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Abstract 

This paper formulates a general time-varying asynchronous biock-iterative model. A convergence condition for asyn- 
chronous block-iterations based on this model is given, compared to existing conditions for similar models and shown to 
be strictly weaker. (~) 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

In recent times, with the advent of different kinds of parallel computers and distributed computing 
systems, there has been a resurgence of interest in asynchronous iterative methods. The seminal 
paper by Chazan and Miranker [9] that introduced the concept of asynchronism in iterative methods, 
using the term "chaotic relaxation" was followed by some work by the "French school" [17] in the 
seventies and again in the eighties by Baudet [4] and E1 Tarazi [21] who gave a general mathematical 
formulation and an inductive contraction mapping based convergence proof. These papers were 
followed by several others, notably [20] and a body of work by the "Russian school" [1, 14] that has 
largely been ignored in the Western literature. Bertsekas and Tsitsiklis [6], 0resin and Dubois [23] 
provided an excellent survey of the activity in the West in this area upto the late eighties, and also 
gave some general theoretical results. In the nineties, with parallel computers widely available, there 
has been more of an emphasis on applications [3, 7, 22], computable convergence conditions based, 
for example, on Liapunov theory [13], a large and growing literature on asynchronous multisplitting 
iterative methods [2, 8, 18, 19], the so-called asynchronous "team algorithms" [3, 20]. 
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This paper proposes a model that is general enough to represent all the asynchronous iterative 
schemes referred to above, and gives a convergence condition for this model. Relationships between 
this condition and the other related conditions available in the literature are examined and it is shown 
that, theoretically, the new convergence condition is strictly weaker than the others. 

2. A block asynchronous iteration model 

Let Ei be a normed space, with norm 11. 11,-, for i = 1 , . . . ,N.  Let E be the Cartesian product 
E~ x Ez x .. .  x EN, and given a positive vector v > 0, v C ~N, define a monotone norm on E as 
follows: for x = (x T . . . .  ,XTN) T, 

Ilxll , = max ,,Xn,,_______~n,II II (1) 
l <~n<<.N I) n 

and for Xn E En, we introduce the notation 

IIx.llv- IIx.ll., 
1) n 

where Xn denotes the nth component of x. 
Multisplitting and team algorithms [3, 8, 11, 19, 20] were designed in the specific context of  

implementation on parallel computers with several processors. Information that is specific to (and 
available in) a specific processor is termed local and any information that depends on a set of  
processors is called global. The distinguishing feature of  multisplitting and team algorithms is that, 
during iterative computation of  a given vector or subvector, advantage is taken of  the fact that more 
than one processor may be involved in generating the information necessary to compute it. Thus, 
the new vector is a combination of the old vector and a vector representing some new information. 
This new information is, in tum, computed from combinations of some old global vectors. To make 
this verbal description more precise, we need a little terminology. 

Given M vectors xl , . . .  ,x M in E, a vector z E E is called a combination of  x j, 1 ~ j <~ M if there 
exist M nonnegative diagonal matrices D j, 1 ~< j ~< M such that 

Z ~--- 

M M 

ZojxJ, Zz j-- t 
j = l  j = l  

In the following, we denote vectors in E as x, y,z;  the vector x, denotes the nth (block) component 
of  vector x. B is an integer that represents the upper bound on time delays; S~ . . . . .  Sk is a sequence 
of  subsets of  set {1 . . . . .  N}. Dnj, k denotes a diagonal matrix (in general nonnegative). G (with 
subscripts) is an iterative operator from one (sub)space to another (sub)space. k is used to denote 
the iteration index and i , j , n  are used to denote the indices of components of a vector. 

