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1. INTRODUCTION 

In this paper we study new relationships between Lie algebra theory and 
certain partition formulas which are important in combinatorial analysis. 
Specifically, we interpret Macdonald’s identities [14] as multivariable vector 
partition theorems and we relate the Rogers-Ramanujan partition identities 
to the Weyl-Kac character formula. We would like to emphasize that the rather 
technical Lie theory that we need has already appeared in earlier papers. This 
work began when one of us, a combinatorialist (S.M.), asked certain questions 
of the other one, a Lie theorist. At the end of the Introduction we shall say how 
the key ideas developed. 

Our starting point is the two-variable “Jacobi theta-function identity” 

fi (1 - q2n)(1 - $n-rt)(l - pen-9-i) = c (-l)n@P. (1.1) 
n=1 nez 

Cheema [4] makes the substitution q2 = uv, t2 = U/V and obtains 

j&l- 
&.P)( 1 - @v”-l)(l - Un-lfp) = c (-l)nUn(la+l)/2vn(n--l)/2. (1.2) 

n@ 

He then interprets (1.2) combinatorially and deduces: 

THEOREM 1.3. 2% excess of the number of partitions of (m, tf) into un evm 
number of distinct pmts of the type (a, a - l), (b - 1, b) or (c, c) over those into 
an oddnumber ofsuchparts is (-1)‘or 0 recording us (m,n) is ofthe type (Y(Y + 1)/2, 
Y(Y-1)/2), OY not. 
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16 LEPOWSKY AND MILNE 

If we set u = Q and v  = @ in (1.2) we obtain Euler’s identity 

(1.4) 

where by definition, cp(p) = nz=“=, (1 - 4”). 
This identity relates the partitions of a natural integer into an odd or an even 

number of distinct positive integers. A combinatorial proof of (1.4) was first 
given by Franklin [8]. A recent exposition may be found in [lb]. The essential 
notion is the definition of a “dot map,” or array of dots, which corresponds to a 

partition, and associated operations to be performed on these arrays. 
Cheema suggests looking for a direct proof of Theorem 1.3 using dot maps. 

Zolnowsky l-191, supplies just such a proof which extends the notion of dot maps 
to two-dimensional vector partitions. 

Theorem 1.3 has an elegant analog that may be deduced from the “quintuple 
product identity” 

fil (1 - Q”)(l - qY)(l - fIn-it-i)(l - qan-itz)(l - qsn-it-s) 

m*+?o/2 =Zz” ( t3n _ t-3+1). 
(1.5) 

This identity, the origin of which may be traced to an elliptic sigma formula 

of Weierstrass, has a very interesting history, which can be found in the last 
section of [3]. I f  we set t = z-l and 4 = uv2 we find that 

m 
fl (1 - &2n)(l e&,2+1)(1 - Un--1v2~-l)(l - U2n-lv4n-4)(1 -u2n-lv4n) 

?L=l 

U?W3n+l)/2v”(3n-2) _ 
c 

.n(8n+lt/2,(n+l,(3n+l). 

naz 

A combinatorial interpretation of (1.6) immediately gives: 

THEOREM 1.7. The excess of the number of partitions of (m, n) into an even 
number of distinct parts of the type (a, 2a), (b, 2b - l), (c - 1, 2c - I), (2d--- 1, 
4d - 4), or (2e - 1,4e) over those into an odd number of such parts is 1 or - 1 
if (m, n) is of the type (r(3r +. 1)/2, ~(37 - 2)) or (r(3r + 1)/2, (Y + 1)(3r + l)), 
respectively, and 0 otherwise. 

Cheema [4] states similar results.Using Zolnowsky’s dot map proof of Theorem 
1.3 as a guide, we give in [15] a direct combinatorial proof of Theorem 1.7. 

One main stimulus for our work has been to look for a generalization of 
Theorems 1.3 and 1.7 to higher-dimensional vector partitions. Ideally, this 
generalization would result from extending (1.2) and (1.6) to any number of 
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variables in such a way that the coefficients of the monomials on the sum side 
are always 1, - 1, or 0. In the last few years, there has been a remarkable gene- 
ralization of Jacobi’s d-function identity, in the setting of Lie algebras, which 
enables us to carry out our extension of Theorems 1.3 and 1.7. 

To motivate this recent development, consider Euler’s identity (1.4) and 
Jacobi’s identity 

f&)8 = .; (-1)“(2?2 + 1) dn(n+l)la. (1.8) 
+ 

(Z, is the set of nonnegative integers.) These are both obtained by one-variable 
specialization of (1.2). 

Dyson discovered a family of multivariable identities generalizing (1.1). 
From these, he derived formulas, generalizing (1.8), for a certain infinite set of 
powers of ~(4). But as he describes amusingly in his article “Missed Oppor- 
tunities” [6], he did not recognize these powers as the dimensions of the simple 
“classical” Lie algebras, so he missed the connection with Lie theory. Inde- 
pendently, Macdonald [14] found formulas for r@‘mg for all complex simple 
Lie algebras g, and in fact he obtained these identities as one-variable specializa- 
tions of respective multivariable identities. He also obtained multivariable 
identities generalizing (1.5). 

Kac [I lb] and Moody [17b] independently recognized Macdonald’s un- 
specialized identities as the precise analogs of Weyl’s denominator formulas, 
for the infinite-dimensional “Euclidean” GCM Lie algebras (defined by gene- 
rators and relations using a symmetrizable “generalized Car-tan matrix”). The 
GCM Lie algebras were introduced independently by Kac [lla] and Moody 
[17a], and they are alternatively known as the Kac-Moody Lie algebras. Kac 
[llb] also proved Weyl’s character and denominator formulas for all GCM Lie 
algebras. (For a bibliography on GCM Lie algebras, see [9, 12b].) 

As the reader may be unfamiliar with these ideas, we give a brief survey of 
GCM Lie algebras, and the Weyl-Kac denoninator and character formulas 
in Section 2. 

Macdonald’s unspecialized identities are just what one needs to generalize 
Theorems 1.3 and 1.7. Recall, however, that to obtain Theorem 1.3, we must 
rewrite (1.1) in the form (1.2). The same kind of reformulation is needed for the 
quintuple product identity (recall (1.5) and (1.6)). Similarly, Macdonald’s 
unspecialized identities must first be analogously rewritten before we may 
regard them as higher-dimensional vector partition generating function identities 
and “read ofI” analogs of Theorems I .3 and 1.7. The relevant rewriting procedure 
has already been introduced in [12b]. The method is to use as new variables the 
formal exponent& e(-a), where a ranges through the simple roots of the 
GCM Lie algebra. When applied to the Lie algebras sI(2, C)” and AL2’ (see 
Section 3), this procedure gives (1.2) and (1.6), respectively. (sI(2, C)  ̂ is also 
known as A:‘).) The situation for these two Lie algebras is typical. For example, 
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a direct application of a general Lie algebra principle implies that the minomials 
in the sum side of every Macdonald identity (using as variables e(-simple roots)) 
always have as coefficients 1, - 1, or 0. When viewed combinatorially, this fact 
says that in the context of our general multivariable vector partition theorem, 
the excess of the number of suitably restricted partitions of a vector into an even 
number of allowable parts over those into an odd number of such parts is 1, 
-1 or 0 (cf. [17b]). The types of parts allowed in the partition are controlled 
by the roots of the Lie algebra. Any number of variables can be achieved. 

In Section 4 we state and prove an abstract vector partition theorem. In 
addition, we study the important special cases Ail). 

In [9], Macdonald’s identities are shown to be a consequence of the Euler- 
Poincare principle and certain involved computations of homology. A vector 
partition interpretation of the constructions used suggests that there should be 
a conceptually simpler “combinatorial” proof of the denominator formula. 
Such a proof is given in [16] for the case of Ail’. This simpler proof of the 
denominator formula for Ai” suggests that the Euler-Poincare principle combined 
with elementary homology computations provides an alternative to using direct 
one-to-one correspondences to show that two collections of objects are the same 
size. 

To this point, we have used Lie algebra theory to greatly extend the scope of 
classical results dealing with higher-dimensional vector part&ions. Now we 
reverse the situation, and exploit what are perhaps the two most famous partition 
identities in combinatorics to discover new results about Lie algebras. 

Consider the Rogers-Ramanujan identities 

r&p 

n (1 - q5& - q5n-4) = l + $1 (1 $.(l -*") ' (1.9) 
n>1 

a 

I--J (1 -q"& -p-3) = l + g1 (1 -,)5+;1 -qa) * (1.10) 
&l 

These identities have a long and colorful history. For a combinatorial inter- 
pretation and background, see [lb, Chap. 71. 

So far, only the denominator formula for infinite-dimensional GCM Lie 
algebras has been mentioned. While this formula gives a product expansion of the 
denominator in the multivariable Weyl-Kac character formula, there is in 
general no such expansion for the numerator. However, the search for a Lie 
algebraic context in which to study the Rogers-Ramanujan identities leads to a 
product expansion for the numerator suitably specialized, of the character formula 
of every “standard” irreducible module for Ai’) and Ai2’. (The standard modules 
were introduced by Kac in [Ilb].) Indeed, when we set all the variables equal 
in the numerator, it turns out that we obtain the denominator with each variable 
replaced by a certain nonnegative integral power of a single variable. Thus, 
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by the denominator formula, the appropriately specialized numerator factors 
into an infinite product. The exact formulation and proof of this “numerator 
formula” are given in Sections 5 and 6. In particular, when all the variables are 
set equal, the character of the module may be written as a single infinite product. 
The process of setting all the variables equal is called “principal specialization,” 
as this specialization arises in a canonical way from Kostant’s “principal” 
automorphism; see [12b, Sect. 17J 

With our numerator formula in mind we can state: 

THEOREM 1.11. After multiplication by 

jJ (1 A qsn+l) 
&O 

= l-J (1 + 4% (1.12) 

the left-hand sides of the Rogers-Ramanujan identities (1.9) and (1.10) become the 
principally specialized characters for a certain pair of irreducible modules for A:‘). 
Furthermore, expression (1.12) is itself the principally specialized character for a 
certain module for A:‘). 

We do not have a Lie algebraic proof of the Rogers-Ramanujan identities; 
what we do know is that the product sides are essentially principally specialized 
characters. Thus, the Rogers-Ramanujan identities are related to Kostant’s 
principal automorphism. 

There are many generalizations and analogs of the Rogers-Ramanujan 
identities, due to Gordon, Giillnitz and Gordon, and Andrews (see Andrew’s 
book [lb]). “Most” of these are “explained” just as above, using different 
modules for A:‘). We present in detail these examples and indicate which modules 
they correspond to in Section 5. 

In [la] two identities of Rogers and Slater are quoted that are not covered by 
Andrews’ theory. They turn out to be “explained” just as the Rogers-Ramanujan 
identities, but this time, by a pair of modules for A:‘). Now Slater [18] has a list 
of identities among which there are 21 of Rogers-Ramanujan type but not 
included in Andrews’ theory. All 21 (including the Rogers-Slater pair) are 
“explained” by Aiz); see Section 6. 

Ai’) and Ai’) are not the only GCM Lie algebras for which there is a numerator 
formula; in [12c], an abstract argument generalizes our numerator formula to 
all GCM Lie algebras. Kac has pointed out that this abstract argument is in fact 
classical. 

The statements of many of the results considered here do not really concern 
the GCM Lie algebras, but concern instead only the “atline root systems” 
(see [14]), together with the imaginary roots (introduced in [lla, 17a]; see 
Section 2) and p (introduced in [l 1 b]). 

The Rogers-Ramanujan identities focus attention on the standard modules 
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for A?‘. These modules are studied in [7], where it is discovered that the weight 
multiplicities for a certain modules for Ai’) are precisely given by the classical 
partition function. This fact leads to certain ideas which illuminate the structure 
of certain of these Lie algebras [13]. These theorems appear to shed new light 
on the original Rogers-Ramanujan identities. These connections between Lie 
algebras and combinatorics are leading to results in both directions. 

Now we would like to say how the key ideas in this paper evolved. S.M. 

raised the question whether we could generalize the vector partition Theorem 
1.3 to any number of variables. J.L. recognized the corresponding formula, 
which was similar to (1.2), as the Ai” special case of something he had just used 

in [12a, b]. This was a general rewriting procedure for the denominator formula 
of a general GCM Lie algebra. The resulting vector partition identities and 
examples were then straightforward. 

