a certain pair of irreducible modules for A{P.
Furthermore, expression (1.12) is itself the principally specialized character for a

certain module for A,

We do not have a Lie algebraic proof of the Rogers—Ramanujan identities;
what we do know is that the product sides are essentially principally specialized
characters. Thus, the Rogers—Ramanujan identities are related to Kostant’s
principal automorphism.

There are many generalizations and analogs of the Rogers-Ramanujan
identities, due to Gordon, Géllnitz and Gordon, and Andrews (see Andrew’s
book [1b]). “Most” of these are “‘explained” just as above, using different
modules for 4. We present in detail these examples and indicate which modules
they correspond to in Section 5.

In [1a] two identities of Rogers and Slater are quoted that are not covered by
Andrews’ theory. They turn out to be “explained” just as the Rogers—Ramanujan
identities, but this time, by a pair of modules for A{®. Now Slater [18] has a list
of identities among which there are 21 of Rogers—Ramanujan type but not
included in Andrews’ theory. All 21 (including the Rogers—Slater pair) are
“explained”’ by A¥; see Section 6.

A and A are not the only GCM Lie algebras for which there is a numerator
formula; in [12c], an abstract argument generalizes our numerator formula to
all GCM Lie algebras. Kac has pointed out that this abstract argument is in fact
classical.

The statements of many of the results considered here do not really concern
the GCM Lie algebras, but concern instead only the “affine root systems”
(see [14]), together with the imaginary roots (introduced in [11a, 17a]; see
Section 2) and p (introduced in [11b]).

The Rogers-Ramanujan identities focus attention on the standard modules
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for A{V. These modules are studied in [7], where it is discovered that the weight
multiplicities for a certain modules for 4{" are precisely given by the classical
partition function. This fact leads to certain ideas which illuminate the structure
of certain of these Lie algebras [13]. These theorems appear to shed new light
on the original Rogers—Ramanujan identities. These connections between Lie
algebras and combinatorics are leading to results in both directions.

Now we would like to say how the key ideas in this paper evolved. S.M.
raised the question whether we could generalize the vector partition Theorem
1.3 to any number of variables. J.L. recognized the corresponding formula,
which was similar to (1.2), as the A{" special case of something he had just used
in [12a, b]. This was a general rewriting procedure for the denominator formula
of a general GCM Lie algebra. The resulting vector partition identities and
examples were then straightforward.

Independently, both S.M. and J.L. were trying to understand the Rogers—
Ramanujan identities and relate them to their own work. After the work on
multivariable vector partitions, S.M. suggested that it would be interesting to
study those cases in which the numerator of the character formula factors into a
product. J.L. later suggested trying to factor a suitably specialized numerator.
This first specialization did not work. S.M. suggested trying a sequence of
specializations, one of which was to set all the variables equal. Robert L. Wilson
suggested using yet a different specialization .The specialization in which we
set all the variables equal turns out to work. At this point both S.M. and J.L.
independently discovered and proved that for every standard module for A,
the numerator of the character formula factors after all of the variables are set
equal.

2. AN ExrosiTioN oF GCM LiE ALGEBRAS AND STATEMENTS OF THE
DenoMINATOR AND CHARACTER FORMULAS

After introducing the reader to the affine GCM Lie algebras, we shall present
the general context in which we set up the denominator and character formulas.
The theory of GCM, or Kac—Moody, Lie algebras originated in [11a, 17a],
which the reader should consult for details. The reader is also referred to [10]
for elementary background on Lie algebras in general and complex semisimple
Lie algebras in particular. For further bibliography on GCM Lie algebras see
{9, 12b]. Unless otherwise noted, all vector spaces, Lie algebras, and modules
are over C.

Let g be a semisimple Lie algebra, and let ) be the Cartan subalgebra, of
dimension, say, /. The restriction to b of the Killing form of g is nonsingular,
inducing a nonsingular, symmetric bilinear form (-, *) on the dual §*, This form
is real-valued and positive definite on the real span of the roots of g with respect
to h. Choose a positive system of roots, and let o, ,..., o; € h* be the corresponding
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simple roots. The Cartan matrix of g is the I X [ integral matrix 4 given by
Ay = 2(0‘1'" o) (o 5 o).

The matrices which arise in this way (as g varies) are called the classical Cartan
matrices of finite type.

Assume that g is simple. Define § to be the infinite-dimensional complex
Lie algebra

§=g®C[ 1t

obtained by tensoring g with the algebra of finite Laurent series in one indeter-
minate .
The decomposition

§=1ls®?
jeZ

is a Lie algebra grading of §. Let D be the corresponding degree derivation of
§; i.e., D acts as multiplication by j on g ® . Let §, be the natural semidirect
product Lie algebra CD @ §, and let §, be the (I 4 1)-dimensional Abelian
subalgebra CD @ b, so that §; has a natural ““root space decomposition” with
respect to b, . Specifically, for each u €b,*, define the root space §» C §, cor-
responding to p to be {x € §, | [k, ] = pu(h)x for all A€ h,}. We call u a root of §;
if p 7 0 and if §;* # 0. Let 4 Ch,* be the set of roots. The Lie algebra §, has
the root space decomposition

=5[] 85"
@ed
Identify h* with the subspace of |);* consisting of the functionals which vanish
on D. The roots fall mutually into two classes: those which do not vanish on |
and those which do. The former comprise the set Ay of real roots, and the latter,
the set 4; of imaginary roots. The set 4, of real roots which vanish on D are
just the ordinary roots of g with respect to . Define y € h,* to be the functional
which is 1 on D and which vanishes on §j. Then the real roots of §, are exactly
the functionals of the form jy + ¢, where j€Z and g € 4, , and the imaginary
roots of §, are the functionals of the form jy, where jeZ, § # 0. Note that for
jeZand ped,,
e =9"®?¢
(where ¢° C g is the ordinary root space of g with respect to h); and for j€Z,
j#0,
s =h®7.
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Also,
5@ =3 @ [] g
oed,
The root spaces for the real roots are all one-dimensional, while the root spaces
for the imaginary roots are all I-dimensional.

Let 4, C 4 be the union of a fixed positive system in 4, with the set of roots
in 4 which are positive on D. Call 4, the set of positive roots of §; . Those
positive roots which cannot be written as the sum of two positive roots are called
the simple roots of §; . There are exactly [ -} 1 of them: the [ simple roots o ,..., o
of g, together with the functional o = y — #, where i € 4 is the highest root of g.
Every positive root is a nonnegative integral linear combination of the simple
roots, which form a basis of §,*. The restrictions a; | b,..., a; | h are of course
linearly dependent over Z. The (I + 1) x (I 4 1) matrix 4 given by

Ai; = Aoy |, o 1 H)/(: 1B, o | B)

(¢,7 = 0,..., 1) is called the Cartan matrix of § (or of §,). As g varies, the resulting
matrices are called the affine (Cartan) matrices, and the Lie algebra § (or their
central extensions § = I(4) to be defined below) are called the affine Lie algebras.
For g of Cartan type X, § is denoted X! (cf. [11b]). For example, if g = 4, =
sl(I+ 1, C), then § = AP

For each i = 0,..., /, there is a unique element x; € y such that (x; , #) = o;(h)
for all & e B; here (¢, ) denotes the Killing form of g. There is a unique rational
multiple &’ of x; such that o,(h;') = 2. We may choose elements ¢, , f; € § such
that e, lies in the root space §%4, f; € 7%, and [e;, f;] = k. Then [h/, ¢/] =
Ay, [h, [;} = —Aif; and [e;, f;] = 8k for all 4, j = 0,..., L The elements
k;, e; and f; generate § as i ranges from 0 to I. We shall call them canonical
generators of §.

We now present the GCM Lie algebras, which considerably generalize the
finite-dimensional semisimple and the affine Lie algebras.

LetleZ, ,and let A = (4;);4et0.....n be an (I 4+ 1) x (I 4 1) (generalized)
Cartan matrix. This means that 4;;€Z (the set of integers) for all 7 and j,
A, = 2 for all 4, A; <0 whenever i #j, and A4;; = 0 whenever 4;; = 0.
(Later we shall assume that 4 is symmetrizable.)

We define the (possibly infinite-dimensional) Lie algebra I = I(4) by the
following procedure: Take; to be the Lie algebra defined by 3(/ 4- 1) ““cancnical”
generators k; , e;, f; (0 << ¢ <C ) subject to the relations [&; , o] = 0, [¢;, f;] =
83ihyis [hyye5] = Ayse;y [Biy fi] = — A, f; for all 4, je{0,...,1}, and (ad ;) ~4stle; =0 =
(ad f;)~4#+1f; whenever ¢ 5 j. For every (I + 1)-tuple (n,,..., 7;) of nonnegative
(respectively, nonpositive) integers not all zero, define I,(ng ,..., #;) to be the
(finite-dimensional) subspace of [; spanned by the elements

[ez'l ’ [eig yeres [ez‘.._1 ’ ei,] ||
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(respectively,
U s Uiy oo Uiy s £i] 210

where e; (respectively, f;) occurs | n; | times. Also, let ,(0,..., 0) be the Abelian
subalgebra spanned by 4, ,..., h;, and take [(ng,...,7;) =0 for any other
(I + 1)-tuple of integers. Then

I]_ = H Il(no yosey nl);
(Mgeesriny)e 04D

this is a Lie algebra gradation of I, ; and the elements &,,..., &, ¢,..., &,
fo 5= f1 are linearly independent in I; . 'The space L;(0,..., 0, 1, 0,..., 0) (respec-
tively, 1,(0,..., 0, —1, 0,..., 0)) is nonzero and is spanned by e; (respectively, f;):
here 41 is in the 7th position.

There is a unique graded ideal v, in [, maximal among those graded ideals
not intersecting the span of A, , e; and f; (0 << ¢ < I). Let I = I(4) be the Z4+V.
graded Lie algebra [y(A4)/r, . The images in [ of &, , ¢;, f; and [y(n, ,..., n;) shall
be denoted &, , e; , f; , and [( ..., m;), respectively. Let f be the span of Ay ,..., ;
in 1. The space I(ng ,..., #;) has the same (finite) dimension as [(—=, ,..., —n;).

If 4 is a classical Cartan matrix of finite type, then v, = 0 and I(4) is the
finite-dimensional semisimple Lie algebra whose Cartan matrix is 4.