In this paper, we introduce the following block asynchronous iteration model. Consider a parallel 
computer consisting of N groups of  processors. In the nth group there are Sn processors and associated 
to each processor, there is an operator Gnj,~ : E --~ Ei, which depends on n (the group number), j 
(the processor number in this group) and k (the iteration counter). The nth component of  the iterate 
will be updated by the nth group. For many reasons, for example, the speed of  each processor, etc., 
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at the kth iteration, only some groups (we use Sk to denote the set of  these groups) will update 
their components of  the iterate x k. In group n, there are s, different copies of  x,, one copy in 
each processor; at the kth iteration, only some processors (we use U,,k to denote the set of  these 
processors) will enter the updating of the nth component. Mathematically, 

~tnJ+l = { On'o'kYknk + jEU,,.~Z Dn,j, kGn,j ,k(zn'j'k) ifnifn •E sk,Sk' 
x n (2) 

k = 0 , 1  . . . .  , 

where D,,j,k are nonnegative diagonal matrices satisfying 

D.,o,k + Z Dn,j ,k  = ln, 
jrU,,,~ 

~-~j6u,,.~ Dn,j,k nonsingular, yk and z "'j'k are combinations of  Xk-B+~,...,X k, and the integer B is an 
upper bound on the delays. 

This is a very general model. To understand it better, we first write down one of  its simpler cases. 

I n,k .k+l G,,k(z ) 
An "~- k 

X n 

i f n  E Sk, 

i f  n f[ Sk, 
(3) 

where z "'k are combinations o f x  k-s+l . . . .  ,x k, G,,k are maps: from E to E,, n = 1 , . . . ,N,  and Sk are 
nonempty subsets of  { 1 . . . . .  N}. 

Consider a parallel computer consisting of N processors, then a parallel implementation of  (3) 
can be described as follows: the nth component resides in nth processor, at the k iteration, some 
processors have their approximations z "'k for n E Sk. The vector z n'k has the form 

-k' ) 
Z n,k = • , 

\ x -k, 

where x~ -k' comes from the ith processor. The integer ki represents the iteration steps that this 
component needs to transfer from the ith processor to the n-th processor. Utilizing the vector z n'k, 
the nth processor will form its new local approximation _k+l according to (3). Other components • A n 

whose indices are not in Sk will remain unchanged in this iteration step. 
In the simplified model (3), if the operators Gn, k = G,, i.e. G,,k do not vary with iteration 

number, we recover the bounded delay version of  E1 Tarazi's model [21] which, in turn (without 
the bounded delay assumption) generalizes the models of  Chazan and Miranker [9] and Baudet [4]. 
The bound on delays is assumed in this paper mainly in order to simplify notation. It is not difficult 
to generalize the model and the corresponding results to the case called 'total asynchronism' [6] 
or 'regular' asynchronism in the Russian literature [14] in which the delays need not necessarily 
be bounded but must satisfy a certain regularity assumption. It should also be noted that, in most 
practical implementations of  asynchronous iteration algorithms, a uniform bound on time delays is 
either satisfied or enforceable, and therefore it is a realistic assumption. 
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Now consider Multisplittin 9 Asynchronous Iterations (MAI). Multisplitting of a matrix was first 
introduced by O'Leary and White [16] and was generalized to nonlinear case by Frommer, see 
[11], and also studied in [2, 8, 18, 19], etc. An MAI can be written as 

ICSk IE~ 

where Tk,/ : ~ N  __.+ ~N are iteration operators, Et are L nonnegative diagonal weighting matrices 
such that the matrix ~ l ~  Ej nonsingular, Sk is a nonempty subset of {1 . . . .  ,L}. The parallel im- 
plementation of an MAI is as follows: suppose a parallel computer consisting of L + 1 processors, 
named as P0, P1 . . . .  , PL. For each Pl, 1 ~< l ~< L, the following procedure is repeated: get a global 
approximation z k't of the solution, which is a combination of  xk,xk-1,. . . ,  from P0, compute the local 
approximation EtTk, l(z k'l) and then send it to P0. P0 repeats the following procedure: cheek new 
local approximation from any other processors, if there are one or more, get it (them) and form a 
new global approximation according to (4). 