Independently, both S.M. and J.L. were trying to understand the Rogers- 
Ramanujan identities and relate them to their own work. After the work on 

multivariable vector partitions, S.M. suggested that it would be interesting to 
study those cases in which the numerator of the character formula factors into a 
product. J.L. later suggested trying to factor a suitably specialized numerator. 
This first specialization did not work. S.M. suggested trying a sequence of 
specializations, one of which was to set all the variables equal. Robert L. Wilson 
suggested using yet a different specialization .The specialization in which we 

set all the variables equal turns out to work. At this point both S.M. and J.L. 
independently discovered and proved that for every standard module for Ai”, 
the numerator of the character formula factors after all of the variables are set 
equal. 

2. AN EXPOSITION OF GCM LIE ALGEBRAS AND STATEMENTS OF THE 
DENOMINATOR AND CHARACTER FORMULAS 

After introducing the reader to the affine GCM Lie algebras, we shall present 
the general context in which we set up the denominator and character formulas. 
The theory of GCM, or Kac-Moody, Lie algebras originated in [lla, 17a], 
which the reader should consult for details. The reader is also referred to [lo] 
for elementary background on Lie algebras in general and complex semisimple 
Lie algebras in particular. For further bibliography on GCM Lie algebras see 
[9, 12b]. Unless otherwise noted, all vector spaces, Lie algebras, and modules 
are over C. 

Let g be a semisimple Lie algebra, and let E, be the Car-tan subalgebra, of 
dimension, say, 1. The restriction to b of the Killing form of g is nonsingular, 
inducing a nonsingular, symmetric bilinear form (*, *) on the dual b*. This form 
is real-valued and positive definite on the real span of the roots of g with respect 
to b. Choose a positive system of roots, and let 01~ ,..., 01~ E b* be the corresponding 
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simple roots. The Cartan matrix of g is the I x I integral matrix A given by 

The matrices which arise in this way (as g varies) are called the classical Cartan 
mfztrices of jide type. 

Assume that g is simple. Define Q to be the infinite-dimensional complex 
Lie algebra 

$j = g @ qt, t-l] 

obtained by tensoring g with the algebra of finite Laurent series in one indeter- 
minate t. 

The decomposition 

is a Lie algebra grading of 8. Let D be the corresponding degree derivation of 
Q; i.e., D acts as multiplication by j on g @ tj. Let & be the natural semidirect 
product Lie algebra @D @ 8, and let l& be the (I + 1)-dimensional Abelian 
subalgebra @D @ I$ so that fil has a natural “root space decomposition” with 
respect to b1 . Specifically, for each p E ql*, define the root space @ C 8, cor- 
responding to p to be (X E fil 1 [h, X] = @z)x for all h E IJ~}. We call p a root of & 
if ~1 # 0 and if @ # 0. Let A C &* be the set of roots. The Lie algebra fil has 
the root space decompo&m 

Identify b* with the subspace of TJ~* consisting of the functionals which vanish 
on D. The roots fall mutually into two classes: those which do not vanish on $ 
and those which do. The former comprise the set AR of real roots, and the latter, 
the set AI of imuginury roots. The set A,, of real roots which vanish on D are 
just the ordinary roots of g with respect to lo. Define y E bl* to be the functional 
which is 1 on D and which vanishes on I). Then the real roots of & are exactly 
the functionals of the form b + ‘p, where j E Z and p E A,, , and the imaginary 
roots of & are the functionals of the form jy, where j E H, j # 0. Note that for 
jEEandp,EA,, 

“hrk 91 = 9’ @ tj 

(where g* C g is the ordinary root space of g with respect to l)); and for j E Z, 
j # 0, 

6:’ = lj @ t5. 
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Also, 
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The root spaces for the real roots are all one-dimensional, while the root spaces 
for the imaginary roots are all Z-dimensional. 

Let A+ C d be the union of a fixed positive system in d,, with the set of roots 

in d which are positive on D. Call d, the set of positive roots of $r . Those 
positive roots which cannot be written as the sum of two positive roots are called 

the simple roots of fir . There are exactly I + 1 of them: the I simple roots aI ,..., 01~ 
of g, together with the functional “0 = y  - #, where 9 E d is the highest root of g. 

Every positive root is a nonnegative integral linear combination of the simple 
roots, which form a basis of I&*. The restrictions (us / I&..., (or 1 h are of course 
linearly dependent over iz. The (2 + 1) x (I + 1) matrix a given by 

(i, j = O,..., 1) is called the Cartan matrix of Q (or of &). As g varies, the resulting 
matrices are called the u$ze (Cartan) matrices, and the Lie algebra 3 (or their 
central extensions fi = l(s) to be defined below) are called the u@ne Lie algebras. 
For g of Cartan type Xr , fi is denoted Xl11 (cf. [l lb]). For example, if g = A, = 
sI(Z + 1, C), then a = Afn. 

For each i = O,..., 1, there is a unique element xi E h such that (xi , h) = ori(h) 
for all A E h; here (*, .) denotes the Killing form of g. There is a unique rational 
multiple Z$ of xi such that c&‘) = 2. We may choose elements ei , fi E ij such 

that e, lies in the root space @, fi E &“i, and [ei , fi] = hi’. Then [hi’, e3’] = 
Aiief , [hi’, fj] = -Aijfj and [et , fj] = S&’ for all i,j = O,..., 1. The elements 
hi’, ei and fi generate fi as i ranges from 0 to 1. We shall call them cunonicuZ 
generators of 3, 

We now present the GCM Lie algebras, which considerably generalize the 
finite-dimensional semisimple and the aRine Lie algebras. 

Let z~z+, ad let A = (Adt.~,,...,o be an (I + 1) x (I + 1) (generalized) 

Cartan matrix. This means that Aij EZ (the set of integers) for all i and j, 
Ai = 2 for all i, Ai < 0 whenever i # j, and A,, = 0 whenever Aij = 0. 
(Later we shall assume that A is symmetrizable.) 

We define the (possibly infinite-dimensional) Lie algebra I = I(A) by the 
following procedure: Take I, to be the Lie algebra defined by 3(Z + 1) “canonical” 
generators hi , ei , fi (0 < i < Z) subject to the relations [hi , hi] = 0, [ei , f  = 
Guha, [Zii,ej] =Aiiei, [&,fj]=-Aijfiforalli, j~(O,...,Z},and(adei)-~~~+lej=O= 
(ad fi)-++lfj whenever i # j. For every (I + l)-tuple (n, ,..., n,) of nonnegative 
(respectively, nonpositive) integers not all zero, define Ir(% ,..., nl) to be the 
(finite-dimensional) subspace of I, spanned by the elements 

PiI , [eia ,..., kicel , ei,] 9. *II 



CLASSICAL PARTITION IDENTITIES 23 

(respectively, 

where e, (respectively, fj) occurs 1 ni 1 times. Also, let Z,(O,..., 0) be the Abelian 
subalgebra spanned by h, ,..., h,, and take Zr(no ,..., nr) = 0 for any other 
(I + 1)-tuple of integers. Then 

11 = JJ 
(n,....,nl)4+‘) 

Idno ,**-, n,); 

this is a Lie algebra gradation of I, ; and the elements h, ,..., hl , e, ,.,., e, , 
fa ,..., fi are linearly independent in I,. The space I,(0 ,..., 0, 1,0 ,..., 0) (respec- 
tively, I,(0 ,..., 0, -1, 0 ,..., 0)) is nonzero and is spanned by ei (respectively, fJ: 
here &l is in the ith position. 

There is a unique graded ideal rr in I1 maximal among those graded ideals 
not intersecting the span of ht , ei andfr (0 < i < I). Let I = I(A) be the Z(r+l)- 
graded Lie algebra 1&4)/r,. The images in I of h, , et, fd and I,&, ,..., n,) shall 
be denoted hi , e, , fi , and I(n,, ,..., nr), respectively. Let lj be the span of h, ,..., h, 
in 1. The space I(n, ,..., By) has the same (finite) dimension as 1(--n, ,..., -nr). 

If A is a classical Cartan matrix of finite type, then r, = 0 and I(A) is the 
finite-dimensional semisimple Lie algebra whose Cartan matrix is A. 

Let Di (0 < i < Z) be the ith-degree derivation of I, that is, the derivation 
which acts as scalar multiplication by ni on I@,, ,..., nr). Let ba be the ((I + l)- 
dimensional) Abelian Lie algebra of derivations of I spanned by D, ,..., DI , 
and let b be a subspace of ‘Do . Form the natural semidirect product Lie algebra 
16 = b x I, and let @ be the Abelian subalgebra b @ 5. Define 01~ ,..., 01~ E (@)* 
by the conditions [h, ej] = or,(h)ei for all h E @’ and i~(0,..., I>. Note that 
aj(hl) = Aij . Call 21 an admissible subspace of b, if OL,, ,..., 0~~ are linearly in- 
dependent. Admissible subspaces exist because b0 is admissible. Fix an admissible 
subspace b. 

If A is classical of finite type, then we may choose b = 0, so that I” = I, 
and then the roots, Weyl group and other concepts discussed below simply 
reduce to the usual classical ones for 1. 

For all q E (@)*, define 

P = {X E I 1 [h, X] = v(h)x for all h E p}. 

Then p, Id] Cl*+* for all (p, + E @)*; 10 = fj; e, E la* and fi E I-W< for all 
i E {O,..., 1); dim 1~ = dim I-0 for all ‘p E (@)*; and the decomposition 

I = u (a,.....n@+‘) I(n, ,..., nJ 
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coincides with the decomposition 

I = LI. P, 
m&)* 

with 1~ = I(n, ,..., n,) when qo = ~~=,, niori . 
Let A = {TE (&* / 9) # 0 and 1~’ # 0}, the set of roots of I. Let A+ (the 

set of posit& roots) be the set of roots which are nonnegative integral linear 
combinations of cz,, ,..., q , and let A- = -A+ (the set of negative roots). Then 
A =A+uA-,and 

The center of I is the subspace of 5 C fje on which all the roots of I vanish. 
For each i E {O,..., Z}, define the linear automorphism ri of @)* by the con- 

dition rip = 9) - q~‘(h&~ for all 9) E (Se)*. Then rioli = -01~ , and yi acts as the 
identity on the codimension 1 subspace consisting of all q~ E (@)* such that 
I = 0. Also, ~i0l.j = ~rj - Aiiai . Let W (the Weyl group) be the group of 
automorphisms of @)* generated by Y,, ,..., rI . Then W is a Coxeter group with 
generators ri and relations which can be given in terms of the Cartan matrix A. 
Each element of W preserves A, and W is naturally isomorphic to the group of 
linear automorphisms it induces on the span of A. 

Define the set AR of real roots to be the set of Weyl group transforms of 
c+, ,..., 01~ , and define the set A, of imaginary roots to be A - A, . Then dim 
1~ = 1 for all q~ E AR , but this need not be true for q~ E A, . We have WA, = A, , 
WA1 = A,, A, = -A,, AI = -A, , and W(A, n A+) = AI n A+. 

For all w E W, define 

sothat@,CA,nA+. Let n(w) be the number of elements in di, . Let Z(w) be 
the kngth of w, that is, the smallest nonnegative integer j such that w can be 
written as rilri, . . * ri, (0 < i, < 1). Then n(w) = Z(w) (a finite number). 

Define p E (@)* to be any fixed element satisfying the conditions p(hi) = 1 
for all i E {O,..., Z}. For every finite subset @ of A, define (@) E (tj@)* to be the 
sum of the elements of 0. 

We now list some useful facts from [9, Sect. 21: 

LEMMA 2.1. For all w E W and i E (0 ,..., I>, (sD~~~) = ri(Qur) + (a,,). 

LEMMA 2.2. Let w E W, let CD be a$nite subset of A+ , and let y E span A be a 
finite sum of not necessarily distinct positive imaginary roots. If (Qp,) = (CD) + y, 
then y = 0 and @ = Gp, . In particular, CD consists of real roots. 