Let D; (0 < <) be the sth-degree derivation of I, that is, the derivation
which acts as scalar multiplication by #; on I{n, ..., ;). Let d, be the (I 4 1)-
dimensional) Abelian Lie algebra of derivations of I spanned by D,,..., D;,
and let ® be a subspace of D, . Form the natural semidirect product Lie algebra
I¢ = b x I, and let §* be the Abelian subalgebra d @ §). Define oy ,..., o, € (§?)*
by the conditions [, e;]] = a;(h)e; for all heh® and i€{0,...,I}. Note that
oj(h;) = A;;. Call d an admissible subspace of b, if o ,..., oy are linearly in-
dependent. Admissible subspaces exist because b, is admissible. Fix an admissible
subspace d.

If A is classical of finite type, then we may choose b = 0, so that [¢ =,
and then the roots, Weyl group and other concepts discussed below simply
reduce to the usual classical ones for I.

For all p € (h#)*, define

I° = {xel| [k x] = p(k)x for all ke he).

Then [I2, [¥] Cle+¥ for all @, Je(Be)*; 10 =f; ¢, el and f; el for all
i€{0,..., I}; dim [* = dim [-* for all ¢ € (§*)*; and the decomposition

[ = 11 (g ,0ey 1)
(ngyeee mp)eZ(T+D)
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coincides with the decomposition

= [] &

oe(ho)*

with [ = I(n, ..., n;) when ¢ = Zf-=o 1o

Let 4 = {pe(h?)*| ¢ # 0 and I° = 0}, the set of roots of I. Let 4, (the
set of positive roots) be the set of roots which are nonnegative integral linear
combinations of o ,..., o; , and let 4_ = —A_ (the set of negative roots). Then
4d=4,94_,and :

e ERIBZCRIRS

oEd, @EA_

The center of I is the subspace of f C §* on which all the roots of [ vanish.

For each i €{0,..., 1}, define the linear automorphism 7; of (§?)* by the con-
dition r,p = ¢ — @(h;)o; for all ¢ € (§°)*. Then r,0; = —a; , and 7; acts as the
identity on the codimension 1 subspace consisting of all ¢ € (§¢)* such that
@(h;) = 0. Also, r,0; = oy — Ao, . Let W (the Weyl group) be the group of
automorphisms of (h°)* generated by 7, ,..., 7; . Then W is a Coxeter group with
generators 7; and relations which can be given in terms of the Cartan matrix 4.
Each element of W preserves 4, and W is naturally isomorphic to the group of
linear automorphisms it induces on the span of 4.

Define the set Ay of real roots to be the set of Weyl group transforms of
% 5ery &, and define the set 4y of imaginary roots to be 4 — Ay . Then dim
[* = 1 for all € Ay , but this need not be true for p € 4; . We have WA, = 4y,
WA, =4;,4y = —dg, 4y = —4;,and WA Nnd,) =44,

For all 2 € W, define ‘

w =4,  Nwd_={ped, |wlpedl},

so that @, C dg N 4, . Let n(w) be the number of elements in @,, . Let I(w) be
the length of w, that is, the smallest nonnegative integer j such that w can be
written as ;75 75 (0 < < {). Then n(w) == I(w) (a finite number).

Define p e (h°)* to be any fixed element satisfying the conditions p(h;) =1
for all 7 €{0,...,I}. For every finite subset ® of 4, define (P> € (h*)* to be the
sum of the elements of P.

We now list some useful facts from [9, Sect. 2]:

Lemma 2.1. For allwe W and 1 €{0,..., 1}, (P, ) = 1{Py) + (D, ).
LemMa 2.2. Let we W, let  be a finite subset of 4., and let y € span 4 be a

[inite sum of not necessarily distinct positive imaginary roots. If {@,,> = (P> + v,
theny = 0 and @ = @, . In particular, D consists of real roots.
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Lemma 2.3. For all i€{0,...,.1}, rip =p—oy. For all weW, (D, =
p — wp.

LemMa 2.4. The only Weyl group element which fixes p is the identity.
Equivalently, if wip = wyp (w; , wp € W), then w) = w, .

Lemma 2.5, If wy, woe W and &, = P,_, or even if (P, =Dy,
then w, = w, .

Define 1t = [Joeq, [% 1™ = [loes_I* Thenl=n-DHDn.

Let ¥ be an §° -module (for example, an [*-module regarded as an fe-module
by restriction), and let u € (§?)*. Define the weight space V, C V corresponding
toptobe{veV |hov = u(h)w for all hefh}. Call u a weight of V if V, 0,
and call the nonzero elements of V, weight vectors with weight p.

An I*-module V is called a highest weight module if it is generated by an
n-annihilated weight vector v. In this case, the highest weight vector v is uniquely
determined up to nonzero scalar multiple, its weight is called the highest weight
of V, and its weight space is the highest weight space of V. The highest weight
space is one-dimensional, V' is the direct sum of its weight spaces, which are all
finite-dimensional, and the weights of ¥ are all of the form p — 3¢ 7
(n;€Z,), where pe(h?)* is the highest weight. (Note that this last condition
determines the highest weight.)

An [e-module R is called standard if R is a highest weight module with a
highest weight vector x such that there exists n€Z, with f* o x = 0 for all
1€{0,..., I}. The trivial one-dimensional module is standard; its highest weight
is 0. Let P be the set of dominant integral linear forms, that is the set of all A & (h?)*
such that A(h;) €Z, for all i€{0,..., I}. Then the highest weight of a standard
fe-module lies in P, and for all u € P, there exists a standard [*-module with
highest weight u. If A4 is a classical Cartan matrix of finite type and d = 0 (see
above), then the standard I*~modules are just the finite-dimensional irreducible
{-modules.

Assume now that the Cartan matrix 4 is symmetrizable, i.e., that there are
positive rational numbers gy,...,¢; such that diag(gy,...,4;)4 is a symmetric matrix.

For u € P, there is exactly one (up to equivalence) standard [*-module with
highest weight g, and it is irreducible, Thus P bijectively indexes the set of
equivalence classes of standard I*~modules.

The affine Lie algebras § defined above are not qulte GCM Lie algebras.
We must elaborate on this point:

Recall the affine matrix 4, where 4 is the classical Cartan matrix of the simple
Lie algebra g. 4 is a symmetrizable Cartan matrix. Let [ be the corresponding
GCM Lie algebra [(4), and call this algebra §. Since the rank of 4 is ], the
center ¢ of § is a one~dimensional subspace of f). There is an exact sequence

O—>c—>§1>§—>0,
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in which 7 is determined by the condition that it send the canonical generators k;,
e;, f; for § to the respective canonical generators %/, ¢;, f; for §. The map =
sends §) onto B, and the kernel ¢ of = lies in f). There is a natural identification
between the set 4 of roots of § and the set 4 of roots of § (or rather of §,) so that
for each root ¢,  maps the root space §° isomorphically onto the corresponding
root space §,°Cd. Under this identification, the real and imaginary roots
identify properly, as do the positive and simple roots.

The reason for introducing the central extension § of § is that we need the
standard modules, and § does not in general act on the standard modules for §.

The identification between the set of roots of § and the set of roots of §
extends to a natural linear isomorphism between the span of 4 in (§¢)* and b, *.
We use this isomorphism to identify these two spaces. Now the Weyl group W
acts on (h¢)* and preserves 4, and we want to see the action of W on |, *. Note
that |, * is equipped with a singular symmetric bilinear form {-, -} defined by
the condition

{o 4} = (p1h, ¢ D)

for all @, 3 € h;*. The radical of {-, '} is one-dimensional and is spanned by y.
Also, this form is real-valued and positive semidefinite on the real span of 4.
Recall that for 7, j = 0,..., ],

rioy = oy — ay(h)ay = oy — /Iijai

= o — 2o, .7}

! {06, ’ z}

Hence, 7; acts on b, * as the ordinary geometric reflection with respect to the
nonisotropic vector «; ; i.e.,

(Ol o

for all p € h*. This gives the action of W on I, *. Note that in practice, the
formula 7,0, = o; — A0, is easy to use, assuming that we know the integers 4, .
We now have the concepts needed to state Macdonald’s identities and the
Weyl-Kac denominator and character formulas.
Return to the setting of the general GCM Lie algebra I (with symmetrizable
Cartan matrix). The dominator formula asserts:

THeOREM 2.6. We have

[T (1 — (=)™ = 3 (—1) o(—~(2y)),

@Ed, weWw
where the symbol e(-) is a formal exponential. This identity takes place in the formal
power series ring Z[[e(—op),..., e(—o)]] in the 1+ 1 analytically independent
variables e(— o).
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Remark. Recall that —(D,,> = wp — p.

Weyl’s classical denominator formula is the special case of this theorem when [
is finite-dimensional semisimple. {In this case, the power series involved are
polynomials; i.e., they terminate.) Macdonald’s identities constitute the special
case of Theorem 2.6 when [ is affine, or rather a little more generally, when [ is
“Euclidean.”

We shall now rewrite the denominator formula as in [12b, Sect. 13].

Notation. Write u; = e(—u;) for all = 0,..., L.
Each identity in Theorem 2.6 may be written as an equality between two
formal power series in ..., %; . It is convenient to introduce the following:

. . . . l
Notation. For every integral linear combination ¢ = Y ;4 c;a; of the o,

let {(p) = ¢ (j =0,..., D).
Theorem 2.6 can clearly be reformulated as follows:

CoroLLARY 2.7. InZ[[u,,..., u]],

(1 : e(«»))dim[o ( l)z(w) : £;(Kdpd)
II _Ilu‘ —-__E — ”u‘ e,
L] 1

i=0

ved, wew =0

DEFINITION. Let (sp,.-.,5;) be a sequence of positive integers. Let ¢ be an
indeterminate. The homomorphism of power series rings

Z[[uy 5---, w]] — Z[[g]]

which sends u; to g% for all i = 0,..., [ is called the g-specialization of type

(S 5ees $2)-
We clearly have:
The g-specialization of type (sg ,..., 8;) of Corollary 2.7 asserts:

CoroLLARY 2.8.
H (1 . qu_o s;fg(w))dlmlw — Z (_l)l(w)qzz-o 8{54((@.0)).

@€l weW

We next give the character formula:
Let V be a standard module for I°. Recall the weight spaces ¥V, C V. The
weights u of V lie in (§°)*.