In MAI, if EIEj = 0 for l ¢ j ,  we say that there is no overlapping between the weighting matrices 
Et, otherwise, we say that the weighting matrices are overlapping. An MAI with nonoverlapping 
weighting matrices is equivalent to the simplified version (3) of  block asynchronous model (2). 
If  there is overlapping between weighting matrices, split these weighting matrices such that either 
there is no overlapping between two split weighting matrices or two split weighting matrices overlap 
completely. For instance, L = 2, N = 3, x = (Xl,Xz,X3) T, E1 = diag(1,~,0), E2 = diag(0, /3,1), 
~/3 ~ 0, in this case there is an "overlapping" computation of the vector x2 because the two weight 
matrices E~ and E2 are overlapping. Now we split 

E1 = D1 + D2,1 =-- diag(l,  0, 0) + diag(0, ~, 0), 

E2 -~ 02,2 ÷ D3 ~- diag(0,/3, 0) + diag(0, 0, 1 ). 

Now there is no overlapping between any two D~, D2,~, D3, while D2,~ and D2,2 overlap completely. 
Construct a block asynchronous iteration with three blocks which is equivalent to the MAI (4) as 
follows. Let 

{1,2} if Sk = {1}, 
Sk = {1,2,3} if Sk = {1,2}, 

{2,3} if Sk = {2}, 

and in case that Sk = {1,2,3}, 

x2 +' = (1 - e - /3)x2 + eGk, z,,(z k'' ) +/3Gk,2,z(Zk'2), (5) 

where Gk, z,t is the component of  Tk,/, l = 1,2, respectively. Therefore, MAI is a special case of the 
block asynchronous model (2). 

One can see that if we allow the operators G,,j,k in (2) and the multisplitting operators Tk, l in 
(4) to be identity operators, the block asynchronous iterative model (2) is equivalent to MAI. But, 
as we will see in the next section, from the point of view of convergence, we require that every 
iterative operator mentioned above have some contracting property, while the identity operator is 
never contracting. In Section 4, we give an example of  a Team Algorithm, which can be written in 
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the form of  our proposed block asynchronous model (2), but not in the form of  MAI. Thus, it may 
be said that model (2) is, strictly speaking, more general than MAI. 

3. Convergence results 

In this section, we give some convergence results for block asynchronous models (2) and (3). 

Definition. A vector z E E is called a x*-combination of  the vectors x~,. . .  ,x ~ i f  z is a combination 
o f x  1 . . . .  ,x B and for 1 ~<n~<N,  

min IIx~ - x~ll.  ~< IIz° - x~ll.  ~< max IIx. ~ - x~[I.. (6) 
1 <<.d<~B 1 <~d<~B 

We recall that z is a combination of  x~,. . .  ,x 8 if  there exist B diagonal nonnegative matrices 
D I , . . . , D ~  such that 

B B 

z =  ~--~ Djx j, ~-~ Dj = I. (7) 
j= l  j = l  

Obviously, i f  II • II. is a monotone norm or for all j :  1 ~< j ~< B, Dj = ~jl with scalar aj, then for 
any x*, z is a combination of  x l , . . . , x  B if  and only i f  z is a x*-combination. But this is not always 
true. For instance, choosing N = 1,E = ~2 with Euclidean norm, B = 2,x 1 = (1,0) T, x 2 = (0, 1) T, 

D~ = diag(1,0),  D 2 ----- diag(0, 1), z = DIx 1 ÷D2  x2, x~ : -  O, then Ilzll = v ~  > max{llx~ll, IIx~ll} = 1. 
So z is not a x*-combination although it is a combination of  x l , . . . , x  B 

In what follows, all combinations refer to x*-combinations, where x* is the fixed point of  iteration 
operators involved. Our first theorem is for the model (3). 

Theorem 1. Let  {Sk}k be admissible, i.e., for  any #tteger K > 0, 

U Sk : 
k : K  

I f  there exists a constant q, q < 1, independent o f  k, such that for  any x E B(x*, 6) = ix I II x - 

x*ll~ ~< ~}, 

I]G.,k(x) - x.*ll~ ~< qllx - x*ll~, (8 )  

then {x k} defined by Eq. (3) converges to x* as k ~ e¢. 