CLASSICAL PARTITION IDENTITIES 25 

LEMMA 2.3. For all i E (0 ,..., I), rip = p - or, . For all w E W, <@Jo) = 

P - wp. 

LEMMA 2.4. The only Weyl group element which fixes p is the identity. 
Equivalently, if wlp = w,p (wI , w2 E W), then w, = eu, . 

LEMMA 2.5. If wl, w, E W and @“, = 4Dwa, or even if (Qp,,) = (@,,), 
then w1 = w2. 

Define n = uEd+ 1~; n- = IJed- Ia. Then I = n- @ $ @ n. 
Let V be an fjd-module (for example, an P-module regarded as an @-module 

by restriction), and let /J E (@)*. Define th e weight space VU C V corresponding 
to TV. to be {V E V ( h 0 w = p(h)w for all h E @}. .Call p a weight of V if ‘I’, # 0, 
and call the nonzero elements of V, weight vectors with weight p. 

An P-module V is called a highest weight module if it is generated by an 
n-annihilated weight vector v. In this case, the highest weight vector v is uniquely 
determined up to nonzero scalar multiple, its weight is called the highest weight 
of V, and its weight space is the highest weight space of V. The highest weight 
space is one-dimensional, V is the direct sum of its weight spaces, which are all 
finite-dimensional, and the weights of V are all of the form p - ‘&,, ntai 
(ni E if!,), where p E (@)* is the highest weight. (Note that this last condition 
determines the highest weight.) 

An P-module R is called standard if R is a highest weight module with a 
highest weight vector x such that there exists tt EZ+ with fin o x = 0 for all 
i E (O,..., l}. The trivial one-dimensional module is standard; its highest weight 
is 0. Let P be the set of domina& integral linear forms, that is the set of all h E (@)* 
such that X(hJ E Z, for all i E {O,..., 1). Then the highest weight of a standard 
I”-module lies in P, and for all /J E P, there exists a standard P-module with 
highest weight p. If A is a classical Cartan matrix of finite type and b = 0 (see 
above), then the standard P-modules are just the finite-dimensional irreducible 
l-modules. 

Assume now that the Cartan matrix A is symmetrizable, i.e., that there are 
positive rational numbers q,,,...,~$ such that diag(qs,...,q,)A is a symmetric matrix. 

For p E P, there is exactly one (up to equivalence) standard P-module with 
highest weight p, and it is irreducible. Thus P bijectively indexes the set of 
equivalence classes of standard P-modules. 

The affine Lie algebras Q defined above are not quite GCM Lie algebras. 
We must elaborate on this point: 

Recall the afline matrix A, where A is the classical Cartan matrix of the simple 
Lie algebra g. A is a symmetrizable Cartan matrix. Let I be the corresponding 
GCM Lie algebra I(A), and call this algebra Q. Since the rank of A is 1, the 
center c of 9 is a one-dimensional subspace of 6. There is an exact sequence 
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in which T is determined by the condition that it send the canonical generators hi, 
e, , fd for 6 to the respective canonical generators hi’, ei , fi for Q. The map rr 
sends fj onto Ij, and the kernel c of VT lies in 6. There is a natural identification 
between the set d of roots of 6 and the set d of roots of 5 (or rather of QJ so that 
for each root p, z- maps the root space Q” isomorphically onto the corresponding 
root space fir” C 3. Under this identification, the real and imaginary roots 
identify properly, as do the positive and simple roots. 

The reason for introducing the central extension fi of Q is that we need the 
standard modules, and fi does not in general act on the standard modules for @. 

The identification between the set of roots of $j and the set of roots of ?j 

extends to a natural linear isomorphism between the span of d in @)* and Ijr*. 
We use this isomorphism to identify these two spaces. Now the Weyl group W 
acts on &)* and preserves d, and we want to see the action of Won I&*. Note 
that I&* is equipped with a singular symmetric bilinear form {., .} defined by 
the condition 

b 31 = (9’ I P, 4 I !I>, 

for all v, # E I&*. The radical of (., .} is one-dimensional and is spanned by y. 
Also, this form is real-valued and positive semidefinite on the real span of d. 
Recall that for i, j = 0 ,..., I, 

Hence, ri acts on hr* as the ordinary geometric reflection with respect to the 
nonisotropic vector OIi ; i.e., 

for all v  E bl*. This gives the action of W on Ijr*. Note that in practice, the 
formula riai = 01~ - &,a, is easy to use, assuming that we know the integers xij . 

We now have the concepts needed to state Macdonald’s identities and the 
Weyl-Kac denominator and character formulas. 

Return to the setting of the general GCM Lie algebra I (with symmetrizable 
Cartan matrix). The dominator formula asserts: 

THEOREM 2.6. We have 

I-J (1 - e(-y))dimlO1 = w~w(-l)z(w) e(-(CD,)), 
&A+ 

where the symbol e(.) is a formal exponential. This identity takes place in the formal 
power series ring E[[e(-&,..., e(-cl,)]] in the 1+ 1 analytically independent 
variables e( - ai). 
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Remark. Recall that -(@*) = wp - p. 
Weyl’s classical denominator formula is the special case of this theorem when I 

is finite-dimensional semisimple. (In this case, the power series involved are 
polynomials; i.e., they terminate.) Macdonald’s identities constitute the special 
case of Theorem 2.6 when I is atline, or rather a little more generally, when I is 
“Euclidean.” 

We shall now rewrite the denominator formula as in [12b, Sect. 131. 

Notation. Write ui = e(-ai) for all i = O,..., 1. 
Each identity in Theorem 2.6 may be written as an equality between two 

formal power series in u0 ,..., ul . It is convenient to introduce the following: 

Notation. For every integral linear combination v = &, ciai of the ai , 
let t,(v) = c5 (j = O,..., I). 

Theorem 2.6 can clearly be reformulated as follows: 

COROLLARY 2.7. In Z[[u,,..., uz]], 

DEFINITION. Let (s,,,...,sJ be a sequence of positive integers. Let q be an 
indeterminate. The homomorphism of power series rings 

al ,***, %I1 - mdl 
which sends ui to q*i for all i = O,..., 1 is called the q-specialization of type 
(so ,.**, sz). 

We clearly have: 
The q-specialization of type (s, ,..., st) of Corollary 2.7 asserts: 

COROLLARY 2.8. 

We next give the character formula: 
Let V be a standard module for I”. Recall the weight spaces V, C V. The 

weights p of Y lie in (fj@)*. 

DEFINITION. The ckaructer x( I’) is the generating function of the weight 
multiplicities of I’, that is, 

XV) = ,$#)* (dim vu> 44 

(Recall that dim V,, is always finite.) 
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Here is the Weyl-Kac character formula (Weyl’s character formula is the 
special case in which 1 is finite-dimensional semisimple): 

THEOREM 2.9. Let X be a dominant integral linear form (i.e., h E P C (@)*), 
and let V be the standard (irreducible) module with highest weight A. Then 

x(V) = Low (-lY(“) e(w@ + P> - P) 
ILw (-lPJ) 4w - P> ’ 

Remark. Note that the denominator is the expression treated in Theorem 2.6. 
In order to reveal the character formula as an equality of formal power series, 

we divide both sides by e(h): 

COROLLARY 2.10. In the notation of Theorem 2.9, 

x(V) - XweW (-1YW) e(w@ + P> - (A + PI) 
44 cwsw (-lYW’ 4Wf - P) * 

Both the numerator and denominator on the right-hand side are formal power series 
m uO ,..., uI , as is the left-hand side. 

Remark. The last assertion for the numerator follows from the fact that 
w(h + p) - (A + p) is a nonnegative integral linear combination of --a,, ,..., --(11z ; 
this fact follows from [9, Proposition 6.11, because h + p E P. 

The analog of Corollary 2.7 is: 

COROLLARY 2.11. In Z[[u,,..., u,]], the right-hand side in Corollary 2.10 is 

Hence: 

COROLLARY 2.12. The q-specialization of type (s,, ,..., sI) of the right-hand side 
in Corollary 2.11 is 

We have mentioned above that Macdonald’s identities occur in the generality 
of the “Euclidean Lie algebras.” Instead of detailing this generalization of the 
affine Lie algebras (the reader may consult the exposition in [12b], for example), 
we shall discuss in Section 3 only the one special case that we shall need. 
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3. THE Two EUCLIDEAN LIE ALGEBRAS FOR WHICH I = 1 

In this section, we shall concretely describe those concepts from Section 2 
that are needed to carry out our arguments for the two “simplest” infinite- 
dimensional GCM Lie algebras, Ai” and Aha’. 

First we shall describe the denominator and character formulas for A:‘). 
This will illustrate Section 2 in a concrete setting. 

We use the usual basis for sI(2, C): 

1 0 
h= 0-l’ ( 1 e = (i i), f = (y i) + 

Ch is our Cartan subalgebra, Ce is the root space for the positive root, and Cf 
is the root space for the negative root. The Car-tan matrix is the 1 x 1 matrix (2). 

Recall that, in the notation of Section 2, 

eI(2, C)” = sI(2, C) @ qt, t-l]. 

This is just the Lie algebra of 2 x 2 traceless matrices with finite Laurent series 
entries. Recall also that sl(2, C); is the semidirect product of the span of the 
degree derivation D with ~42, C)-. (W e are of course freely using the notation 
of Section 2.) The roots of eI(2, C); with respect to b, = CD @ @h are easily 
described using the basis {a1 , r} of Q1*: 

A ={j~+hor,IjEE;h=o, fl;jr+~~lZo~~ 

A, = {jr + ha+ I jEE, h = !cl>, 

AI =(jyIjEZ,j#Ol. 

Note that d, = {&a,}. 

In the present case, since 1 = 1, the imaginary root spaces are one-dimensional. 
Let j E Z. Then the root space in eI(2, C)- for the root fi + $ is spanned by 
e @ d; the root space for fi - c+ is spanned by f @ tj; and if j # 0, the root 
space for jr is spanned by h @ tf. We have 

The simple roots of eI(2, C); are 0~1 and cq, = y - q . The Cartan matrix is 
A = (-i -i). Note that y = q, + 4 . 

See Fig. 1 for a useful picture of A. The roots are represented by the dots in the 
plane b,*. The positive roots are those in the region enclosed by the dashed 
boundary. The real roots are the roots in the outer two columns and the imaginary 
roots are those in the inner column. 
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FIGURE 1 : ROOT SYSTEM FOR k; 
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Recall that we have the exact sequence 

0 -+ c -+ A>) + SI(2, a=)- + 0 

and that this enables us to identify the root system of A?’ with that of 542, C)“. 
Also, the Weyl group W acts naturally on I&* as follows: W is the group 

generated by the two reflections r0 and rr in b,* given by 

Y(po = a0 - Aooao = ---do ) 

T-gal = cd1 - a 01010 = % + 2%3, 

Y1'yo = do - B 10% = 010 + 33, 

Ylcil = cd1 - &a, = -q . 

(3.1) 

Recall that the real span of 01~ and olr carries a positive semidefinite geometry for 
which y  is in the radical, and that r. and rr are the geometric reflections with 
respect to the nonisotropic vectors % and a1 . Observe that 

r&J = y = r,y, 

so that W fixes y. Also, 

(Y~YO)LxO = -Y1oLo = -010 - 201, = CYo - 2y. 

Hence rlrO fixes every multiple of y, subtracts 2y from 0~~ and adds 2y to 0~~ . 
Thus Y,Y, is a “vertical shear.” The power (Y~Y~)~ (m EZ) clearly is the vertical 
shear which tixes every multiple of y  and adds 2my to 0~~ . (This holds even if m 
is negative.) 
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CONCLUDING REMARKS 

From Table II (see Appendix), it is apparent that in many cases Ag) = 4&-l) 
when 11 F/I = k. The following result explains this phenomenon. By a star S, 
we mean a tree having m edges and at most one vertex of degree exceeding 1. 

FACT 9. If F z’s a union of stars and II F II = k then 

&d = 4,y-1) 

Proof. We first calculate 

&Z-l’ = m, AL? = 4m, 7+%z) = m, 

which implies 

gy-1, zzz 1, B$z’ = 4. 

The desired result now follows by Fact 8. g 

Note that by Fact 7, for 11 F I[ = k - 1, 

A’,‘<0 i f f  F is a tree, 

A&() i f f  F = 2P,. 