DeriNiTION. The character x(V) is the generating function of the weight
multiplicities of V, that is,

xV)= ) (dim7V,)e(p).

ue(ho)*

(Recall that dim ¥V, is always finite.)
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Here is the Weyl-Kac character formula (Weyl’s character formula is the
special case in which [ is finite-dimensional semisimple):

THEOREM 2.9. Let A be a dominant integral linear form (i.e., A& P C (h°)*),
and let V be the standard (irreducible) module with highest weight X. Then

_ D weW (_])l(w) 6’(w()‘ +p) —p)
) S e CIF T g —

Remark. Note that the denominator is the expression treated in Theorem 2.6.
In order to reveal the character formula as an equality of formal power series,
we divide both sides by e(}):

CoroLLARY 2.10. In the notation of Theorem 2.9,

X(V) . Zuwew (1) ew(d + p) — A + p))
e(A) Zwew (—1)") e(wp — p) '

Both the numerator and denominator on the right-hand side are formal power series
M Uy ..., Uy , as s the left-hand side.

Remark. 'The last assertion for the numerator follows from the fact that
w(A + p) — (A - p) is a nonnegative integral linear combination of —a, ,..., —o; ;
this fact follows from [9, Proposition 6.1], because A 4 p € P.

The analog of Corollary 2.7 is:

CoroLLarY 2.11. In Z[[uy ..., u,]], the right-hand side in Corollary 2.10 is

D weW (—l)l("’) n: 0 yfiro—wito))
=0 %
Y ey (— P T2 ufdo—vor

Hence:

CoroLLARY 2.12.  The g-specialization of type (s, ,..., s;) of the right-hand side
in Corollary 2.11 is

I g6, (Ap—w(A+p))
ZweW(_l)l(W)qzt'o o

ZweW (_ 1 )l(w)qZ:-O Htilomwe)

We have mentioned above that Macdonald’s identities occur in the generality
of the “Euclidean Lie algebras.” Instead of detailing this generalization of the
affine Lie algebras (the reader may consult the exposition in [12b], for example),
we shall discuss in Section 3 only the one special case that we shall need.



CLASSICAL PARTITION IDENTITIES 29
3. THe Two EucLiDEAN LiE ALGEBRAS FOR WHiIcH [ = 1

In this section, we shall concretely describe those concepts from Section 2
that are needed to carry out our arguments for the two “‘simplest” infinite-
dimensional GCM Lie algebras, A" and 4.

First we shall describe the denominator and character formulas for A{".
This will illustrate Section 2 in a concrete setting.

We use the usual basis for sl(2, C):

=) e=lo =0 o)

Ch is our Cartan subalgebra, Ce is the root space for the positive root, and Cf
is the root space for the negative root. The Cartan matrix is the 1 X 1 matrix (2).
Recall that, in the notation of Section 2,

sl(2, C)~ = sl(2, C) ® C[t, t1].

This is just the Lie algebra of 2 X 2 traceless matrices with finite Laurent series
entries. Recall also that sI(2, C);" is the semidirect product of the span of the
degree derivation D with sl(2, C)~. (We are of course freely using the notation
of Section 2.) The roots of sI(2, C);" with respect to h; = CD @ Ch are easily
described using the basis {a, , v} of b *:

A ={jy+ky|jeZ; k=0, £1;jy + kay # 0},
Ar = {jy Tk |jeZ, k= £1}
4 ={jyljezj+0}

Note that 4y = {4-oy}.

In the present case, since I = 1, the imaginary root spaces are one-dimensional.
Let j € Z. Then the root space in sl(2, C)~ for the root jy 4 «, is spanned by
e ® t/; the root space for jy — o is spanned by f ® #/; and if § % 0, the root
space for jy is spanned by & ® . We have

4, ={jy+ kay|j>0;and k =1ifj = 0}.

The simple roots of sl(2, C); are oy and oy = y — o . The Cartan matrix is
A= (2 2. Note thaty = ay + o4 . '

See Fig. 1 for a useful picture of 4. The roots are represented by the dots in the
plane b *. The positive roots are those in the region enclosed by the dashed
boundary. The real roots are the roots in the outer two columns and the imaginary
roots are those in the inner column.
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FIGURE 1 : ROOT SYSTEM FOR A"])
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Recall that we have the exact sequence

0—>c— AP > sl(2,C)~ >0

and that this enables us to identify the root system of 4{" with that of sI(2, C)~.
Also, the Weyl group W acts naturally on I, * as follows: W is the group
generated by the two reflections 7, and r; in §,* given by

To% =
Too =
1%y =

ri0y =

Xg — g%
0 — gm"‘o =
O — 1410“1

oy — Apy =

= —0y,

o + 204,
ay + 20,

—ocl .

(3.1)

Recall that the real span of &, and «, carries a positive semidefinite geometry for
which vy is in the radical, and that 7, and r, are the geometric reflections with
respect to the nonisotropic vectors o and oy . Observe that

so that W fixes y. Also,

(o) = —riotg = —otg — 204 = g — 2y.

Toy =y =1

Hence 7,7, fixes every multiple of y, subtracts 2y from «, and adds 2y to «, .
Thus 7,7, is a ““vertical shear.” The power (r,7,)™ (m € Z) clearly is the vertical
shear which fixes every multiple of v and adds 2my to «, . (This holds even if m

is negative.)
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CoNcLUDING REMARKS

From Table IT (see Appendix), it is apparent that in many cases A = 44%-1
when || F|| = k. The following result explains this phenomenon. By a star S,
we mean a tree having m edges and at most one vertex of degree exceeding 1.

Fact 9. If F is a union of stars and | F|| = k then
AP =44
Proof. We first calculate
AT —m, AP =4m,  «(S,) =m,
which implies
By —1, B =4
The desired result now follows by Fact 8. |
Note that by Fact 7, for | F| =k — 1,
Afv'“) <0 iff Fis a tree,
AP =0 iff F=2P,.
We remark that it is possible to have two different forests F and F’ such that
AE = AP for all k. An example of such a pair is
F = 8,U3S,U 38U S,,
F' =48, 0 48,,
for which
[Fil = |IF'|| =36, =(F)=n(F) =213,
AP = 4P =2 3. 37,
A — 489 —283.33.37  (by Fact9),
AP = AP =M 3731

Since we know 8,_,(T'} = O for all T, then for k = # — 1 the theorem reduces
to the simple identity

Y dxy) — > dle,e) = TIP, (43)

{&,¥}CT {e,.egiCedges of T

where d(e, , e,) is defined to be the length of the path joining the edges ¢, and ¢, .
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Note that the set 4, of positive roots of sl(2, C){ can also be described as

{—atpout+(G—1ylizh (3.5
or
(oo + (j = Do, joo + jou » (j — Doo +jou |7 2 13- (3.6)

In this case, forp € 4, , dim I¢ = 1. Recall that W = W, L », W, , (w,,,) = 2m,
and l{ryw,,) = 2m + 1.
Substituting expressions (3.3), (3.4), and (3.5) into Theorem 2.6 yields:

CorOLLARY 3.7. The denominator formula for A" may be written in terms
of oy and y as

11— =y — =) e(—a))(1 — e(—y)" e(—a)™?)

n>1
- e( —a, )2 e —o)ri2n-1) __ e(—aoy (27+1) o —y (n+1) {2041}, 3.8
1 4

neZ neZ

Remark. If we set o(—o;) = gt, e(—y) = ¢ and simplify then (3.8) gives (1.1)
of the Introduction.
Using expressions (3.3), (3.4), and (3.6) with Theorem 2.6, we obtain:

COROLLARY 3.9. The denominator formula for A" may be written in terms
of oy and oy as

[T (1 — e —oo)™ e(—eu)")(1 — e —aq)"* e(—an)")(1 — ()" e(—oq)")
nxl
= Z e(—oip)™ 2D g —a PO — N g — )P HIEHD oy Yn(EneH),
nez neZ (3.10)

Remark. If we set e(—aoy) = u, e(—oy) = v and let # be —=n in the first
sum, then (3.10) becomes (1.2) of the Introduction.

Before we discuss the character of every standard irreducible module for 4{%,
recall that §° may be assumed three-dimensional (i.e., we need at least one
derivation; assume we add only this one). Then oy, o, and p form a basis
of (5%,

We write concretely the right-hand side of Corollary 2.10. In (3.10) we
computed the denominator using eé(—op) and e(—a,). All that remains to be
done is to compute the numerator. That is, for A € P C (§°)*, we study

T (— 1) efeld + p) — (4 + ). (3.11)
weW
Recall that each A € P is of the form any + boy + cp, with (acy + boy - ¢p)
(h;)€Z, . Since W fixes y we can assume that b = 0. That is, A = ax, + ¢p,
with ¢ 4= 2a€Z, . To carry out our calculation of (3.11) we need:
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Lemma 3.12. Let W be the (Weyl) group genmerated by the two reflections
ro and ry in hy* given by (3.1). Let w,, = (ryro)™ (m € Z), and suppose A€ P is
given by acy + cp. Then

B+ p) — (A + p) = (2am + (¢ + 1) m(2m — 1)) (—og)
+ (2am + (¢ + 1) m(2m + 1)) (—oy), (3.13)

rem(A + p) — A+ p) = (a(2m + 2) + (¢ + 1)(m + 1)(2m + 1))(—oy)
+ (2am + (c + 1) m2m + 1)) (—oy). (3.14)

Proof. Note that for each w e W we have wA = away + c(wp — p) + ¢p =
away — {P,,> + ¢p. Thus, w(d + p) — (A + p) = away — (D> + ¢p +
(wp — p) — A. But this simplifies to

awoy — (¢ + 1){D,> — aoy . (3.15)

Now, w,ay = (1 — 2m)ay — 2moy , and rgwpe, = —(2m + 1oy — 2mo; .
Hence, (3.3) and (3.15) imply that @,,(A + p) — (A + p) is given by

a((1 — 2m)ay — 2moy) — (¢ + 1)(m(2m — 1) oy + m(2m 4 1)) — aoy
— (=2am — (¢ + Lym(2m — D)ag + (—2am — (¢ + Dm(2m + D)oy ,

which is (3.13).
In the same way (3.4) and (3.15) give (3.14).
Substituting (3.13) and (3.14) into (3.11) we immediately obtain:

CoroLLarY 3.16. Let A = ao, + ¢p be a dominant integral linear form and
let V be the standard module for A" with highest weight A. Then the expression

x(V) X (=1 elwp — p)/e(d) = 3, (=1} e(w(d +p) — (A +p)) (3.17)

wew weW
may be written in terms of e(—o,) and e(—oy) as

Z e(_ao)(Zan+(c+l)n(2n—1)) e(_al)(Zan+(c+l)n(2n+1))
neZ

— 2 e(_%)(a(2n+2)+(c+1)(n+1)(2n+1)) e(—al)(2“"+("+1)"‘2"+1”. (3_18)
nez

Remark. 'The expression in (3.17) is the numerator of the character x(¥),
divided by e(A).