A variant o f  Theorem 1 can also be found in [12]. We include the proof  here for completeness 
and also in order to point out that the proofs o f  Theorem 2 and 3 which follow are very similar in 
concept, but more complicated in terms of  notation. 

Proof.  Set x -B+I = x -8+2 . . . . .  x - l  = x °. At first, we prove that for given K, n E Sx, 

Ilx~-x;,ll~ ~< q max{llx K-s+' -x*ll~,,---,[lx K -x*l[~,}, k ~ > g + l  (9) 

holds for k >7 K + 1. 
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For k -- K + 1, from (8), we have 

Ilx~ - x; ll~ ~< q[[ zk'" - x* II- 

and z k'" is a combination of xK-8*I,... ,X K, by (3), so that (9) holds. 
Suppose for K + 1 ~ k ~ K'  (9) holds, consider k = K' + 1. If n E SK,, 

Ilx. ~ - x; I[~ ~ qll zK''" - x* Ilv 

~< qmax{llx K'-8+' _ x*ll , , . . .  , IIx g' _ x*ll,} 

<~ qmax{ l l x  K-B+' - x*Nv,. . . ,  I I x  K - -  X*[[v} , 

and if n ~ SK,, 

IIx.  ~ - x;11~, = IIz K''" - x * H ~ .  

So (9) always holds. 
Since {Sk}k is admissible, we can construct an integer sequence {Kj}j as follows: K0 = 0, Kj+~ 

is the smallest integer ,~ such that 

(..J Sk = { l , . . . ,X} .  
k=Ki+B+l 

Now it is easy to verify that for all k > Kj, 

IIx k - x* I1,, ~< q~ IIx ° - x* IIv. 

From here we know that x k converges to x*. [] 

From (8), we always have 

G . , k ( x * )  = x * ,  

so the fixed point condition is given implicitly in the conditions of this theorem. 
Now we give two convergence theorems for the general asynchronous iteration (2). 

Theorem 2. I f  {Sk}k is admissible, and there exists q < 1, independent o f  k, such that f o r  any 
x E B(x*, 6), 

[[G..j,~(x) - xZ IIv ~< q[[x - x*  II.  ( 10 )  

where II ' I1, (see (1)) is a monotone norm and i f  

2 
~/" ~< Z D'4,k ~< 1 - ~ q  I"' (11) 

jcu,,.~ 

then, f o r  any initial iterate x ° E B(x*, 6), limk__,~ = x*. 
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In this theorem, we can see that a relaxation factor can also be included in model (2) by properly 
choosing the weighting matrices D,,j,k. The factor 2/(1 + q) is a well-known bound for the relaxation 
factor in nonnegative matrix iteration, see for example, [5, 19]. 

Theorem 3. Let  {Sk}k be admissible, and suppose that for  every G,,j,k, there exists a qn.j,k such 
that for  any x E B(x*, 6), 

II - x211  q,,,j, kll x - x*ll , ( 1 2 )  

and also that there exists q < 1, independent o f  k, for  D.j,k =/~.j, kL /~.,j.k > 0, /~.,0,k = 1 -  
~j~v,,,  ~.j,k, such that 

kq.,j,k + I&0,kl < q" (13) 
j E U,,A 

Then, for  any initial iterate x ° E B(x*, 6), 

lim x k = x*. 
k---+ ~o  

In (12), we do not require that q.j , ,  < 1 holds for each triple n , j , k ,  while this is so in (10). In 
the next section we will give an example in which there exist some q.j,k greater than 1. 

Proofs of  Theorem 2 and Theorem 3 are very similar to the proof of  Theorem 1. We only state 
the main fact that requires proof here: namely, there exists a ~, ~ < 1, independent of k, such that 
for n E Sk, 

k + l  * * x, - x , [ [ v ~  max [Ixk-d--x IIv" (14) 
O<~d<~B-I 

4. An example: Team algorithm 

In this section, we present an example of  a Team Algorithm (TA). It will be shown below that 
this example can be written in the form of  the block model (2), however it cannot be written in the 
form of  an MAI. It is also an example to which only Theorem 3 can be applied while Theorem 2 
cannot. 