We remark that it is possible to have two different forests F and F’ such that 
Ajj”) = A$) for all k. An example of such a pair is 

for which 

F = S, u 3S3 v 3S, u S,, , 
F’ = 4s, u 4s, ) 

IIFII = IIF’II = 36, n(F) = r(F’) = 21234, 

Aip35) = A’,3;’ = 211 . 33. 37, 

AI,““’ = A$) zzz 213 * 33 * 37 (by Fact 9), 

@’ = A!$?) = p-33.31. 

Since we know 6,-,( 2’) = 0 for all T, then for k = n - 1 the theorem reduces 
to the simple identity 

c 0, Y) - c 4el , e2) = II Tl12, (43) 
(x.v)CT {e,,e&edges of T  

where d(el , e2) is defined to be the length of the path joining the edges e, and e2 . 
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Note that the set LI, of positive roots of sl(2, C); can also be described as 

or 
(-1 +jr,ir, a1 + (.i - l>r Ii 2 l>, (3.5) 

{j%t-(j- 1)%,jol,+.bl>(.i- l)%+&lIjblh (3.6) 

In this case, for v  E d, , dim 1~ = 1. Recall that W = W, u r,W,, , Z(w,J = 2m, 
and l(r,w,) = 2m + 1. 

Substituting expressions (3.3), (3.4), and (3.5) into Theorem 2.6 yields: 

COROLLARY 3.7. The denominator formula for Ai” may be written in terms 

offflandyas 

g1 (1 - 4-mu - 4-IF 4-%>P - 4-r)n 4-4-Y 

= zz e( -al)2n e( -y)n(2n-1) - ,C, e( -g)(2n+1) e( -y)(n+1)(2nf1). (3.8) 

Remark. If  we set e( --ad = qt, e( -7) = p2 and simplify then (3.8) gives (1.1) 
of the Introduction. 

Using expressions (3.3), (3.4), and (3.6) with Theorem 2.6, we obtain: 

COROLLARY 3.9. The denominator formula for Ai” may be written in terms 
of q, and cy1 as 

n (1 -‘e( --a$ e( -01$)( 1 - e( -aa)n--l e( --a$)( 1 - e( -OIJn e( -c@-l) 
fW 

= zz e( -q$(2n--1) e( -q)n(2n+l) - & e( -%)(n+l)(2n+l) e( -+(2n+l). 

(3.10) 

Remark. If  we set e(-%) = u, e(-al) = v  and let tt be --7t in the first 
sum, then (3.10) becomes (1.2) of the Introduction. 

Before we discuss the character of every standard irreducible module for A:‘), 
recall that @ may be assumed three-dimensional (i.e., we need at least one 
derivation; assume we add only this one). Then q, , 01~) and p form a basis 
of @>*. 

We write concretely the right-hand side of Corollary 2.10. In (3.10) we 
computed the denominator using e(-%) and e(-al). All that remains to be 
done is to compute the numerator. That is, for h E P C @)*, we study 

,& (-l)I(W) e(w(h + P) - (A + p)). (3.11) 

Recall that each h E P is of the form a% + bar, + cp, with (acl, + bol, + cp) 
(hi) EZ+ . Since W fixes y  we can assume that b = 0. That is, h = aa, + cp, 
with c f  2a EZ+ . To carry out our calculation of (3.11) we need: 
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LEMMA 3.12. Let W be the (Weyl) group generated by the tm reflections 
Y, and Y, in $1* giwen by (3.1). Let w,,, = (Y~Y,,)~ (m EZ), and suppose X E P is 
given by acq, + cp. Then 

wm(h -k P) - (A + P) = Pam + (c + 1) m(2m - 1)) (-06) 

+ @am + (c + 1) m(2m + 1)) (-4, (3.13) 

yowm(h + P) - (A + p) = (a(2m + 2) + (c + l)(m + 1)(2m + l))(---06) 

+ (2am + (c + 1) m(2m + 1)) (-al). (3.14) 

Roof. Note that for each w E W we have WA = awa,, + c(wp - p) + cp = 
awuor, - c<@,> + cp. Thus, w(A + p) - (A + p) = awob - CC@,> + cp + 
(wp - p) - A. But this simplifies to 

awq - (c + l)<Qrw) - acz, . (3.15) 

Now, w,,p,, = (1 - 2m)ol, - 2mal , and Y~w,,~,, = -(2m + l)aO - 2ma1 . 
Hence, (3.3) and (3.15) imply that w,JX + p) - (h + p) is given by 

a((1 - 2m)as - 2maJ - (c + l)(m(2m - 1) a0 + m(2m + 1)&i) - a% 

= (-2am - (c + l)m(2m - 1)h + (--2am - (c + l)m(2m + l))c+, 

which is (3.13). 
In the same way (3.4) and (3.15) give (3.14). 
Substituting (3.13) and (3.14) into (3.11) we immediately obtain: 

COROLLARY 3.16. Let h = aa,, + cp be a dominant integral linear form and 

let V be the standard module for Ai” u&h highest weight h. Then the expression 

x(V) C (-l)i(w) e(wp -p)/e@) = C (--1)"(") e(w(h +p) - 0 +p)) (3.17) 
WEW WEW 

may be written in terms of e(-aJ and e(-s) as 

nc, 4-0~ 
Man+(c+l)nm-l)) e(_~)(zon+(c+l)n(2n+l)) 

- p-4 
(o(an+z)+(c+l)(n+l)(2n+l)) e(-al)(""+(~+l)~~~n+l))~ (3.18) 

Remark. The expression in (3.17) is the numerator of the character x(V), 
divided by e(h). 

Now that we have set up the necessary material on A:‘), we turn to the other 
Euclidean Lie algebra for with 1 = 1, namely, A:*). (See, for example, [12b] 
for an exposition of Euclidean Lie algebras.) 

This time, we start with the eight-dimensional rank 2 simple Lie algebra 
el(3, C). Let 0 be the negative transpose map of eI(3, C) to itself. Then 8 is a 
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Lie algebra automorphism of order 2. The fixed set of 0 is the three-dimensional 
rank 1 subalgebra g,, = 543, C) consisting of the skew-symmetric matrices. 
Let g1 be the -1-eigenspace of 0 in sI(3, C), i.e., the five-dimensional space of 
symmetric traceless 3 x 3 matrices. Then 

ho > &II = 90 7 ho 9 cd= 91, and kll, 911 c 90 * (3.W 

Choose any Cartan subalgebra ho of go , and let -& be the roots of go with 
respect to lj, , with q the positive root. Then the weights (with respect to ho) 
of go acting on g1 are 0, -&~r , f2a,, each of multiplicity one. 

Now 

51(3, C)” = sI(3, C) @ a=[& t-l]. 

Relations (3.19) imply that 

is a Lie subalgebra of sI(3, C)“. Let E be the degree derivation of $3, C)“, so 
that E acts as scalar multiplication by j on ~((3, C) @ tj. Then E preserves a 
and acts as a derivation on a. Define a1 to be the corresponding semidirect 
product Lie algebra @ZE @ a, and define ho,, to be the Abelian subalgebra 
CE @ ho of a, . Then a1 has a natural and obvious “root space decomposition” 
with respect to h,,, . Let y E (l&J* be the element which is 0 in b. and 1 on E. 
Identifying ho* with the subspace of b,*,, consisting of the elements vanishing 
on E, we see that l& = ho* @ Cy, and.that {CQ , r} is a basis of l$, . The set d 
of roots (defined in the obvious way) of a, with respect to lj,,, is given by 

d = (jy + Kal 1jE.Z; k = 0, 51 ifjis even; 

k = 0, f 1, f2 ifj is odd; jy + /q # 0). (3.20) 

Define the set A, of real roots to be (9’ E A j v # 0 on ho}, and the set A, of 
imaginary roots to be {p’ E A 1 q~ = 0 on ho>. Then A, consists of the elements 
of A which are multiples of y, and A, consists of all other elements of A. Note 
that all the root spaces (real or imaginary) are one-dimensional. Let A+ C A 
consist of c+ and the roots which are positive on E. Then A = A+ u (-A+). 
Define the simple roots to be those positive roots which cannot be written as a 
sum of two positive roots. Then the simple roots are 01~ and a0 = y - 2a, . 
The Cartan matrix of a (or of a,) is defined to be the 2 x 2 matrix B with 
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Then 

3 = (-i -;, . (3.21) 

We have y  = olo + 2or, . 
In Fig. 2, we indicate the roots by dots in the plane I& . The positive roots 

are the roots in the region enclosed by the dashed boundary. The real roots are 
the roots in the outer four columns, and the imaginary roots are those in the 

middle column. 

FIGURE 2 : ROOT SYSTEM FOR A:” 

Let Ai’) be the GCM Lie algebra I(B). Then the center of Ai2’ is a one- 
dimensional subalgebra c, and there is an exact sequence 

by means of which we can identify the root system of Ai2) with that of a 
(described above). Note the analogy between this situation and that of A:‘). 
The reason for the notation Ai2) is that a was defined using an automorphism of 
order 2 (the superscript in Ai2’) of the Lie algebra A, (Cartan’s notation for 
51(3, C)). Incidentally, in this (Kac’s) notational scheme for Euclidean Lie 

algebras, 42, C)” is also denoted A:‘), in that it comes analogously from the 

automorphism of order 1 of A, = eI(2, C). 
Let W be the Weyl group of Ai2’. Then W acts naturally on l& as follows: 

W is the group generated by the two reflections r, and or in lj,*,,, given by 

(3.22) 
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Just as in the case of A:‘), the real span of 01,, and (or in l$, has a natural positive 
semidefinite geometry (by restricting functionals to b, and then using the 
nonsingular form on $s* obtained by restricting the Killing form of sI(3, C) 
to 4s). The imaginary root y is in the radical of this semidefinite form. Also, 
r, and rr are the geometric reflections with respect to the nonisotropic vectors 
01s and (or . Observe that yoy = y = r,y, so that W fixes y. Also, (ylro)q, = 
-Y1cyo = -a0 - 401, = OL,, - 2y, and (Y,Y~)(~, + ar) = Y~(--o~~ + c+ + 01s) = 
01s + q - (a!,, + ~cx,) = a,, + 0~~ - y. Hence rlrO fixes every multiple of y, 
subtracts 2y from 01s , adds y to (or., subtracts y from CY,, + q , and adds 2y to 
01s + 4~9 . Thus ylro is a “vertical shear.” The power (Y~Y~)~ (m E Z) clearly is 
the vertical shear which fixes every multiple of y, adds my to ai1 , and adds 2my 
to 01s + 401, . (This holds even if m is negative.) 

Notation. Let W,, be the subgroup of W consisting of the integral powers 
of Ylro. w, is a normal subgroup of index 2 in W, and W is the disjoint union 
W = W, u r,W, . The elements of W,, have even length while those of row0 
have odd length. 

We now write the denominator formula for Ai” in concrete form first using 
CX~ and y, and then cy,, and 0~~ . To do this, we need: 

LEMMA 3.23. Let W be the (Weyl) group generated by the two rejections 
r. and rl in I$,, given by (3.22). Let w, = (Y~Y~)~ (m E h). Then 

(Qp,,) = m(3m - 1)/2~~e + m(3m + 2)a, 

= 3moI, + m(3m - 1)/2y, (3.24) 

<@,,,> = Pm2 + 5m + 2)/2ffo + (3m2 + 2+i 

= -(3m + 2)(r, + (3m2 + 5m + 2)/2y. (3.25) 

Proof. Recall that wmy = 01s + 201, , wmq, = q, - 2my, w~(c+, + aI) = 

(a0 + 4 - my, wd3 = al + my, and w,(ao + 4q) = (a0 + 4s) + 2my. 
By definition, Gw, = A+ r\ w,A- . If m > 0, then 

CDzm = (al + iy, (a0 + 4cfJ + 2iy ( 0 < i < m - l), (3.26) 

since wrn(al - iy) = 01~ + (m - i)y, and w,(cY,, + 4q - 2iy) = 06 + 401~ + 
2(m - i)y. Hence, <@‘,> = (ma1 + m(m - 1)/2r) + Mao + 4%) + 
m(m - 1)~) = 3mq + m(3m - 1)/2y = m(3m - 1)/2% + m(3m + 2)s. If 
m < 0, then 

aWrn = {(a0 + 4 + ir, a0 + 2iy I 0 < i < --m - l}, (3.27) 

since wm(olo + a1 - iy) = 01~ + CQ + (-m - i)y, and wm(% - 2iy) = CY~ + 
2(-m - i)y. 
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<@turn> = t--+0 + 4 + m(m + 1)/h) + (--ma0 + m(m + l)r> 
= 3m(u, + m(3m - 1)/2y = m(3m - 1)/2a. + m(3m + 2)01, . 