Now that we have set up the necessary material on A{", we turn to the other
Euclidean Lie algebra for with ! = 1, namely, A{®. (See, for example, [12b]
for an exposition of Euclidean Lie algebras.)

This time, we start with the eight-dimensional rank 2 simple Lie algebra
sl(3, C). Let 8 be the negative transpose map of sl(3, C) to itself. Then § is a
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Lie algebra automorphism of order 2. The fixed set of 6 is the three-dimensional
rank 1 subalgebra g, = s0(3, C) consisting of the skew-symmetric matrices.
Let g, be the —1-eigenspace of 6 in sl(3, C), i.e., the five-dimensional space of
symmetric traceless 3 X 3 matrices. Then

(86,81 C 80, [G,8lCaq, and [g,8]Cg. (319

Choose any Cartan subalgebra b, of g,, and let 4o, be the roots of g, with
respect to by, with o, the positive root. Then the weights (with respect to B)
of g, acting on g, are 0, +o; , 420, , each of multiplicity one.

Now

sl(3, C)~ = si(3, C) ® Cfz, 1.
Relations (3.19) imply that

a= H 8itmodz) & v

jeZ

is a Lie subalgebra of sl(3, C)~. Let E be the degree derivation of sl(3, C)~, so
that E acts as scalar multiplication by j on sl(3, C) ® #. Then E preserves a
and acts as a derivation on a. Define a; to be the corresponding semidirect
product Lie algebra CE @ a, and define b, to be the Abelian subalgebra
CE @b, of a, . Then a, has a natural and obvious “root space decomposition”
with respect to by ; . Let y € (o 1)* be the element which is 0 in f, and 1 on E.
Identifying b,* with the subspace of b, consisting of the elements vanishing
on E, we see that by, = §* @ Cy, and that {o; , y} is a basis of b, . The set 4
of roots (defined in the obvious way) of a, with respect to §, , is given by

4 ={jy+kay|jel; k=0, £1if jis even;
k=0, +1, +-2if jis odd; jy + ke 5 0}. (3.20)

Define the set Ay of real roots to be {ped| ¢ 5% 0 on ), and the set 4y of
imaginary roots to be {p 4 | @ = 0 on h,}. Then 4, consists of the elements
of 4 which are multiples of y, and Ay consists of all other elements of 4. Note
that all the root spaces (real or imaginary) are one-dimensional. Let 4, C 4
consist of o and the roots which are positive on E. Then 4 = 4, U (—4.).
Define the simple roots to be those positive roots which cannot be written as a
sum of two positive roots. Then the simple roots are o, and oy = y — 20, .
The Cartan matrix of a (or of a,) is defined to be the 2 X 2 matrix B with

_ 2(041' | [)o s Oy | I)o)
Bs = T Tho, 4 1y)
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Then
(3.21H)

We have y = oy + 20 .

In Fig. 2, we indicate the roots by dots in the plane b, . The positive roots
are the roots in the region enclosed by the dashed boundary. The real roots are
the roots in the outer four columns, and the imaginary roots are those in the
middle column.

FIGURE 2 ; ROOT SYSTEM FOR A
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Let A be the GCM Lie algebra I(B). Then the center of A{* is a one-
dimensional subalgebra ¢, and there is an exact sequence

0—»:—»A;2)—+a——>0

by means of which we can identify the root system of A with that of a
(described above). Note the analogy between this situation and that of 4{V.
The reason for the notation A is that a was defined using an automorphism of
order 2 (the superscript in A¥) of the Lie algebra 4, (Cartan’s notation for
sl(3, C)). Incidentally, in this (Kac’s) notational scheme for Euclidean Lie
algebras, sl(2, C)* is also denoted A{", in that it comes analogously from the
automorphism of order 1 of 4, = sl(2, C).

Let W be the Weyl group of A®. Then W acts naturally on b, as follows:
W is the group generated by the two reflections 7, and 7; in b, given by

Ty = dg — Bogtlp = —og,
7o = ay — By = oy + o,
(3.22)

rag = o — By = og + 4oy,

1oy = o — By = —oy.
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Just as in the case of A{", the real span of «, and o in b, has a natural positive
semidefinite geometry (by restricting functionals to b, and then using the
nonsingular form on h,* obtained by restricting the Killing form of sl(3, C)
to B,). The imaginary root y is in the radical of this semidefinite form. Also,
7o and 7y are the geometric reflections with respect to the nonisotropic vectors
oy and o, . Observe that rgy = y = ryy, so that W fixes y. Also, (ry7y)e =
—Try = —ap — 4oy = ap — 2y, and (ryro){eg + o) = ri(—og + o + ) =
oy + o — (og + 20q) = ag+ o — y. Hence 77, fixes every multiple of v,
subtracts 2y from o, adds y to o, ., subtracts y from oy 4 o; , and adds 2y to
oy + 4oy . Thus ryry is a “vertical shear.” The power (ry7,)™ (m €Z) clearly is
the vertical shear which fixes every multiple of y, adds my to «; , and adds 2my
to ag + 4oy . (This holds even if m is negative.)

Notation. Let W, be the subgroup of W consisting of the integral powers
of 1,7y . W, is a normal subgroup of index 2 in W, and W is the disjoint union
W = W, U r,W,. The elements of W, have even length while those of r,/¥,
have odd length.

We now write the denominator formula for A$® in concrete form first using
oq and vy, and then oy and «; . To do this, we need:

Lemma 3.23. Let W be the (Weyl) group generated by the two reflections
1o and ry in b, given by (3.22). Let w,, = (7)™ (m € Z). Then
{Py,> = m(3m — 1)/20y + m(3m + )y
= 3moy + m(3m — 1)[2y, (3-24)
(B, = (32 -+ 5m + 2)[200 + (32 + 2m)q
= —(3m + 2)oy + (3m* + 5m + 2)/2y. (3.25)
Proof. Recall that w,y = oy + 20y, Waay = o — 2my, Wy + o) =

(xg + o) — my, wpyy = o + my, and wy(ay + dog) = (o -+ doy) + 2my.
By definition, ?, = 4, Nw,A_ . If m = 0, then

oy = foa + iy, (0o +40) + 2y |0 <i<m—1),  (3.26)
since Wy, (0 — 2y) = oy + (m — 2)y, and w, (o + 4oy — 2y) = o + 4oy +
2(m — i)y. Hence, (P, > = (moy + mim — 1)[2y) + (m(oy + 4oq) +
m(m — 1)y) = 3may -+ m(3m — 1)[2y = m(3m — 1)20q + m(B3m + 2)oy . If
m << 0, then

@wm ={{ag+ o) +iy,0+2iy |0 < i< —m — 1}, (3.27)

since w(og + oy — 2y} = g+ o + (—m — i)y, and w, (o — 28y) = o+
2(—m — i)y.
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Hence,
{Pu,» = (—m(x + x) + m(m + 1)]2y) + (—may + m(m + 1)y)
= 3moa, + m(3m — 1)/2y = m(3m — 1)/20y + m(3m 4 2)o, .

This establishes (3.24).
From Lemma 2.1 and (3.24) we immediately have

(Bry,> = ro(3may + m(3m — 1)[2) 4 (D,
Now (P, > = oy =y — 2a, . This gives
(B> = 3m{o + ay) + m(3m — 1)[2y + o
= —(3m + oy + (3m? + 5m + 2)[2y
= (3m? + 5m + 2)/200 + (3m? + 2m)ay ,

which is (3.25). Q.E.D.

Note that the set 4, of positive roots of a, can also be described as

{20+ Q2 — Dy, —a + frajrroa+(G— Dy 20 + 2 — Dy [7 > 1} (3.28)
or
{27 — 1) wo + (4 — Bou, joo + (& — Doy, joo + 2oy,
(1= Do+ @G —Dou, T — Do+ 4joy[7=>1 (.29

In this case, for pe 4, , dim[® = 1. Just as in A{Y, substituting expressions
(3.24), (3.25), and (3.28) into Theorem 2.6 yields:

COROLLARY 3.30. The denominator formula for AP may be written in terms
of oy and vy as

[T — e(—y)" X1 — e(—y)" e(—ea))(1 — e(—7)" e(—)™)
n>l
X (1 — e(—y)®" 1 e —oq')(1 — e(—y)®") e(—e) %)

= T e(—oy)? e(—y)OnD/2 — Y o —oty) (3D gy ntDOMI/2,
nez nek (331)
Remark. 1If we set e(—oy) = t71, e(—y) = g, replace n by —n in the first
sum, and # by —(# + 1) in the second, then (3.31) gives (1.5) of the Introduction.
Using expressions (3.24), (3.25), and (3.29) with Theorem 2.6 we obtain:
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CoROLLARY 3.32. The denominator formula for A2 may be written in terms
of oy and o as

[T (1 — el—ag)®" e(—ag) "-9)(1 — (24" o(—aq)en )
n3l
X (1= e —a)" e{—oq))(1 — e(—o) "D e —cq)2n D)
X1 — (o)1 e —ey)")

— Z e(_ao)n(3n—l)/2 e(—ocl)"(a"*z) _ Z e(_ao)(n+1)(3n+2)/2 e(——txl)"‘3”+2).
neZ neZ (333)

Remark. If we set e(—oy) = u, e(—a;) = v, replace n by —n in the first
sum, and # by —(n -+ 1) in the second, then (3.33) gives (1.6) of the Introduction.

Before we discuss the character of every standard irreducible module for A,
we define b, and §,? to be the objects denotes f) and fy¢, respectively, in Section 2.
Note that f* may be assumed three-dimensional (i.c., we need at least one
derivation; assume we add only this one). Then o, o, , and p form a basis
of (hy?)*.

As before, we write concretely the right-hand side of Corollary 2.10. In (3.33)
we computed the denominator using e(—a,) and e(—o,). All that remains to be
done is to compute the numerator. That is, for A€ P C (h,)*, we study (3.11).