For most problems, there are usually many solution methods. Sometimes one method works well, 
sometimes another. Occasionally none of  the methods will work well alone, but certain combinations 
of  the methods can be effective. Such combinations are referred to as team algorithms, see [20]. Team 
algorithms were generalized in [3] and here we consider the so-called "TA without administrator". 

T T T T Suppose that we have two processors P1 and P2, and that vector x is partitioned as x = (x I ,x 2,x 3 ) . 
Component x1 is updated by P1, x2 is updated by P2, x3 is updated by both processors and there 
exist two different versions of  x3, one resides in P1, and is denoted by x31, the other resides in P2, 
and is denoted by x32. If P1 needs x2, it will get the latest available Xz from P2; if P2 needs x~, it 
will get the latest available x~ from P1. Thus the TA can be written as: 



268 Y. Suet  al./Journal of Computational and Applied Mathematics 91 (1998) 261-273 

At the k-th iteration, P1 forms a new approximation as follows: 

)C~-' := G3,( z~'l ) (15) 

1 clx l +  11l 1 + 

Similarly, P2 forms a new approximation: 

k+l 132 : =  G32 (z k" 2 ) . (16) 

In (15), z k'l is the latest available approximate solution in P1, and is expressed as \(x; ) 
Z k,I ~- Ix2k-d(k'l) 

131 is an intermediate vector which serves to form a new x31. c~,o~11,~12 are scalars (possible time- 
varying), I kl is the latest available value of  132 at the kth iteration in P1, which comes from P2 and 31 
is formed at time kl. Similar notation is used in (16). 

Now we write TA (15) and (16) in the form of the general block asynchronous iteration (2). We 
construct a vector sequence {yt}t_0.1 .... as follows. 
(1) y O = x  o , y o = x  o , y o = x  o , l : = 0 ;  

(2) For k =- 0,1,2, . . .  do 
if only P1 updates its local approximation at time k, 

21 +1 : =  x~ +1, Y2-l+1 := y~, yl+13 : =  "~31-k+1' 1 :---- l + 1, (17) 

if only P2 updates its local approximation at time k, 

l+1 ~-'~- ~ ~ "~32 1 := y11, y~+1 X~+I y~+l _k+l. l : =  l + 1, (18) 

if both P1 and P2 update local approximations at time k, 

y,+l xk+l y~+1 y~+1 X~+l 1 := := y£, := ; ( 1 9 )  

yl1+2 : =  y / l+ l ,  y2/+2 : =  x~+ l  21+2 _ k + l .  l :  ~-  l + 2. (20) ~-" , 3 1 ~  "~32 , 

We note that every term ~l"k,~2,x31"k. k and x3~2 in (15) and (16) (if it exists) appears as one component 
of some vector yl. In case of  (17) (Eqs. (18)-(20) can be interpreted similarly), 

yll+l ~--- Gll(u 1,1 ), (21 ) 

y~+1 = ClW~ + (DI1G31(U 1"3'1 ) + O)12G32(ul'3'2), (22) 
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where UI'I ,WI,  u l'3"1 and U l '3 '2 a r e  in the form of  

Y~l-a(l,2) . 

Y21_d(l,3 ) (23) 
Y3 

• . l - -d ( I , l )  y~ - -d ( I ,2 )  I - d ( l , 3 )  
Any vector in the form of  (23) is the combination or y~ and Y3 . Block component 
w~ equals y~ if l - 1 corresponds to t(l  - 1) and is equal to y~-d for some d ~> 1, otherwise. So 
(21) and (22) are in the form of  (2), hence a TA is a special case of  block asynchronous iteration 
(2). 

In most cases, we can prove that the operators G,j,k are strictly contracting, cf. condition (10), 
thus we can apply Theorem 2 to obtain convergence. If the identity operator is viewed as one of the 
G,j,k, the strict contraction condition is not satisfied, and unless more condition(s), such as (13), 
are satisfied, convergence cannot be proved. In other words, in the example, the term w~ cannot be 
replaced by y~, so the Team Algorithm can not be written in the form of  Multisplitting Asynchronous 
Iteration mentioned above. 