This establishes (3.24). 
From Lemma 2.1 and (3.24) we immediately have 

<@row,> = yo(3mal + Mm - 1)/W + P,,>. 
Now (Ip,,) = cq, = y - 2cz, . This gives 

<@rowm) = Wk + 4 + m(3m - 1)/2y + a0 

= -(3m + 2)cl, + (3ma + 5m + 2)/2y 

= (3ma + 5m + 2)/2a. + (3ma + 2m)or,, 

which is (3.25). Q.E.D. 

Note that the set A, of positive roots of a, can also be described as 

(-201, -I- (2j - l)n -q + jr, jr, a1 + (j - l)y, 201, + (2j - l)y 1 j > l} (3.28) 

or 

In this case, for 9 E A,, dim 1~ = 1. Just as in A:‘), substituting expressions 
(3.24), (3.25), and (3.28) into Theorem 2.6 yields: 

COROLLARY 3;30. The denominator formula for A.$‘) may be written in terms 
ofc~~andyas 

Gl (1 - et-+X1 - et-r>“-’ et-4X1 - 4-r)” e(-cP) 

x (1 - e(-y)(2n-1) e( -a$)( 1 - e( -y)far-l) e( -oL1)-2) 

= zz e( -al)893 e(-y)n(8n-1)/2 - zz e(-+Sn+B) e(-y)(n+l)tw+2)/2. 

(3.31) 

Remark. If we set e(-a,) = t-l, e(-y) = q, replace n by --n in the lirst 
sum, and n by -(n + 1) in the second, then (3.31) gives (1.5) of the Introduction. 

Using expressions (3.24), (3.25), and (3.29) with Theorem 2.6 we obtain: 
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COROLLARY 3.32. The denominator formula for AL” may be written in terms 
of q, and 0~~ as 

n (1 - e( -qJ(4n-1 e( --01J(4n-4))(1 - e( -a$ e( --011)(2n-1)) 
n>* 

X (I - e( -ao)n e( -fQn)( 1 - e( -qJ+l) e( -c#2n-1)) 

X (1 - e( --010)(2n-1) e( -a1)4n) 

= 2 4-4n(3?1-1)/3 e(-492(37L+Z) _ 2 4_4(7I+1)(3~+2)/2 e(-m1)"(3"+2). 

(3.33) 

Remark. If we set e(-%) = u, e(-o1J = w, replace n by -n in the first 
sum, and n by -(n + 1) in the second, then (3.33) gives (1.6) of the Introduction. 

Before we discuss the character of every standard irreducible module for AL2’, 
we define 6, and fjoe to be the objects denotes $ and @, respectively, in Section 2. 
Note that toe may be assumed three-dimensional (i.e., we need at least one 
derivation; assume we add only this one). Then q, , OCR, and p form a basis 

of #G> *. 
As before, we write concretely the right-hand side of Corollary 2.10. In (3.33) 

we computed the denominator using e(-as) and e( -al). All that remains to be 
done is to compute the numerator. That is, for h E P C @se)*, we study (3.11). 

Note that each h E P is of the form sol, + bcu, + cp, with (aq, + bar, + cp) 
(h$) EZ+ . Since W fixes y we can assume that b = 0. That is, h = aa,, + cp, 
with c+2a, c-4aEZ+. To carry out our calculation of (3.11) we need: 

LEMMA 3.34. Let W be the (Weyl) group geraerated by the two rejections 
r,, and r1 in l& given by (3.22). Let w, = (rIrJm (m EZ), and suppose X E P is 
given by aq, + cp. Then, 

wm(h + p> - (A + P) = @am + (c + 1) m(3m - 1)/2)(--or,) 

+ (dam + (c + 1) m(3m + 2))(--or,), (3.35) 

roeo,(A + P> - (A + P> = ((2m + 2) a + (c + 1)(3m2 + 5m + 2)/2)(-m,) 

+ (4ma + (c + 1)(3m2 + 2m))(-a,). (3.36) 

Proof. Recall from (3.15) that for X = ac+, + cp, w(A + p) - (X + p) = 
awaO - (c + l)(QW) - a0 . Now, w,q, = (1 - 2m)ar, - 4muI , and r,w,a,, = 
-(2m + l)o10 - 4ma,. Hence, (3.24) implies that w& + p) - (h + p) is given 
by a((1 - 2m)a, - 4moI,) - (c + l)(m(3m - 1)/2as + m(3m + 2)arJ - aa,, = 
(-2am - (c + 1) m(3m - 1)/2)q, + (-4am - (c + 1) m(3m + 2))(11, , which 
is (3.35). 

In the same way (3.25) and (3.15) give (3.36). 

Substituting (3.35) and (3.36) into (3.11) we immediately obtain: 

Q.E.D. 
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COROLLARY 3.37. Let X = aa,, + cp be a dominant integral linear form 
and V be the standard module for ALa’ with highest weight h. Then the expression 

x(V) C (-1P) e(wp - p)le(h) = C (-l)z(“) e(w(h + P) - (A + P)) 
WEW WEW (3.38) 

may be written in terms of e(-%) and (---al) as 

((2n+2)a+(c+11(3na+5n+2)/2) e(-c11)(4an+(c+1)(3na+2n)). (3.39) 

We now have the necessary material for A, . (a) The techniques used to write 
down concretely the denominator formulas for Ai’) and Ak2’ will be applied 
in Section 4. Corollaries 3.9, 3.16, 3.32, and 3.37 will be essential to our proof 
of the “numerator formula” for Ail’ and Ai2’. 

4. THE MULTIVARIABLE VECTOR PARTITION THEOREM FOR A’,l’ 

In this section we state and prove an abstract vector partition theorem which 

was described in the Introduction. For the important special cases Ail) we 
describe explicitly the allowable parts (including multiplicity) that can occur 
in any vector partition, and also give a concrete algorithm for constructing the 
sets aw , w Q W, the Weyl group of A in. To this end, we study the structure of 

the group W. We close this section by writing out concretely the unspecialized 
denominator formula for AL”. We are grateful to R. Wilson for help in the 
writing of this section. 

Note that the exponents of the variables e(-a,,) and e(-al) in the monomials 
on the sum side of Corollary 3.9 are quadratic in the variable of summation. 
This fact is a direct consequence of our computation of (Qeo) in Lemma 3.2. 
The key step in the proof of this lemma is to express the set Qw, as {a1 + iy 1 
0 < i < 2m - l}. When the roots of Qul, are added together, the coefficient 
of a1 is linear in m while the coefficient of y  = ae + a1 is quadratic in m. Setting 

u = qt and v  = q/t in (3.10) gives (l.l), where the exponent of q is quadratic. 

Although this is the simplest example, the situation we have just described is 
typical. That is, the exponents of the variables e(-simple roots) in the monomials 
on the sum side of the denominator formula given in Theorem 2.6 (in the case 
of afline or Euclidean GCM Lie algebras) are quadratic in the “variables of 
summation.” We will discuss this remark later. 

For now, just keep in mind that the fundamental reason for the quadratic 
exponents is the fact that consecutive integral multiples of a fixed imaginary 
root y  are added together in the computation of (@,>. This reasoning involving 
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imaginary roots “explains” why certain combinatorial identities always have 
quadratic exponents for the variable 9. 

Before specializing to Afr), we work in the full generality of GCM Lie algebras 
(see Section 2). 

LEMMA 4.1. Consider the denominator formula (Corollary 2.7) 

9 (1 - 8 upyirn’” = ;:, (-1)1(W) fi z$(@w)), (4.2) 
+ 

in Z[[u, ,..., q]], with ui = e(-q). Then the monomials I-J:, u:(((~w>) as w 
ranges over the Weyl group W are all djkent. That is, the coejicient of l-I:=, 
~fd(~w)) is indeed (-1)1(m). 

Proof. It is sufficient to show that if w, , wa E W, and w, # wa then (a,,) # 
<0,,). But this follows immediately by taking the contrapositive of Lemma 2.5, 
which asserts that (@,,) = (rPw,) implies that wr = wp . Q.E.D. 

At this point it is convenient to introduce: 

DEFINITION 4.3. Suppose that v = ‘& ciai is a root of I such that dim 
1~’ = d. Then by f”(v) we mean the collection of “colored” (1+ I)-vectors 
which is formed by d duplicates of the vector (ca , cr ,..., cz), each with a different 
color. We indicate this by the set {t(vj) = (c,, ,..., c& 1 1 \<j ,< d}. We say 
that 4pi is the copy of the root q corresponding to the vector [(cpj). If d = 1, 
we suppress the subscript j. If @ is a collection of roots of I, possibly including 
any allowable copies qj of y, then by (a) we mean the sum of all the roots in @, 
including multiplicity. For example, the sum of vi, and yi, is 29~. [(@) is the 
collection of vectors {[(v)I v E @>. 

DEFINITION 4.4 (vector partitions). Given p = C:=,, ciai , with ci E Z, let 
p(/?) be the vector (c,, , c, ,..., cr). We say that [(@) is a vector partition of 
p(j3) iffz (1) @ is a collection of positive roots of I, possibly including any allowable 
copies vj of v, and (2) the sum of the vectors in t(0), including multiplicity, 
is p(/!). For example, if vi = (b, , 6, ,..., b,), , the vector sum of pi, and vi, is 
(24l > 2b, ,*-*, 2br). So [(@) is a vector partition of p(/3) iff $((a)) = to@). 

With these definitions in mind, we state: 

LEMMA 4.5. Let w E W. Then there is only one vector partition of f”((Gw>), 
namely, .$(@,,J. Moreover, all of the vectors in the vector partition [(Gj,) correspond 
to real roots. 

Proof. This is an immediate consequence of Lemma 2.2, which asserts that 
if (a,) = (@) + 6, with @ a finite subset of A+, and B E span A a finite sum 
of not necessarily distinct positive imaginary roots, then /? = 0 and @ = Qw . 
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Also, Gw consists of real roots only. But in view of our definition of vector 
partitions, this is just a statement of what we wanted to prove. Q.E.D. 

We are now ready to state the following abstract vector partition theorem 
corresponding to the GCM Lie algebra I: 

THEOREM 4.6. The excess of the number of vector partitions of (co, cl ,..., cl) 
into an even number of distinct parts (note: vectors of different colors are regarded 
as distinct) over those into an odd number of such parts is (-1)1(W) or 0 according 

m (co 9 Cl ,..., cJ is of the type $((ow>) or not. Moreover, 5°((@,)) has 0nZy one 
vector partition, namely, t((@,)). 

Proof. Imagine the left-hand side of (4.2) expanded out as a formal power 
series in the ui , and simply refer to Lemmas 4.1 and 4.5. Q.E.D. 

We now pass to the special case I = A I’) (I 2 1). First we shall describe 
A, C A, in order to exhibit concretely the allowable parts occurring in the vector 
partitions in Theorem 4.6. To this end, we first describe the roots of sI(n, C), 
(note: set n = 1 + l), as presented in [lo]. 