Note that each Ae P is of the form aoy -+ boy + cp, with (axy + boy + ¢p)
(h;)€Z, . Since W fixes y we can assume that b = 0. That is, A = aa, -+ ¢p,
with ¢+ 2a, ¢ —4aeZ, . To carry out our calculation of (3.11) we need:

Lemma 3.34. Let W be the (Weyl) group gemerated by the two reflections
7o and ry in b, given by (3.22). Let w,, = (ry,)" (m € Z), and suppose A€ P is
given by acy + cp. Then,

wn(d+ p) — (A + p) = (2am + (¢ + 1) m(3m — 1)}2)(—ay)
+ (dam + (¢ + 1) m(B3m 4- 2))(—oy), (3.35)

7o%m(d + p) — A+ p) = (2m + 2) a+ (c + 1)3m® - 5m + 2)/2)(—o)
+ (4ma + (c + 1)(3m? 4 2m))(—oy). (3.36)

Proof. Recall from (3.15) that for X = aay + ¢p, w(A+p) — (A +p) =
awoy — (¢ + 1Py> — o . Now, wpeg = (1 — 2m)ay — dmey , and 7,0, =
—(2m + 1)ay — 4ma, . Hence, (3.24) implies that w,,(A -+ p) — (A - p) is given
by a((1 — 2m)ay — 4moy) — (¢ + 1)(m(3m — 1){209 + m(3m + 2)oy) — acy =
(—2am — (c + 1) m(3m — 1)[2)ay + (—4am — (c + 1) m(3m + 2))oy , which
is (3.35).

In the same way (3.25) and (3.15) give (3.36). Q.E.D.

Substituting (3.35) and (3.36) into (3.11) we immediately obtain:
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CoroLLARY 3.37. Let XA = acy+ cp be a dominant integral linear form
and V be the standard module for A2 with highest weight X. Then the expression

X(V) Y, (1) e(wp — p)le(d) = ), (—1)" ew(d + p) — (A + p))
wew weEW (3.38)

may be written in terms of e(—o,) and (—oy) as

Z e(__ao)(2an+(c+1)n(3n—1)/2 e('al)(4an+(c+1)n(3n+2))
neZ
—_ Z e(_%)((2n+2)a+(c+1)(3n‘-’+5n+2)/2) e(_061)(4an+(c+1)(3n’+2n)). (3.39)

neZ

We now have the necessary material for A$?. The techniques used to write
down concretely the denominator formulas for A{Y and A4} will be applied
in Section 4. Corollaries 3.9, 3.16, 3.32, and 3.37 will be essential to our proof
of the “numerator formula” for AY and AP,

4. TuE MULTIVARIABLE VECTOR PARTITION THEOREM FOR AV

In this section we state and prove an abstract vector partition theorem which
was described in the Introduction. For the important special cases A we
describe explicitly the allowable parts (including multiplicity) that can occur
in any vector partition, and also give a concrete algorithm for constructing the
sets @,,, w e W, the Weyl group of 4. To this end, we study the structure of
the group W. We close this section by writing out concretely the unspecialized
denominator formula for A{’. We are grateful to R. Wilson for help in the
writing of this section.

Note that the exponents of the variables e(—a,) and ¢(—«;) in the monomials
on the sum side of Corollary 3.9 are quadratic in the variable of summation.
This fact is a direct consequence of our computation of {@,,> in Lemma 3.2.
The key step in the proof of this lemma is to express the set @, as {e + 7y |
0 << 2m — 1}. When the roots of ?,, are added together, the coefficient
of « is linear in m while the coefficient of y = a + «; is quadratic in m. Setting
u = gt and v = gt in (3.10) gives (1.1}, where the exponent of ¢ is quadratic.
Although this is the simplest example, the situation we have just described is
typical. That is, the exponents of the variables e(-simple roots) in the monomials
on the sum side of the denominator formula given in Theorem 2.6 (in the case
of affine or Euclidean GCM Lie algebras) are quadratic in the ‘‘variables of
summation.” We will discuss this remark later.

For now, just keep in mind that the fundamental reason for the quadratic
exponents is the fact that consecutive integral multiples of a fixed imaginary
root y are added together in the computation of (®,,>. This reasoning involving
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imaginary roots ‘‘explains” why certain combinatorial identities always have
quadratic exponents for the variable g.

Before specializing to A{V, we work in the full generality of GCM Lie algebras
(see Section 2).

LevmMa 4.1.  Consider the denominator formula (Corollary 2.7)

1l {3 v,
wsd =0 weWw

in Z[[uy ..., w]], with u; = e(—a,). Then the monomials H wt ) g5 w
ranges over the Weyl group W are all different. That is, the coefficient of ]'Iz —o
uti <P 45 indeed (— 1)),

Proof. 1Itis sufficient to show that if @, , w, € W, and w, # w, then (¢w1> #
<¢w2>. But this follows immediately by taking the contrapositive of Lemma 2.5,
which asserts that <¢w1> = ((bw2> implies that w, = w, . Q.E.D.

At this point it is convenient to introduce:

DrrinitiON 4.3. Suppose that ¢ = Z:-:O ¢, is a root of [ such that dim
[*» = d. Then by &%) we mean the collection of “colored” ({4 1)-vectors
which is formed by d duplicates of the vector (¢, , ¢; ..., ¢;), each with a different
color. We indicate this by the set {&(g;) = (¢p,.., €)); | 1 <J < d}. We say
that @; is the copy of the root ¢ corresponding to the vector £(g;). If d =1,
we suppress the subscript 5. If @ is a collection of roots of I, possibly including
any allowable copies @; of ¢, then by (@> we mean the sum of all the roots in @,
including multiplicity. For example, the sum of ¢; and ¢, is 2¢. £®) is the
collection of vectors {£(p)| ¢ € D}.

DEerINITION 4.4 (vector partitions). Given S8 = Zi’=o ¢y, with ¢; €7, let
&(B) be the vector (¢g, €1 ,..., ¢;). We say that &@P) is a vector partition of
£9(B) iff: (1) D is a collection of positive roots of [, possibly including any allowable
copies @; of @, and (2) the sum of the vectors in &(®P), including multiplicity,
is £€9%(B). For example, if ¢; == (by, by ,..., b}); , the vector sum of ; and g;
(2by , 2by ..., 28;). So (D) is a vector partltion of £(B) iff £({P)) = fo(ﬂ)

With these definitions in mind, we state:

Levmma 4.5. Let we W. Then there is only one vector partition of £%{D,>),
namely, £(®D,,). Moreover, all of the vectors in the vector partition £(D,,) correspond
to real roots.

Proof. This is an immediate consequence of Lemma 2.2, which asserts that
if (D,> = (P> -+ B, with D a finite subset of 4, and B € span 4 a finite sum
of not necessarily distinct positive imaginary roots, then 8 = 0 and & = @,,.
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Also, @,, consists of real roots only. But in view of our definition of vector
partitions, this is just a statement of what we wanted to prove. Q.E.D.

We are now ready to state the following abstract vector partition theorem
corresponding to the GCM Lie algebra I:

THEOREM 4.6. The excess of the number of vector partitions of (¢y, ¢y ..., €1)
into an even number of distinct parts (note: vectors of different colors are regarded
as distinct) over those into an odd number of such parts is (—1)' or 0 according
as (Cy €y 5oy €1) 15 Of the type E({D,,>) or not. Moreover, £%({D,>) has only one
vector partition, namely, £((D,>).

Proof. Imagine the left-hand side of (4.2) expanded out as a formal power
series in the u; , and simply refer to Lemmas 4.1 and 4.5. Q.E.D.

We now pass to the special case | = A{" (I > 1). First we shall describe
4, C 4, in order to exhibit concretely the allowable parts occurring in the vector
partitions in Theorem 4.6. To this end, we first describe the roots of sl(n, C),
(note: set n = I 4~ 1), as presented in [10].

Let I be the Z-span of the standard basis vectors ¢, , €, ,..., €, in R™. Let E be
the l-dimensional subspace of R™ orthogonal to the vector ¢ + - +¢,.
LetI' = I N E and take 4, to be the set of all vectors « € I’ for which (a, o) = 2.
It is clear that 4, = {¢; — ¢; | ¢ = j}. The roots of sl(n, C) can be identified
with the set 4,, and the simple roots with the subset {o; ,..., o;}, where o; =
€; — €;,1 . The vectors a; are independentand ¢; — ¢; = a; + oy + ~* + @4,
if i < j. This last relation implies that the positive roots of sl(n, C) are of the form

o+ oy + 0 Ay 4.7)
with 1 <k <land 1 <i<I— k4 1. The negative roots are of the form
—(o + gy + 7 A @) (4.8)

The real roots of A" can be identified with the functionals of the form
Jy + @, where j €Z, ¢ € 4, , and y is the smallest positive imaginary root of A{".
The imaginary roots of A" are identified with functionals of the form jy,
where j€Z,j = 0. Now 4, C 4 is the union of the positive roots in 4, with the
set of roots in 4 which are positive on D. By means of (4.7) and (4.8) we may
describe the set 4, of positive roots of 4{" concretely as

4, ={6s— Dy +o+ -+ org s 8y — (o + = gz,
wll<h<Ll<i<l—k+1,seZ, — {0 (4.9)

From (4.2), (4.9), y = o9 + o, & *** + «;, and the fact that real roots have
multiplicity 1 and imaginary roots multiplicity /, it is not hard to prove:
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THEOREM 4.10. Whenever Il = AX (I > 1), the product side of the denominator
Jormula in (4.2) can be written as:

7 1l nk
I1 (1 — 11 uﬁ) T I —wgteg™ o wgtyud o iy, o ™)
31 i=0 k=1 =0
13
X JT (10— u' o wygnahishn = wius o w°). @.11)

{=n—k+1

Furthermore, if ¢ = (¢g, ¢1 ..., ¢;) 15 an allowable part in any vector partition
occurring in Theorem 4.6 then c must either be one of the | different copies of the
n-tuple (s, s,..., 5) or, exactly k cyclicly consecutive coordinates c; of c must be s
and the vest s — 1, where 1 << k << n. That is, we must have either

¢ =S, if i<j<i+kh—1,
=s5s—1, otherwise, Jor 0 <i<n—k,
or
G =s5—1, if i+k—n<j<<i—1,
= s, otherwise, for n— k4 1<i<n.

Remark. Only for I = 1 are colors unnecessary for the description of the
allowable parts in any vector partition occurring in Theorem 4.6.

It is now time to study the structure of W, in preparation for constructing
the sets @,, .

Recall that the simple roots of A{" consist of the simple roots o ,..., a; of
sl(n, C) together with o = y — i, where v is the smallest positive imaginary
root of A" and = «; + - + o is the highest root of sl(n, C). The Cartan
matrix A of sl(n, C) is an I by ! matrix that is 2 on the diagonal, —1 on the
super- and subdiagonals, and O elsewhere. The Cartan matrix 4 of A is
obtained from A by adding a zeroth row and column so that the resulting row
and column sums are 0. That is, 4;; = A,; for 1 <4, j <1, Ay = 2, 4y =
Ay = Ay = Ay = —1, and otherwise 4;; = 0.