Let I be the Z-span of the standard basis vectors q , ~a ,..., E, in IP. Let E be 
the Z-dimensional subspace of 5P orthogonal to the vector l 1 + *.. + E, . 
Let I’ = I n E and take do to be the set of all vectors 01 E I’ for which (01, a) = 2. 
It is clear that do = (ei - Ej ] i #j}. The roots of sI(n, G) can be identified 
with the set A, , and the simple roots with the subset {ai ,..., o1J, where 0~~ = 
Et - Ei+1 * The vectors OL$ are independent and l i - ci = (Ye + at+r + *.* + c13-r , 
if i < j. This last relation implies that the positive roots of sI(n, @) are of the form 

% + %fl + **. + %+x--l, (4.7) 

with 1 < k < I and 1 < i < I - k + 1. The negative roots are of the form 

-h + %+1 + *.. + %+k-1). (4.8) 

The real roots of Ai’) can be identified with the functionals of the form 
jy+nwherejE&cpEA,, and y is the smallest positive imaginary root of Ai”. 
The imaginary roots of Ai” are identified with functionals of the form jy, 
where j E Z, j # 0. Now A+ C A is the union of the positive roots in A, with the 
set of roots in A which are positive on D. By means of (4.7) and (4.8) we may 
describe the set A, of positive roots of Ai” concretely as 

A+ = {(s - 1)~ f 012 + ... + at+k-l> my - (at f ... + at+~-l)s 

sy( 1 <k<Z, 1 fi<Z--k+ l,s~Z+-{O}}. W) 

From(4.2),(4.9),y=q,+g+*..+arz, and the fact that real roots have 
multiplicity 1 and imaginary roots multiplicity Z, it is not hard to prove: 
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THEOREM 4.10. Whenever 1 = Al’) (2 > I), theproduct side of the denominator 
formula in (4.2) can be written as: 

x fi (1 - uos . . . u~+k-n-lU~;;-, ..* u;:;uis ... adaS). 
id-kfl 

(4.11) 

Furthermore, if c = (co , c, ,. .., cl) is an allowable part in any vector partition 
occurring in Theorem 4.6 then c must either be one of the 1 da&%ent copies of the 
n-tuple (s, s,..., s) OY, exactly k cyclicly consecutive coordinates ci of c must be s 
and the rest s - 1, where 1 < k < n. That is, we must have either 

or 

cj = s, ; f  i<j<i+k-1, 

=s-1, otherwise, for 0 <i ,< n - k, 

Cj = S- 1, ;f  i+k-n<j<i--I, 

= s, otherwise, for n-k+1 <i<n. 

Remark. Only for 2 = 1 are colors unnecessary for the description of the 
allowable parts in any vector partition occurring in Theorem 4.6. 

It is now time to study the structure of W, in preparation for constructing 
the sets Qw . 

Recall that the simple roots of Ai” consist of the simple roots cur ,..., a(2 of 
eI(n, C) together with a0 = y - 4, where y is the smallest positive imaginary 
rootofA~“and#=ol,+...+ CQ is the highest root of sI(n, C). The Cartan 
matrix A of sI(n, C) is an E by I matrix that is 2 on the diagonal, -1 on the 
super- and subdiagonals, and 0 elsewhere. The Cartan matrix A of Af’) is 
obtained from A by adding a zeroth row and column so that the resulting row 
and column sums are 0. That is, A,, = Aii for 1 < i, j < 2, Aa, = 2, A,, = 
A,, = AX0 = Al0 = -I, and otherwise Aij = 0. 

We have by definition that olj(hJ = Aij for 0 < i, j < 1. Given any root qo for 
Af’ the z’th reflection yi of 93 is defined by 

Every element of W fixes y. 

DEFINITION 4.12. A (vertical) shear is a linear automorphism T of R = span 
d such that for every v E R, T(q) = v + c(q~)y, where c E R* and c(y) = 0. 
That is, T fixes y and induces the identity on R/llXy. 
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Our first task is to construct a vertical shear from the reflections ri . To this 
end we prove: 

LEMMA 4.13. Let v E R, and y the smallest positive imaginary root for Ap’. 
Then we have 

r1r2 ... *z-lrt*z-l ... rz*l*o’p = v + ‘p(h, + .*a + h,)y. (4.14) 

Proof. We first show by induction that 

rzrz-1 *** *z*,g, = y - i dh, + -*- + h&y,. 
i=l 

We have by definition that r,cp = ‘p - q(h,)q . For 1 < m < 1 - 1, suppose 
that 

r,*T7-1 ..* r,r,cp = p - f dhl + .a. + h&xi. 
a'=1 

Then, 

Now ori(h,+3 = Am+l,i = -1 if a‘ = m and 0 otherwise. Thus, 

Now just set m = 1 - 1, and simplify. 
Next we show that 

rl-Jz-+l *** rzrz-1 *‘* f,rlq 

1-l-m 
= p, - C cp(h, + v** + h&, - ‘p(h, + *** + h,) 

i-1 

X (a~- + az4+l + *.* + 4. (4.15) 

Note that we have shown (4.15) for m = 0 and that we must have I - 1 > m > 0. 
We first carry out the inductive step for 2 < I- m - 1 < I- 1 and then, 
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as a special case do 1 = I - m - 1. We suppose that (4.15) holds and compute 

Yl-m-1 (Y I--m~z--m+1 ... Ydl-1 -** y2w) 

l--l--m 

= (p - yqL+-l)~l--m--l - c #, + ... + 4)% 
i=l 

I-l-??I 

+ 2 dh, + *-. + k) %vL-m-&1--m--l 
i=l 

- P'(4 + . . . + 4(%-m + %--m+1 + **. + 4 

+ &I + ... + ~,)(~~-,n + az--m+l + a** + 4&-w&~--m--l . (4.16) 

Note that &-“Y(IQ + ...+ hi)~i(hl-,-l)~l_,-lequals (-#zI i- . ..-I- ~L-,-s) -I 

%@I + .s* + Iz~-,+~))cY~-~-~ if I - m - 1 > 2 and 2~(h,+&,-,-I if 
I - m - J = 1. Also, (01~-~ + CL-,+~ + ... + UJ (hl--m--l)~l-m--l equals 
(-1)01~-~-~ if I - m - 1 3 1. 

Substituting the above relations into (4.16) when I- m - 1 > 2 we obtain 

But this is just (4.15) with m replaced by m + 1. 
W’henZ-m-l =1,(4.16)becomes 

Thus if v E R, we have 
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By definition r,cp = v - ‘p (h,)~ . Hence, by (4.17) we obtain 

However, ol,(h,+***+hz) = Al,+A~,+-~-+Az, = --IfOf..*+ 
-1 = -2. Thus we have ‘p - ~(hr + ... + Jr,)+ - &?,,)(a6 + 2+). Recall 
that y = a,-, + #. Substituting y gives us 

since v(h, + h, + a*. + h,) equals 0. Q.E.D. 

Hereafter we define the shear sa by the identity s,, = ylr2 ... ~~~~~~~~~~ *** r2rlro , 
so that 

SOT = r9-2 *+* YZ-lYZY&.l ..* ~‘f,~og, = qJ + q@l + -** + hz)y. (4.18) . 

Remark. Let Y, be the reflection with respect to # in the Weyl group of 
sI(n, C). Then so = reyo . 

It is known (cf. [14]) an d we shall show below, that the Weyl group W of Ai’) 
is isomorphic to the semidirect product of the Weyl group of sI(n, C) (the 
symmetric group on R letters Sp,) with a free Abelian group on 1 generators. 
This latter group is known as the group of translations or shears of Ail). In order 
to study W we first describe the Weyl group of sl(n, C) as in [lo]. Thiig 
in terms of the expressions E$ - e, , notice that the reflection ri with respect to C+ 
permutes the subscripts i, i + 1 and leaves all other subscripts fixed. Thus, 
Y( corresponds to the transposition (i, i + 1) in the symmetric group Yn ; these 
transpositions generate Sp, , so we may obtain a natural isomorphism of the 
Weyl group of sI(n, C) onto 9, . In fact, if u E Ym, then u acts on the root 

Ei - c* as follows: 

+* - 4 = %(d - %Q * (4.19) 

Since u(y) = y, (4.19) determines the action of Sp, on the roots 9 of sI(n, C), 
and hence on the roots of A!‘). 

Consider the permutation p. = (1 2 .*a n) e Pa . Note that by (4.19), 

PO@4 - %+J = 4+1 - ‘i+2 8 if l<i<n-1, 

= -((cl - l 2) + (c2 - 4 + -0. + (E,-~ - e,)), if i = n - 1. 

That is, 

Pow = %+1 8 if l<i<Z, 

= -(% + --* + az), if i=l. 
(4.20) 
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Iterating (4.20), we immediately have that 

&I”(‘%) z %+k 9 if 1 <i<l-k, 

= -(a1 + .*. + q), if i=Z-kfl, (4.21) 

= %-(Z-k+1 > 9 if (I - k + 2) < i < 1. 

We get different sets of values provided that 1 < k < n. Note that ~,,“(LY,) = (Y~, 
and sopan = 1. 

It makes sense to conjugate the shear s, defined in (4.18) by the permutation p, . 
We obtain 

P,%P,lv = 91 + P2dhl + ... + MY- (4.22) 

In exactly the same way as in (4.22), we may write 

P,k%JP,kv = 9 +plYk#4 + *** + w. (4.23) 

For all k = I,..., Z, we define the shear . 

sk = p,ks,p,k, (4.24) 

and we let A be the subgroup of Wgenerated by s, ,..., sr . We shall show that W 
is the semidirect product of Yn with the normal subgroup (1, and that d is the 
free Abelian group on the basis {sr ,..., sr}. We shall also show how the shears 
sk act on the roots of sl(n, C). First we prove: 

LEMMA 4.25. W is generated by its subgroups Yn and A. 

Proof. Since W is generated by ra ,..., rr , it suffices to show that Y, lies in 
the subgroup generated by 9w and A. But s,, lies in this subgroup, and hence 
so does r, . Q.E.D. 

The elements sk can be conveniently rewritten: 

LEMMA 4.26. For aZZi = 0 ,..., Zandp,E R, we have 

w = v  - dhi)y. (4.27) 

Moreover, for all i, j = 0 ,..., 1, 

Siffj = Lyj - Jijy* (4.28) 

Proof. For i = 0, (4.28) follows from (4.18). For i, j > 0, (4.28) is a con- 
sequence of (4.22) and (4.23), together with (4.20) and (4.21). Finally, to prove 
(4.28) forj = 0, add (4.28) for j = 0 ,..., n and use the fact that siy = y. Formula 
(4.27) follows immediately from (4.28), by linearity. Q.E.D. 
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LEMMA 4.29. A is a normal Abelian subgroup of W. 

Roof. The commutativity is clear, since shears commute. All we need to 
show is that Y*SJ~ E n for i, k = l,..., 1. But by (4.28), for j = 0 ,..., Z, 

rksirkaj = rksi(aj - aj(hk)ak) 

= r,tij - $jy - a&J c&k - A'iky) 

= aj - %(hk) ak + aj@k)ak - <& - ‘ikadhk)h 

zzz aj - aj(hi - $&J~. 

Hence 

for all ‘p E R, and SO by (4.27), r gi k I is the product of st with an integral power 
of&. Q.E.D. 

We now have: 

PROPOSITION 4.30. W is the semidirect product of Ym with the normal subgroup 
A, which is precisely the set of shears in W. Moreover, A is the free Abelian group 
generated by s1 ,..., sl. 

Proof. Since no nontrivial element of 9, can be a shear, W is the semidirect 
product of Yn with A, and A coincides with the set of shears in W. All that 
remains to be shown is the freeness of A. Suppose then that for some integers 
cl ,..., cz , we have 

Then by (4.27), 

01 02 . . . 
Sl % sz ' ct = 1 

$I i cth, = 0 ( 1 i=l 

for all 9 E R, and in particular, for p, = aI ,..., a1 . Thus 

i ciAu = 0 
i-1 

for eachj = l,..., 1. But it is well known that the Cartan matrix A of sl (n, C) is 
nonsingular, and in fact that it has determinant n. Thus each ci = 0. Q.E.D. 

We next want to characterize concretely the shears in W. For a shear L and 
j = l,..., 1, we have 

Laj = aj + L,y, (4.31) 

6Q712911-4 
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where Lj is a scalar. We shall find necessary and sufficient conditions on the Lj 
in order for L to be in W. From (4.28), we see that the condition for a shear to be 
a product of powers of sr ,..., s1 is that the I-tuple (L, ,...,LJ be an integral 
linear combination of the I rows of the Cartan matrix A of SI (n, C). But using a 
suitable sequence of elementary row operations (in fact, the successive adding of 
an integral multiple of one row to another row), we can transform A to the matrix 

/ 

lo...0 1 
01...o 2 \ 

I oo...o 3 
. . . . . . . . 