We have by definition that a;(k;) = A,; for 0 <, j < L Given any root ¢ for
AL the ith reflection 7, of ¢ is defined by

i) = ¢ — @(hi)o; 0<i<l
Every element of W fixes y.
DEerINITION 4.12. A (vertical) shear is a linear automorphism 7 of R = span

4 such that for every p € R, T(p) = ¢ - ¢(¢)y, where c€ R* and ¢(y) = 0.
That is, T fixes y and induces the identity on R/Ry.
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Qur first task is to construct a vertical shear from the reflections 7; . To this
end we prove:

Levma 4.13. Let pe R, and y the smallest positive imaginary root for AM.
Then we have i

Ty Pty T e® = @ + @l + 0+ Iy (4.14)

Proof. We first show by induction that

!
Ny " T = @ — Z ohy + - + B,
i=1

We have by definition that rip = ¢ — @{h)a; . For 1 {m <! — 1, suppose
that

m

Twlm—1 """ Teh@ = @ — Z oy + - 4 B

=1

Then,

Tmit?m * Te® = @ — P(Ami1)¥min
- 2 @by + o 4 B — O‘i(hm+1)°‘m+1)-
i=1

Now %{hys1) = Amyr.s = —1if i = m and O otherwise. Thus,

m
Tmiifm " TP = @ — Z oy + - + by

f=1
- (‘P(hl 4 b b)) + ‘P(hm+l))°‘m+1 .

Now just set m = I — 1, and simplify.
Next we show that

Vpemli—mir T~ T @

I-1—-m

=@ — Z @by + o + by — @by + -+ + hy)
=1
X (Mm + G + 7+ ) (4.15)

Note that we have shown (4.15) for m = 0 and that we must have I — 1 2> m >0.
‘We first carry out the inductive step for 2 </ —m —1<1—1 and then,
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as a special case do I = [ — m — 1. We suppose that (4.15) holds and compute

Tema(TimPiomir " T g 7 Tah@)

I-1-m
=@ — @him 1) my — Z @y + -+ Ry
i=1
—1—m
~+ Z ol 4 - 4 By) oAy ms)os_mt
=l

- (P(h1 4ot hl)(‘xl—m + O—m+1 + -+ o!l)
+ @y + A B g + 0y + 0+ al)(hl—m-q)al_m_l . (416)

Note that 3°;~3 " @(hy+ -+ h)(rm_s)o_m—s equals (~p(hy -+ hy_m_s) +
2k + "+ Bmaumy i I—m—1>2 and 29(h_p_)oy_py if
I—m—1 = 1. Also, (0m+ %1+ "+ &) (Bi_m1)y_my equals
(—Dagemg ifl —m —12>1.

Substituting the above relations into (4.16) when I — m — 1 > 2 we obtain
e (P JEIPILLE ¢ (AR 4T

1-1—(m+1)
=jo— Y ol b — ol + o+ )iy o+ )
i=1

— @y + -+ Bm)om1 — PPima)%m—
— ?7(]11 4+ hl—m—z)c‘l~m—1 + 2?’(]11 + -+ hz—m—l)al—m—l .

But this is just (4.15) with m replaced by m + 1.
When I —m — 1 = 1, (4.16) becomes

71 mi)(Tr—mP 1—ms " T " Tol19)
=Ty Tyt T 9
1-1—-(m+1)
= )9 z Plhy + -+ By — oy + o + Bl man) + 7 + )
i=1

— ‘P(hl + o ) — ‘P(hz—(m+1))°‘z—(m+1) + Z‘P(hl)"‘l—(mu)

=@ —o¢lh + - B) g + o + -+ )
Thus if ¢ € R, we have

iy Vigtilg Y@

=g — @l + =+ I)og + o+ )= — @by + -+ By (4.17)
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By definition ryp = @ — ¢ (ko) - Hence, by (4.17) we obtain

Tty Vi glifiq " Toli?o®
=@ — @by + - + ) — plho)on — aglhy + - + h)h).

However, ay(by + -+ h) = A+ A+ -+ 4y = =140+ -+
—1 = —2. Thus we have ¢ — o(h 4+ -~ + ) — @(hy)(op + 2¢). Recall
that y = oy + 3. Substituting y gives us

¢ — by + - + b — o)y + ) + @by + - + B}y — gy + - + By
=@+ @yt 4 by — plbo+ by + -+ h)y + ) = o+l + -+ Ry,

since (kg + A, + - -+ B;) equals 0. Q.E.D.

Hereafter we define the shear s, by the identity sy = ryry == 1774 =" 1ary7,
so that

SoP = Tale " Niali¥iq 7" TolileP = @ +olby + -+ Ry, (4.18)

Remark. Let r, be the reflection with respect to # in the Weyl group of
sl(n, C). Then sy, = 7,7, .

It is known (cf. [14]) and we shall show below, that the Weyl group W of A"’
is isomorphic to the semidirect product of the Weyl group of sl(n, C) (the
symmetric group on 7 letters %) with a free Abelian group on I generators.
This latter group is known as the group of translations or shears of A{". In order
to study W we first describe the Weyl group of sl(n, C) as in [10]. Thinking
in terms of the expressions ¢; — ¢; , notice that the reflection 7; with respect to o;
permutes the subscripts 7, 4+ 1 and leaves all other subscripts fixed. Thus,
r; corresponds to the transposition (z, ¢ -- 1) in the symmetric group &%, ; these
transpositions generate %, , so we may obtain a natural isomorphism of the
Weyl group of sl(n, C) onto &, . In fact, if € &, , then o acts on the root
€; — ¢; as follows:

oles — &) = €t — €0 - (4.19)
Since o(y) = y, (4.19) determines the action of %, on the roots ¢ of sl(n, C),
and hence on the roots of 4.
Consider the permutation p, = (1 2 *** n) € %, . Note that by (4.19),

Poles — €1) =€ — ez, if 1<i<n—1,

= (=) Fa—e) (o — ), Hi=n— L.
That is,

Do) = agyq, f 1gi<]y

4.20
= (g ),  if i=L “20
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Iterating (4.20), we immediately have that

Po(o) = o if 1<i<l—k
oy ), i i=l— kA1, (4.21)
= Qi (ies1) » if ({—k4+2)<igl

We get different sets of values provided that 1 < & < n. Note that py"(«;) =0,
and so p," =

It makes sense to conjugate the shear sy defined in (4.18) by the permutation p, .
We obtain

PoSoPo'p = @ + po ol + =+ + Ry (4.22)

In exactly the same way as in (4.22), we may write

Po*s0P5 e = @ + pop(hy + - + B)y. (4.23)
For all £ = 1,..., I, we define the shear .
S = Pok-"o])t; k’ 4.24)

and we let A be the subgroup of W generated by s, ,..., 5; . We shall show that W
is the semidirect product of &, with the normal subgroup 4, and that A is the
free Abelian group on the basis {5, ,..., 5;}. We shall also show how the shears
s act on the roots of sl(n, C). First we prove:

LemMma 4.25. W is generated by its subgroups &, and A.

Proof. Since W is generated by 7, ,..., 7;, it suffices to show that 7, lies in
the subgroup generated by %, and A. But s, lies in this subgroup, and hence
so does 7, . - Q.ED.

The elements s, can be conveniently rewritten:
Lemma 4.26. For alli = 0,..., 1 and ¢ € R, we have
sip = @ — g(hy)y. (4.27)
Moreover, for all i, j = 0,..., [,
S04 = oy — Ayy. (4.28)

Proof. For i = 0, (4.28) follows from (4.18). For i, j > 0, (4.28) is a con-
sequence of (4.22) and (4.23), together with (4.20) and (4.21). Finally, to prove
(4.28) forj = 0, add (4.28) for j = O,..., n and use the fact that s,y = y. Formula
(4.27) follows immediately from (4.28), by linearity. Q.E.D.
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Lemma 4.29. A is a normal Abelian subgroup of W.

Proof. 'The commutativity is clear, since shears commute. All we need to
show is that r,s,;7; € 4 for 4, k = 1,..., l. But by (4.28), forj = 0,..., [,

1Sy = 1Sy — oy(hy)o)

= T — “Ii:")’ — o) 710 — Aixy)

= o; — o) o + o)y, — (A — Ao (Bi)Yy

= & — "‘a‘(hi - /Lkhk)%
Hence

rsyp = ¢ — plh; — Aikhk)‘y

for all p € R, and so by (4.27), ;8,7 is the product of s; with an integral power
Of S - Q.E.D.

We now have:

ProrosiTioN 4.30. W is the semidirect product of &, with the normal subgroup
A, which is precisely the set of shears in W. Moreover, A is the free Abelian group
generated by s, ..., 5, .

Proof. Since no nontrivial element of &, can be a shear, W is the semidirect
product of &, with A, and A coincides with the set of shears in W. All that
remains to be shown is the freeness of 4. Suppose then that for some integers
€1 yery €, We have

S:‘S;z S?l =1,
Then by (4.27),
l
[ (Z cih‘i) = 0
i=1
for all ¢ € R, and in particular, for ¢ = o ,..., ;. Thus
!
Z c;Ay =0
=1

for each j = 1,..., L. But it is well known that the Cartan matrix 4 of sl (n, C) is
nonsingular, and in fact that it has determinant #. Thus each ¢; = 0. Q.E.D.

We next want to characterize concretely the shears in W. For a shear L and
J = 1,..., 1, we have

Loy = o; 4+ Ly, (4.31)

607/29/1-4
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where L; is a scalar. We shall find necessary and sufficient conditions on the L;
in order for L to be in W. From (4.28), we see that the condition for a shear to be
a product of powers of s;,...,5; is that the I-tuple (L, ,...,L;) be an integral
linear combination of the / rows of the Cartan matrix 4 of sl (n, C). But using a
suitable sequence of elementary row operations (in fact, the successive adding of
an integral multiple of one row to another row), we can transform 4 to the matrix

10 0 1
10 2
00 0 3

<

0« 1 n—2
00 0 =

O

By taking arbitrary integral linear combinations of the rows of B, we conclude:

Prorosrtion 4.32.  The shear L described by (4.31) lies in W (or equivalently,
in A),if and only if L, ,..., L, € 7 and n dividesL, — 31—, iL, .

Recall that 4_—=—4. By Propositions 4.30 and 4.32 and (4.9), we have an
algorithm for computing @, for we W-:

ProposITION 4.33.  The most general element we W may be written uniquely
in the formw = oL, where o € &, and L is a shear of the type described in Proposition
4.32. The sign (—1)"™) equals the sign of the permutation o. The set @, = wd_N4,
is now constructible by the indicated sequence of steps.

Remarks. (1) Each element of each set @,, is expressed as a sum of the roots y,
0 5.y & . By means of the formula y = oy, + --- 4 «;, we may write each
element as a sum of the simple roots a ,..., a; .

(2) Note that @, is a finite union of finite “columns” either of the form
{88+ v, B+ 2y,..., 8+ my}, where BedyN A, and meZ,_, or else of the
form {8 + v, B + 2y,..., B + my}, where Be 4y N A_and me Z, — {0}. These
“columns” are the generalizations of the sets such as {&; + 7y | 0 <7 < 2m — 1}
which occurred in the case 4{" in Lemma 3.2. Thus the “reason’ for the quadra-
tic character of the exponents of the variables e(-simple roots) in the monomials
in the summation side of the denominator formula (see the discussion below)
is similar to the corresponding “reason” in the case A{" (recall the beginning
of Section 4).

We shall now describe how results in [12b] can be used to write concrete
quadratic expressions for the exponents of the variables #; in the right-hand side
of the denominator formula (4.2). This process works in the generality of all
affine, and even Euclidean, GCM Lie algebras. First, one applies Proposition
13.13 of [12b] to the sequence (s, 5, ,..., §;) for which a certain 5; = 1 and all
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other components are 0. This gives a formula for £,({®P,)). We next use the
fact that W, which may be identified with the “affine Weyl group,” is the semi-
direct product of a finite Weyl group with a lattice of translations. (For 4",
these two subgroups are identified with &, and the shear group 4, respectively.)
Just as in Proposition 16.8 of [12b] and the discussion preceding this proposition,
the right-hand side in (4.2) may be written as a double sum over the finite
Weyl group and over the lattice. The exponents of the %, are quadratic functions

on the lattice.

We invite the reader to use this to write down a concrete multivariable vector
partition theorem for each Euclidean GCM Lie algebra. Here is the result in

the special case A5":

Denominator Formula for A

TT (1 — ue’uy"us®)(1 — wauy g )1 — gy s (1 — 2~ 03 0,%)

sp1

X (1 — ug 7 uy’Y(1 — g’y u")(1 — u'uy*uy™)

— z u*('rl(9‘1—2)+1‘32+1'3(7'3+2»ui(?‘13+7’3(72+2)+7‘3(1';—2»ui’("],(ﬁ'l‘?)‘}"’z(fz—z) +"'32)
- 0 1 2

;=0
(mod 3)

Z u 3 (ry(ry4+2) 47247y lrg—2)) u f (r r1—2)+ra(rgt2)+rg®) u 2'é-(r1’+'r,(r,—2)+ra (rg+2))

2 2 —
+ Z ug(fl(f1+2)+fg(rg—2)+"3 )uli('r1(71—2)+f,3+r;(r3+2))u§('rl +rg(rg+2)+rg(rz—2))

_ Z ug(rl(rl—z)+r2(r,+z)+rg’)u;}(rl’+rg(r,—z)+ra(f3+2))u2(rl(r1+2)+r2’+r3(r3—2))

+ Z ug(r12+rg(r3+2)+r3(rr2))u]&(r1('rl+2)+r,(r,—2)+r32)u2§(ﬁ(rl—2)+r22+r3(73+2))

r;=2
{mod 3}

Z u g (ry2+7g(rg—2)+rg(rz+2)) ui (ry (ry+2) +rg2+7g(rg—2)) u 3 (ry (ry~2) 473 (ry+2)+1g?) .

r, =2

ra=1

rg =0
(mod 3)

Each sum is over ry , 7y, r3€Z, withr; 47, + 73 = 0.

(4.34)
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5. Tue NumeraTorR FormuLA FOR A"

In this section, we work in the setting of 4{", and we use the notation of the
first half of Section 3. We are ready to state:

THEOREM 5.1. (numerator formula). Let A be a dominant integral linear form
and let V be the standard module for AV with highest weight . Then when we set
e(—ap) = e(—ay) = g, the numerator of x(V)/e(}) factors into an infinite product:

XV) Y (=1 e(wp — p)/e(d) |otcagmelap=e

weW

(1 . q(n0+nl)n)(1 _ q("o+"1)"-"o))(1 __ q("o+"1)"—"1)

I
|

n=1

=Y (D" ewp — p) lLiagmam >
wew

il

(5.2)

where n, = (A + p)(h;) (i = 0, 1).

Proof. By adding to A a multiple of y if necessary, we may assume that
A = axy+ ¢p, where ¢ +2aeZ, . Note that my=c+2a+1 and n, =
¢ — 2a -+ 1. Setting e(—o,) = e(—o) = ¢ in Corollary 3.16 we find after
some algebraic simplification that

x(V) T (=1 efup ~ p)/ed) letagst-a=a (53)
weWw
. alc+1)n?+aan __ a(c+Dn?+ala+c+)n+2a+c+1
=24 > 4 (5.4)
neZ nezZ

Next, observe that if we set e{ —a,) = g™ and e(—o) == g™ (my, my e Z, — {0})
in the denominator formula for A{" given in Corollary 3.9 we have

Z q2(mo+m1)n2+(m1—m0)n _ Z q2(mo+m1)'ﬂ2+(3mo+m1)"+mo (5.5)

nel nezZ

(1 — q(mo+m1)n)(l _ q(mo¥m1)n—mo)(l _ q(mo+m1)n—ml). (5.6)

—s

Il
-

n
Replacing 7 by —n leaves the first sum in (5.5) unchanged as the summation
is over Z. We may then rewrite the expression in (5.5) as
Z q2(mo+m1)"2+(mo—m1)" . Z q2(mo+m1)ﬂ2+(3m0+ml)n+mo. (5.7)
neZ neZ

In order to factor the expression in (5.3) into an infinite product, we determine
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when (5.4) and (5.7) are equal. These two combinations of sums are equal if and
only if the following relations hold:

4(c + 1) = 2(my + m,), da = my—my, da-+c-+1)=3my+m,

and2a+c+ 1 =m,.
But these relations hold if and only if
my=c-+2a-t+1leZ,,

(5.8)
m=c—2at1eZ,.

Thus, (5.3) can always be factored into the infinite product given in (5.6) with
m, and m, determined by (5.8). Q.E.D.

As a direct consequence of Theorem 5.1 we may now state:

TueoreM 5.9. Let A be a dominant integral linear form and let V be the
standard module for A" with highest weight \. Then, when we set e(—og) =
e(—ay) = qin x(V)/e(X), we obtain

TT (1 = ) x(VYed) |utcapmstngme

n=1

= I1 (1 —gy™ (5.10)
nsso.i(a+o>(ho)’('§110d(a+p)(ho+h1_))

If (A + p)(B) = (A + p)(hy), we make the obvious modifications; see (5.20).
Proof. First we observe by Corollary 3.9 that

Y (1) ewp — p) [o(-apmst-ap=c

wew

= ﬁ (I —¢*) ﬁ (1—q". (5.11)

n=1 n=1

Dividing both sides of (5.2) by (5.11) we immediately have

X( V)/ e()‘) lc(—uo)-e (—ay)=q

0

=T (0 — g Ma-¢m  [lTa—o

n=1 n=1 n=1
n=0,(2+0)(hy), (A4p) () ) (MOA(A+0) (Bg+hy))

from which the result follows by algebraic simplification of the right-hand side.
Q.E.D.
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We close this section by recovering Theorem 1.11 as well as a similar theorem
for the generalizations and analogs of the Rogers—Ramanujan identities due to
Gordon, Géllnitz and Gordon, and Andrews.

We first study a generalization of Gordon’s generalized Rogers—Ramanujan
identities due to Andrews [1b, p. 111]. These identities assert that: For 1 <
i<kk>21q| <1,and (g =T (1 - ¢)

2 %5 ... 2 oot
NP ENy b Nyt NNy et Ny

)

T Mgeeeesp_y 20 (Q)nl(Q)ng T (Q)nk_l

N | e (5.12)

n=1
n #0,+i(mod 2k+1)

where N; = m; + 1+ -+ myp 4 -
Note that for £ = 2 and 1 <{ 7 < 2 we obtain from (5.12) the original pair of
Rogers—Ramanujan identities.

Now in Theorem 5.9, set 7 = (A + p)(h) and 2k + 1 = (A + p)(hy + &y)-
This immediately implies that

Ahg) =1 —1,

(5.13)
Mhy) =2k — 4.
Since A is dominant integral we must have 1 <{¢ <{ 2k. In order to recover
distinct products, we need only consider 1 <{{ < k. Theorem 5.9 combined
with (5.13) immediately gives:

THEOREM 5.14. Let A be any dominant integral linear form such that A(hy) =
i— 1, Mhy) =2k —i with | <i<k, and let V be the standard module for
A with highest weight X. Then,

[I (1 — g3 X(VYeA) Lo caghmstnge

N | (5.19)

n=1
n#0,+i(mod 2%+1)

Remark. When k =1, (5.15) becomes simply [T._, (1 — g?* 1)1 =
I (1 + g®). That is, TTa_; (1 — ¢** )L is itself the principally specialized
character for the standard module corresponding to the dominant integral linear
form A such that either A(hy) = 0 and Mk) = 1, or AMhy) = 1 and A(R,) = 0.
We have now established:
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TurorReM 5.16.  After multiplication by (1.12), the product sides of the genera-
lized Rogers—Ramanujan identities tn (5.12) become the principally specialized
characters for the irreducible modules for A" corresponding to the dominant integral
linear forms X such that Xhy) =1 — 1, and Mh,) = 2k — 1, where 2 < k and
1 < i < k. (Concretely, A may be taken to be

(2 — k]2 — 1/4) o + (k — 1/2)p.)
Furthermore, expression (1.12) ts itself the principally specialized character for the

standard module for A" corresponding to A such that either ko) = 0 and Mhy)) =1,
or Mhy) = 1 and Xhy) = 0. (For example, take A = —1/4 oy + 1/2p.)

Taking A(k, + k;) = 3 in Theorem 5.16 gives Theorem 1.11.

We finally examine the products which occur in Andrews’ extension of the
Gollnitz—Gordon analog of the Rogetrs—Ramanujan identities which appear in
[1b, p. 115-116).