6 0 . . . i n-L2 I- 
\ 0 0 ... 0 n / 

By taking arbitrary integral linear combinations of the rows of B, we conclude: 

PROPOSITION 4.32. The shear L described by (4.31) lies in W (or equivalently, 
in A), ifandonly ifL, ,..., L, E Z andn dividesl, - C:I: iLi . 

Recall that A-=-A. By Propositions 4.30 and 4.32 and (4.9), we have an 
algorithm for computing Dp, for w E Wz 

PROPOSITION 4.33. The most general element w E W may be written uniquely 
in the form w = aL, where o E Sp, andL is a shear of the type described in Proposition 
4.32. The sign (- I)z(w) equals the sign of the permutation u. The set @,,, = WA-~ A+ 
is now constructible by the indicated sequence of steps. 

Remarks. (1) Each element of each set aw is expressed as a sum of the roots y, 

cu, ,...) CYZ . By means of the formula y  = (Y,, + ... + 01~) we may write each 
element as a sum of the simple roots 01,, ,..., CQ . 

(2) Note that @, is a finite union of finite “columns” either of the form 
{/3, p + y, /3 + 2y ,..., fi + my), where fi E A, n A+ and m E Z+ , or else of the 
form {fl + y, j3 + 2y ,..., /3 + my], where /I E A, n A- and m E 2, - (O}. These 
“columns” are the generalizations of the sets such as (01~ + iy / 0 < i < 2m - 1> 
which occurred in the case Al” in Lemma 3.2. Thus the “reason” for the quadra- 
tic character of the exponents of the variables e(-simple roots) in the monomials 
in the summation side of the denominator formula (see the discussion below) 
is similar to the corresponding “reason” in the case A?’ (recall the beginning 
of Section 4). 

We shall now describe how results in [12b] can be used to write concrete 
quadratic expressions for the exponents of the variables ui in the right-hand side 
of the denominator formula (4.2). This process works in the generality of all 
atline, and even Euclidean, GCM Lie algebras. First, one applies Proposition 
13.13 of [12b] to the sequence (so , s1 ,..., sr) for which a certain si = I and all 
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other components are 0. This gives a formula for &((@,)). We next use the 
fact that W, which may be identified with the “afhne Weyl group,” is the semi- 
direct product of a finite Weyl group with a lattice of translations. (For Ail’, 
these two subgroups are identified with Yfi and the shear group A, respectively.) 
Just as inProposition 16.8 of [12b] and the discussion preceding this proposition, 
the right-hand side in (4.2) may be written as a double sum over the finite 
Weyl group and over the lattice. The exponents of the Ui are quadratic functions 
on the lattice. 

We invite the reader to use this to write down a concrete multivariable vector 
partition theorem for each Euclidean GCM Lie algebra. Here is the result in 
the special case AL’): 

Denominator Formula for Akl’ 

= x0 4 )(51(r,-2)+7**+r,(r*+2))~~(~~~+~*(r~+2)+1(7*--2))U)(rl(rl+2)+zz(~e-2)+rs~) 
2 

t;od 3) 

+ c 
)(r,(r,+2)+2,(7,-2)+r,Z) t(rl(rl-2)+r,P+r*(r,+2)) )(71*+r,(rB+z,+s,(r,-2)) 

uo Ul U2 
vi=1 

(mod a) 

)(r,(r,-2)tr,(r,tz)++sa) 

- .;. u” 

t(71*+re(r,-2)+79(+~+2~) a(r,(?+a)+r,P+Ps(+-2)) 
% u2 

j-1=2 
+=l 

(mod 3) 

+ c 
ac~1"+7,(s+2)+s,(r,-2)) a(r,(71+2)+rl(r,-2)+78*) 

uo % 
a(r1(71-2)+rze+,a(7s+2)) 

U2 
sj=2 

(mod 3) 

~(71~+r~(r*-z)++s(r,+2)) a(71(r1+2)+r*~+78(7*-2))Uf(11(+1-2)+r4(r1+2)+,~*) 

- .z, u” % 2 

S'El 
3-0 

(mod 8) 
(4.34) 

Each sum is over r, , t2, rs E Z, with zr + t2 + r, = 0. 
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5. THE NUMERATOR FORMULA FOR Ail' 

In this section we work in the setting of Ar’, and we use the notation of the 
first half of Section 3. We are ready to state: 

THEOREM 5.1. (numerator formula). Let h be a dominant integral linear form 

and let V be the standard module for Ail’ with highest weight h. Then when we set 

e(-a,) = e( -aI) = q, the numerator of x( V)/e(x) factors into an injinite product: 

x(V) 1 (-VW) e(wp - p)/@) I e(-olo)=e(-+a 
WOW 

= fi (1 _ qh+nl)~)(l _ *h+nl)~-%‘)(l _ po+~l)~-%) 

VI=1 

(5.2) 
= wTw (-1P) 4wp - P) le(-ai)=Qni, 

where ni = (h + p)(hi) (i = 0, 1). 

Proof. By adding to h a multiple of y  if necessary, we may assume that 
h=aq,+cp, where cf2aEZ+. Note that n, = c + 2a + 1 and n, = 

c - 2a + 1. Setting e( -a,,) = e( --NJ = q in Corollary 3.16 we find after 
some algebraic simplification that 

x(V) c (-P) e(wp - fM4 le(-ao~=e(-al)=a 
WEW 

= c q4(c+lh2+40n _ p4k+'h~+4(n+c+l)n+ea+c+l 
(5.4) 

nez 

Next, observe that if we set e( -a,,) = q”o and e( -o1r) = ~“0 (m, , m, E Z, - (0)) 
in the denominator formula for A?’ given in Corollary 3.9 we have 

(5.5) 

= fJ (1 - q(mo+Qy1 _ q(“o+“‘)“-“o)(l _ p(m,+mlh-ml)* (5.6) 

n=1 

Replacing n by -n leaves the first sum in (5.5) unchanged as the summation 
is over Z. We may then rewrite the expression in (5.5) as 

c q2bn,+?n,)n~+h+n,h _ n;z p2(“0+“‘)n2+(3m,+m,)n+mo. 

?EZ 

In order to factor the expression in (5.3) into an infinite product, we determine 
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when (5.4) and (5.7) are equal. These two combinations of sums are equal if and 
only if the following relations hold: 

4(c + 1) = 2(% + ntl), 4a=mo-q, 4(a + c + 1) = 3mo + m, , 

and 2a + c + 1 = m, . 
But these relations hold if and only if 

m,=c+2a+lEZ+, 

m,=c-2a+lEZ+. 
(5.8) 

Thus, (5.3) can always be factored into the infinite product given in (5.6) with 
me and nt, determined by (5.8). Q.E.D. 

As a direct consequence of Theorem 5.1 we may now state: 

THEOREM 5.9. Let h be a dominant integral linear form and let V be the 
standard module for Ail’ with highest wezkht A. Then, when we set e(-%) = 
e(-%) = q in x( V)/e(h), we obtain 

j+jl (1 - q2n-1) xWle(4 Is~-ao~=s~-al)=a 

If (A + ,Wo) = 0 + d(h,)a we mahe the obvious modifications; see (5.20). 

Proof. First we observe by Corollary 3.9 that 

= Fl (1 - q2n-1) FI (1 - 4”). 

Dividing both sides of (5.2) by (5.11) we immediately have 

xl wo) l6L+&+a 

(5.11) 

= 4 (1 - qan--y-1 fi (1 - 49 
T&=1 

@I1 (1 - !r% 
ne~.(h+~)(h~).(~+p)(~)(rnod(r\+~)(h~+hl)) 

from which the result follows by algebraic simplification of the right-hand side. 
Q.E.D. 
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We close this section by recovering Theorem 1.11 as well as a similar theorem 
for the generalizations and analogs of the Rogers-Ramanujan identities due to 
Gordon, Gollnitz and Gordon, and Andrews. 

We first study a generalization of Gordon’s generalized Rogers-Ramanujan 
identities due to Andrews [lb, p. 1111. These identities assert that: For 1 < 

i < k k 3 2, I q I -c 1, and (& = IIzh, (1 - q”), 

= (1 - P)--l, (5.12) 
n=l 

n +o.N(mod zk+l) 

where Nj = ni + nj+r + ... + nkc-i . 
Note that for K = 2 and 1 < i < 2 we obtain from (5.12) the original pair of 

Rogers-Ramanujan identities. 
Now in Theorem 5.9, set i = (X + p)(ho) and 2k + 1 = (X + p)(h,, + h,). 

This immediately implies that 

h(h,) = i - I, 

;\(h,) = 2k - i. 
(5.13) 

Since h is dominant integral we must have 1 < i < 2k. In order to recover 
distinct products, we need only consider 1 < i < k. Theorem 5.9 combined 
with (5.13) immediately gives: 

THEOREM 5.14. Let X be any dominant integral linear form such that X(h,) = 
i - 1, h(h,) = 2k - i with 1 < i < k, and let V be the standard module for 
A?) with highest weight h. Then, 

JJjl (1 - q2Y xV%(4 le(-~~-d-+~ 

zz ij (1 - QY- (5.15) 

n+o.Mmod 2k+l) 

Remark. When k = 1, (5.15) becomes simply lJz=r (1 - q2n-1)-1 = 
nf, (1 + qn). That is, nz=‘=, (1 - q2+l)-l is itself the principally specialized 
character for the standard module corresponding to the dominant integral linear 
form h such that either X(h,) = 0 and /\(h,) = 1, or h(h,) = 1 and h(h,) = 0. 
We have now established: 
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THEOREM 5.16. After multiplication by (1.12), the product sides of the genera- 
lized Rogers-Ramanujan identities in (5.12) become the principally specialized 
char&ters for the irreducible modules for Ai” corresponding to the dominant integral 
linear forms h such that h(h,) = i - 1, and h(h,) = 2k - i, wke 2 < k and 
1 < i < k. (Concretely, X may be taken to be 

(i/2 - k/2 - l/4) cq, + (k - 1/2)p.) 

Furthermore, expression (1.12) is itself the principally specialized character for the 
standard moduZe for A:” corresponding to h such that either h(hO) = 0 and X(b) = 1, 
or h(h,) = 1 and h(h,) = 0. (For example, take !I = -l/4 Q+, + 1/2p.) 

Taking A(h,, + hJ = 3 in Theorem 5.16 gives Theorem 1.11. 
We finally examine the products which occur in Andrews’ extension of the 

Gollnitz-Gordon analog of the Rogers-Ramanujan identities which appear in 
[lb, p. 115-1161. 

When written in the same form as (5.12) the product side of these identities is 

fi (1 - PY, (5.17) 
S&=1 

neo.i(Bi-l)(mod Ok) 

For example, when i = k the identity is 

= ii (1 - QY, 
n +o.*I(Bk-it mod 4M 

where (a; & = (1 - a)(1 - q) **a (1 - ap’+l). 
In exactly the same way that we proved Theorem 5.14 we obtain: 

THEOREM 5.18. Let X be any dominant integral linear form such that h(h,) = 
i-l,andh(hJ=2k-iil1th1~i~k,audletVbethestandardmodule 
for Ai’) with highest weskht X. (Concretely, X may be taken to be (i/2 - k/2)% + 
(k - 1)~) Then, 

fjl (1 - P-‘) xvw@) Ic(-ao)-s(-+a 

= ii (1 - !lY, 
n-1 

n #o.Wmod BW 

if 1 <i<k--1, 
(5.19) 
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and 

= ii1 (1 - 4”)/ ii (1 - 4”h if i=h. (5.20) 
?Z=l 

n =k(mOd 2k) n+O,k(mOd 2k) 

By replacing K by 2fi and i by 2i - 1 in (5.19) we obtain the products in (5.17). 
Thus we also have a theorem analogous to Theorem 5.16 for the Gollnitz- 
Gordon-Andrews identities given in [lb, pp. 115-l lq. These generalizations 
of the Rogers-Ramanujan identities correspond to only some of the standard 
modules. Recently, identities of Rogers-Ramanujan type which correspond to 
the rest of the standard modules in (5.19), as well as (5.20), have been obtained 
in [2]. Thus, there is a known partition identity of Rogers-Ramanujan type 
corresponding to every dominant integral linear form for A:‘). 