When written in the same form as (5.12) the product side of these identities is

ﬁ (1 —g")7, (5.17)

n=1
n %£0,+(2i—1)(mod 4k)

withl <i <k
For example, when ¢ = k the identity is
2 ... +N2
0 d-¢ 3 (=g g > o

nwz(mod ) fiyarenstiy g0 (4% yld% s+ (6% Py

@
- 0 a-on
=l
n %0,3-(2k—1)(mod 4k)

where (a; ), = (1 — a)(1 — ag) -+ (1 — ag™?).
In exactly the same way that we proved Theorem 5.14 we obtain:

THEOREM 5.18. Let A be any dominant integral linear form such that Mhy) =
i— 1, and Nh) = 2k — i — 1 with1 <i <k, and let V be the standard module
for A® with highest weight X. (Concretely, X may be taken to be (12 — k[2)a +
(k — 1)p.) Then,

o«

IT @ — @) x(V)/eN) |etcag=ot—ep=a

n=1

= 1 (= fl<i<k—1,
980, 41 m0d 2) (5.19)
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and
= I a-¢/ I a-¢) #i=k (520
n Ek('LnTéd 2Kk) n $0,l?(?&od 2k)

By replacing k by 2k and 7 by 2 — 1 in (5.19) we obtain the products in (5.17).
Thus we also have a theorem analogous to Theorem 5.16 for the Géollnitz—-
Gordon—Andrews identities given in [1b, pp. 115-116}. These generalizations
of the Rogers-Ramanujan identities correspond to only some of the standard
modules. Recently, identities of Rogers—Ramanujan type which correspond to
the rest of the standard modules in (5.19), as well as (5.20), have been obtained
in [2]. Thus, there is a known partition identity of Rogers—Ramanujan type
corresponding to every dominant integral linear form for 4.

In contrast to the infinite families of identities associated with A", only
21 of the dominant integral linear forms for A{® correspond as in Theorem 5.16
to known partition identities. We discuss this situation in Section 6.

6. Tue NuMeraTOR FormMuULA FOR A

Just as in Section 5, we factor the numerator of a principally specialized
character by using the denominator formula, this time for 42. We use the
notation of the second half of Section 3. We prove:

THEOREM 6.1. (numerator formula). Let A be a dominant integral lincar form

and let V be the standard module for A with highest weight ). Then we have

V) Y (=" e(wp — p)/e(A) loag=eisma

weW

0

_ H (1 . qz(n1+2no)n—(nl+4no))(l _ q2(n1+2mo)n—n1)

n=1

% (1 _ q(n1+2n.,)n)(l _ q(n1+2no)n—(n1+uo))

% (1 _ q(n1+2no)n—no)

= Z (_l)l(w)e(wp - P) le(—ml)sqnl—‘ » (6-2)

weWw

where n; = (A 4 p)(h;) ¢ = 0, 1).

Proof. Just as in the proof of Theorem 5.1 assume A = ao, - ¢p where
(¢ + 2a, c —4ac Z,). Note that n, =c 4 2a 4 1 and n, = ¢ — 4a-}- 1. Setting
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e(—o,) = e(—oy) = ¢ in Corollary 3.37 we find after algebraic simplification that

V) T (=1 eep — p)fe(d) lo(apmstoap= (6.3)

weW
— Z q{(c+1)n’+(aa+3c/2+3/2)n
neZ
_ Z q;(c+1)n‘+(sa+sc/z+9/2)n+c+2a+1. (6.4)
neZ

Next, observe that if we set e(—ay) = ¢™ and e(—oy) = g™ (my , mye Z, —
{0}) in the denominator formula for A® given in Corollary 3.32 we have

Z qs(m1/2+mo)n2+(2mo—m1/2)n
neZ
_ Z qa(ml/2+mo)n2+(2m.,+5m1/2)n+m1
neZ

— ﬁ (1 — gHmeremaln—tmaramly) _ g2lmysameln—m) (6.5)

n=1
(my-+2mg)n (my+2mg)n—(mq+mg) (my+2mg) n—mgy
x(1—gq 1 —gq X1 —gq )-

Replacing n by —(n + 1) leaves the second sum in (6.5) unchanged as the
summation is over Z. We may then rewrite the expression in (6.5) as

Z qs(m1/z+m..)n’+(2m.,-m1/2)n _ Z qa(ml/2+mo)nz+(4mn+m1/2)n+mo. (6.6)

neZ neZ

In order to factor the expression in (6.3) into an infinite product, we determine
when (6.4) and (6.6) are equal. These two combinations of sums are equal if
and only if the following relations hold:

9c + 1)/2 = 3(my /2 + m,),
(6a + 3¢/2 4+ 3/2) = 2my — m, /2,
6a -+ 9¢/2 + 9/2 = 4my + my/2,

and
ct+2a+1=m,.
But these relations hold if and only if
m=c—4a+1€eZ,,
! * 6.7)
my=c+2a+1leZ,.

Thus, (6.3) can always be factored into the infinite product given in (6.5) with
m, and m, determined by (6.7). Q.E.D.
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In the same way that we proved Theorem 5.9 from the numerator formula
for AV, we establish:

THEOREM 6.8. Let X be a dominant integral linear form and let V be the
standard module for A® with highest weight A. Then when we set e(—xp) =
e(—a,) = g in x(V)/e(}), we obtain

2] 28]
[ a—-g* 11 (1 —g¢)™ (6.9)
=1 1

n=+1(mod 6) 7750, (40} Fy) (A0 Uy ),

H(A+0) Rgd, A+ RytRy)
(MOA(A+o) (4hg+2hy))

If (A + p)(ho) = (A + p)(hy), we make the obvious modification.
Proof. First, note by Corollary 3.32 that

¢
Y (1" e(p — p) le(cap=el-ad—
wew

(1 — 51 — ) [T (1 — gv). (6.10)

1 n=1

s

n

Dividing both sides of (6.2) by (6.10) we immediately have
X(V)/e) fe-ap=e(-ai)=a

i

(6.11)
= I a—gr [1a—g/a—e,
n 533(=11110d 6) n Eo.nﬁ—g:ol.d:nl,ino, m

+(n,4+n)(I0d 21, +4n,)

where n, = (A + p)(h,), ({ =0, 1).
The result in (6.9) follows by the definition of #; and algebraic simplification
of the right-hand side of (6.11). Q.E.D.

The two identities of Rogers and Slater that are quoted in [1a] but not covered
by Andrews’ theory are

© n2+n «©
A= 11 (1 — g, (6.12)
n=0 (@Dan n=1:n%0,+1,48,18,16(mod 20)
© nin ©
S U 11 (1 — g (6.13)
70 (Densa n=1in5£0,+3,+4,+7,10(mod 20)

Connor [5] has provided a combinatorial interpretation of (6.11) and (6.13).
Note that if we set 7, = 1 and ny = 2 in (6.12) we obtain

=]

[T «a—g) (6.14)

n=1
n=+1(mod 6)
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The products in (6.12) and (6.13) are obtained by setting (1, = (A + p)(h,),
n, = (A + p)(hy)) to be (1,8) and (3,4), respectively, in '

o

[1

n=1;n 20,10, 10, +(0, +n,)

ﬂ1+2nu(mod 2n,+4ng)

(1 - q")_l)

(6.15)

which is just the product in (6.11) divided by the product in (6.14).
‘We have now established:

THEOREM 6.16. After multiplication by (6.14), the product sides of the partition
identities in (6.12) and (6.13) become the principally specialized characters for the
irreducible modules for A® corresponding to the dominant integral linear forms

TABLE I

Identities for AP

Equation Divisibility conditions A= axy+ cp
number on the product side (1o, n) (a; ©)
62 #0, :£1, +4, £3, 5 (mod 10) (,3) —3.9
63 #0, £1, +2, +3, 5 (mod 10) 2,1 )
80 #0, +2, £3, £5, 7 (mod 14) 2,3 -1.9
81 #0, 1, .5, +6, 7 (mod 14) (1, 5 (-%,9
82 #£0, 1, +3, £4,7 (mod 14) 3, 1) G,4
83 #0, 1, +6, £7, 8 (mod 16) (1, 6) (—§,8
84 #0, +2, +4, +6, 8 (mod 16) (2,4) -39
86 #0, +2, +3, £5, 8 (mod 16) 3,2 4.9
9% #0, 13, +4, £7, 10 (meod 20) (3,4 -1,
96 #0, +2, +4, +6, 10 (mod 20) 4,2 G,.D
98 #0, +2, +6, +8, 10 (mod 20) 2, 6) (-%,D
99 #0, +1, £8, £9, 10 (mod 20) (1, 8) -%9
107s #0, +3, +6, 9, 12 (mod 24) @3, 6) (—%,3
108° #0, +2, +5, £7, 12 (mod 24) (5,2 3,3
117 #0, +3, +8, +11, 14 (mod 28) @3, 8) (— 5,5
118 #0, +1, £12, £13, 14 (mod 28) 1, 12) (- ¥,
119 #0, 4, £5, £9, 14 (mod 28) (5, 4) G,
121 #0, +2, +12, +14, 16 (mod 32) 2, 12) (— §,1®
123 #0, +4, +£6, £10, 16 (mod 32) (6,4) G,
124¢ #0, £5, £8, 13, 18 (mod 36) (5, 8) (-3,
125 #0, +4, £7, +11, 18 (mod 36) (1,4 3,5

¢ Before comparing with (6.15), replace ¢ by —g.
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A, and )y , respectively, such that A(hy) = 0, A(hy) = 7, and Ay(hg) = 2, Ao(y) = 3.
(Concretely, A, and Xy may be taken to be —Zog + %p and —%o + Ip, respectively.)

Furthermore, expression (6.14) is itself the principally specialized character for the
standard module for AL® corresponding to X such that Nh,) = 0 and A(h,) == 1.
(For example, take X = —}oy, -+ %p.)

Slater [18] has a list of identities among which there are 21 of Rogers—
Ramanujan type that are not included in Andrews’ theory. All 21 (including
(6.12) and (6.13)) are “‘explained” by a theorem exactly like Theorem 6.16.
For convenience, we just include a table (see Table I) which gives:

(1) the equation number in [18] for the identity,

(2) whether or not we replace ¢ by —gq before comparing the identity
with (6.15),

(3) the pair (my = (A p)(Ay), 1 = (A + p)(Ay)) of integers which when
substituted in (6.15) give the product side of the identity, and

(4) a particular dominant integral linear form A = aoy + ¢p which cor-
responds to the identity as in Theorem 6.16.

We strongly suspect that methods similar to the generalized hypergeometric
series and difference equation techniques of Andrews can be used to extend the
21 identities from Slater’s list in [18] to an infinite family of identities of Rogers—
Ramanujan type such as those in (5.12).

Clearly, one should look for an identity of Rogers—Ramanujan type for each
standard module for each Euclidean GCM Lie algebra.
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