In contrast to the infinite families of identities associated with A:‘), only 
21 of the dominant integral linear forms for Ai2’ correspond as in Theorem 5.16 
to known partition identities. We discuss this situation in Section 6. 

6. THE NUMERATOR FORMULA FOR Ai2) 

Just as in Section 5, we factor the numerator of a principally specialized 

character by using the denominator formula, this time for Ai2’. We use the 
notation of the second half of Section 3. We prove: 

THEOREM 6.1. (numerator formula). Let X be a dominant integral linear form 
and let V be the standard module for Ak2) with highest wetkht h. Then we have 

x(V) c (-P) 4wf - fY44 le~-a~=sc-+q 

(6.2) 

where ni = (X + p)(hi) (i = 0, 1). 

Proof. Just as in the proof of Theorem 5.1 assume h = as,, + cp where 
(c+2a,c-4a~iZ+).Notethatno=c+2a+land~~=c-4a+l.Setting 
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e(-%) = e(-q) = p in Corollary 3.37 we find after algebraic simplification that 

XV) c (-VW) e(v - P MV le(-.,~=e(-or,)-p 
WPW 

~(~+l)n~+(6o+9C/2+9/z)n+c+zo+l . (6.4) 

Next, observe that if we set e(-%) = qml and e(-al) = qmO (m, , m,, E Z, - 
(0}) in the denominator formula for Ai2) given in Corollary 3.32 we have 

_ zz q3(m1/2+nzo)n*+(2nz,+6nz1/2)n+~ 

= fi (1 _q2(m,+2~)n-(7n,+4na,))(1 -q2(m,+2&nm,) 
(6.5) 

11=1 

x (1 _ qh+29%)n)( 1 _ qh+2%)4%+f7d)( 1 _ q(~l+21no)n4b)* 

Replacing rr by -(rr + 1) leaves the second sum in (6.5) unchanged as the 
summation is over h. We may then rewrite the expression in (6.5) as 

In order to factor the expression in (6.3) into an infinite product, we determine 
when (6.4) and (6.6) are equal. These two combinations of sums are equal if 
and only if the following relations hold: 

and 

9(c + 1)P = 3(m,/2 + m,), 
(6~ + 3~12 + 3/2) = 2m, - q/2, 

6a + 9c/2 + 912 = 4m, + mJ2, 

c+2u+l=m,. 

But these relations hold if and only if 

m,=c-4a+lEE+, 

ms=c+2a+lEZ+. 
(6.7) 

Thus, (6.3) can always be factored into the infinite product given in (6.5) with 
m, and m, determined by (6.7). Q.E.D. 
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In the same way that we proved Theorem 5.9 from the numerator formula 

for A:‘), we establish: 

THEOREM 6.8. Let X be a dominant integral linear form and let V be the 

standard module for A?’ with highest weight )\. Then when we set e(-a,) = 
e(-aI) = q in x( V)/e(h), we obtain 

fJ (1 - 4”Y fi (1 - qy. (6.9) 
n-1 

n--fl(mod6) n~o.(A+~)(2h~+h~),+(A+1))(h~). 
it(A+~)rh,),~:(A+P)(~~+~~) 

(mod(A+pl(4h,+zh,H 

I’f (A + PM,) = (A + P>&>~ we make the obvious modijication. 

Proof. First, note by Corollary 3.32 that 

= fjl (1 - q6”-5)(1 - @n-l) fi (1 - 4”). 
?I=1 

Dividing both sides of (6.2) by (6.10) we immediately have 

xVM4 le(-a,~=e(-.,)=a 

= fi (1 - qy 
a=1 

ij (1 - p”)/I? (1 
72=1 

n =+l(mod 6) n-o.n,+27+n,.fn,. 
f(n,+n,)(mod 2n1+4nO) 

- 

(6.10) 

(6.11) 

n”), 

where ni = (A + p)(h,), (i = 0, 1). 
The result in (6.9) follows by the definition of ni and algebraic simplification 

of the right-hand side of (6.11). Q.E.D. 

The two identities of Rogers and Slater that are quoted in [la] but not covered 
by Andrews’ theory are 

ii (1 - qY, (6.12) 
~=l;~#o,il.-18.~sa.10~mod20~ 

(1 - qy. (6.13) 
~=l:~#o.~2,~4.~~.1o(mod 20) 

Connor [5] has provided a combinatorial interpretation of (6.11) and (6.13). 
Note that if we set no = 1 and n, = 2 in (6.12) we obtain 

ij (1 - !7Y- (6.14) 

n -&l(mod 6) 
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The products in (6.12) and (6.13) are obtained by setting (n, = (A + ~)(/a,,), 
n, = (A + p)(S)) to be (1,8) and (3,4), respectively, in 

fi (1 - P--l, 
IL=l:n~o.in,.fn,.*(nl+nd 

n1+2n0(mod en,+an,) 

(6.15) 

which is just the product in (6.11) .divided by the product in (6.14). 
We have now established: 

THEOREM 6.16. After multiplication by (6.14), the product sia’es of the partition 
iktities in (6.12) and (6.13) b ecome the principally specialized characters for the 
irreducible modules fur Ai2’ corresponding to the dominant integral linear forms 

TABLE I 

Identities for A?’ 

Equation Divisibility conditions 

number on the product side 

62 *o, rtl, zk4, zt3, 5 (mod 10) 

63 +O, fl, zt2, f3, 5 (mod 10) 

80 64 zt2, *3, rt5, 7 (mod 14) 

81 +O, fl, *5, f6,7 (mod 14) 

82 go, fl, &3, f4,7 (mod 14) 

83 4 Scl, *6, f7,8 (mod 16) 

84 N, rt2, f4, f6, 8 (mod 16) 

86 $0, +2, zk3, f5,8 (mod 16) 

94 *O, zt3, k4, f7,lO (mod 20) 

96 +O, %2, xt4, f6,lO (mod 20) 

98 +O, xk2, zk6, f8, lO(mod20) 

99 *O, fl, f8, f9,lO (mod 20) 

1070 +O, rt3, 56, f9,12 (mod 24) 

108’ +O, &2, zt5, xt7,12 (mod 24) 

117 f0, z!z3, f8, fll, 14 (mod 28) 

118 fo, il, f12, rtl3,14 (mod 28) 

119 f0, i4, 3~5, rt9,14 (mod 28) 

121 +O, rt2, f12, f14,16 (mod 32) 

123 +O, +4, rt6, &lo, 16 (mod 32) 

124a +O, -+5, f8, f13,18 (mod 36) 

125” +O, &4, &7, fll, 18 (mod 36) 

(183) 
c&u 
(293) 

(65) 

(3, 1) 

(1,6) 

(2,4) 

(3,2) 

(384) 

(432) 

C46) 
(1,8) 
(3,6) 

(5,2) 

(388) 

(1912) 

(5,4) 

c&12) 
(694) 

68) 

(794) 

Q Before comparing with (6.15), replace q by -4. 
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A, and A, , respectiwe2y, such that X,(h,) = 0, h,(h,) = 7, and h,(h,) = 2, &(h,) = 3. 
(Concretely, /I1 and h, may be taken to be -&, + Q and -&, + sp, respectively.) 

Furthermore, expression (6.14) is itself the principally specialized character for the 
standard module for Ai” corresponding to X such that X(h,,) = 0 and A(h,) = 1. 
(For example, take /\ = -6% + &p.) 

Slater [lS] has a list of identities among which there are 21 of Rogers- 
Ramanujan type that are not included in Andrews’ theory. All 21 (including 
(6.12) and (6.13)) are “explained” by a theorem exactly like Theorem 6.16. 
For convenience, we just include a table (see Table I) which gives: 

(1) the equation number in [18] for the identity, 

(2) whether or not we replace 4 by --q before comparing the identity 
with (6.15), 

(3) the pair (no = (A + p)(h), n, = (h + p)(hl)) of integers which when 
substituted in (6.15) give the product side of the identity, and 

(4) a particular dominant integral linear form h = aq, + cp which cor- 
responds to the identity as in Theorem 6.16. 

We strongly suspect that methods similar to the generalized hypergeometric 
series and difference equation techniques of Andrews can be used to extend the 
21 identities from Slater’s list in [18] to an infinite family of identities of Rogers- 
Ramanujan type such as those in (5.12). 

Clearly, one should look for an identity of Rogers-Ramanujan type for each 
standard module for each Euclidean GCM Lie algebra. 

ACKNOWLEDGMENT 

We would like to thank Craig Seeley and Robert L. Wilson for very helpful discussions. 

REFERENCES 

1. G. E. ANDREWS, (a) A general theory of identities of the Rogers-Ramanujan type, 
Bull. Amer. Math. Sot. 80 (1974), 1033-1052. (b) “The Theory of Partitions” (G.-C. 
Rota, Ed.), Encyclopeadia of Mathematics and Its Applications, Vol. 2, Addison- 
Wesley, Reading, Mass., 1976. 

2. D. M. BRESSOUD, A functional generalization of the Rogers-Ramanujan identities 
with interpretation, J. Combinatorial Theory, Ser. A, to appear. 

3. L. CARLITZ AND M. V. SUBBARAO, A simple proof of the quintuple product identity, 
Proc. Amer. Math. Sot. 32 (1972), 42-44. 

4. M. S. CHEEMA, Vector partitions and combinatorial identities, Math. Comp. 18 

(1964), 414-420. 
5. W. G. CONNOR, Partition theorems related to some identities of Rogers and Watson, 

Trans. Amer. Math. Sot. 214 (1975), 95-111. 



CLASSICAL PARTITION IDENTITIES 59 

6. F. J. DYSON, Missed opportunities, Bull. Amer. Math. Sot. 78 (1972), 635-653. 
7. A. FEINCOLD AND J. LEPOWSKY, The Weyl-Kac character formula and power series 

identities, to appear. 

8. F. F RANKLIN, Sur le developpement du produit infini (1 - x)(1 - x*)(1 - x”) . . . . 
C.R. Acad. Sci. Paris, Ser. A 82 (1881), 448-450. 

9. H. GARLAND AND J. LEPOWSKY, Lie algebra homology and the Macdonald-Kac 
formulas, Inwent. Math. 34 (1976), 37-76. 

10. J. E. HUMPHREYS, “Introduction to Lie Algebras and Representation Theory,” 
Springer, Berlin/Heidelberg/New York, 1972. 

11. V. G. KAC, (a) Simple irreducible graded Lie algebras of finite growth, (in Russian), 

Izo. Akad. Nauk SSSR 32 (1968). 1323-1367; English translation: Math. USSR-Izv. 
A 2 (1968), 1271-1311. (b) InfXte-dimensional Lie algebras and Dedekind’s n- 
function (in Russian), Funk&ml. Anal. i Prilolen. 8 (1974), 77-78; English transla- 

tion: Functional analysis and its applications, 8 (1974), 68-70. 
12. J. LEPOWSKY, (a) Macdonald-type identities, Adwances in Math. 27 (1978). 230-234. 

(b) Generalized Verma modules, loop space cohomology and Macdonald-type 
identities, to appear. (c) Application of the numerator formula to k-rowed plane 

partitions, to appear. 
13. J. LEPOWSKY AND R. L. WILSON, Construction of the affine Lie algebra Ai”, to appear. 
14. I. G. MACDONALD, A8ine root systems and Dedekind’s v-function, Invent. Math. 15 

(1972), 91-143. 
15. S. MILNE, A direct combinatorial proof of the quintuple product identity, to appear. 
16. S. MILNE AND R. L. WILSON, Jacobi’s triple-product identity from elementary 

homology computations, to appear. 

17. R. V. MOODY, (a) A new class of Lie algebras, J. Algebra 10 (1968), 211-230. (b) 
Macdonald identities and Euclidean Lie algebras, Proc. Amer. Math. Sot. 48 (1975), 

43-52. 
18. L. J. SLATER, Further identities of the Rogers-Ramanujan type, Proc. London Math. 

Sot. (2) 54 (1952), 147-167. 

19. J. ZOLNOWSKY, A direct combinatorial proof of the Jacobi identity, Discrete Math. 9 
(1974), 293-298. 