Talukdar et al. [20] gave an example as follows. Suppose that there is only one block component, 
i.e., the dimension of  the first and the second block component is zero. Consider the problem of 
solving the nonlinear equation 

F ( x )  = O. 

Two possible algorithms are the Newton-Raphson (NR) algorithm and an optimization approach 
(minimize some norm of  the residual), for example, the steepest-descent (SD) method. 

k k x k+l = x k + COkNR AX~R + OJSD AXSD, k = 0, 1,2, . . . ,  (24) 

where AX~R and AXeD are the NR and SD directions, respectively; O~R and ~O~D are the stepsizes, 
which are given by the TA. There are some numerical experiments in [20] showing that sometimes 
the NR method works well and sometimes the SD method works well, but the TA is always better 
than each individual method. In case the NR method or the SD method do not work, i.e. the 
corresponding iterative operators are not contracting, we need more conditions, e.g., condition (13), 
and then Theorem 3 may be applied to prove convergence. 

5. Discussion of the convergence conditions 

In the previous convergence theorems, we gave a contraction condition (8) based on a monotone 
norm to get the convergence of the block asynchronous iteration. The contraction conditions in 
Theorems 2 and 3 are given in the light of  condition (8). In this section we compare this condition 
with those given in earlier papers, first listing some of them. 

N 

I I G . A x )  - G. ,k(y) l l ,  h ,jllxj - mill J, 
j = l  

for all x , y  E B(x* ,6 ) , k ,n  E S(k) ,  

p ( H )  < 1,H >/O, 
(25)  
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N 

IIa~,~(x)-x*ll .  ~ ~ h . j I I x j  -XTIb, p ( H )  < 1,H >~ O, 
j_j (26) 

for all x E B(x* ,6 ) , k , n  E S (k ) ,  

Ilan,~(x) - G~,k(Y)ll~ ~< qllx - yl[~,, q < 1, 
for all x , y  ~_ B ( x * , f ) , k , n  ~_ S (k ) ,  (27) 

l I a , , k ( x ) -  x;,ll~ <~ q l l x -  x*ll~,, q < 1, 
for all x E B ( x * , f ) , k , n  E S (k ) ,  (28) 

Ila~(x) -x*ll~ ~ q l l x - x * l l ~ ,  q < 1, 
for all x E B ( x * , f ) , k .  (29) 

Condition (25) is a generalization of  the one proposed by Miellou in [15]. Condition (29), with 
G k = G, reduces to the one given by Baudet in [4]. If G ~ belongs to a finite set, this was used by 
Su in [19]. The following proposition shows the relations between the above conditions. 

Proposition 4. I f  condition (26) holds, then condition (8) holds. 

Proof.  From Perron-Frobenius theory [5] since H > O,p(H)  < 1, there exists a v E ~N,v > O,q < 1, 
such that 

(30) Hv <~ qv. 

Therefore, 

IIC°,~(x) - G.,k(y)ll~ = 

This proposition was observed 
nonstationary operators. With this 

(25) =~ (26) =¢, (8), 

(27) =¢, (28) =¢- (8), 

(29) =¢, (28) =¢, (8). 

II a..~(x) - G.,k(y)ll. 
Vn 

1 U 
<. - ~ h . . J l l x j -  yjll; 

Un j = l  

N 
1 ~ h.j~j Ilxj - YjlIJ 

vn j=l vj 

<~ - h . . / v J l l x -  yl[v 
Un j=l 

<~ qllx - yll,,- [] 

by Miellou [15]. The simple proof given here is also valid for 
proposition, we have. 

Now we show that the converses of the above relations are not valid. 
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1 sin(x2) ,  for x* l ( 26 )  holds.  But (26) ~;, (25): For example, N = 1, G(x) = ~ = 0, q = i, 6 = ~ ,  
there does not exist H E R ~×~ such that for all x ,y  E R, 

Ig(x) - g(Y)l <~ Hlx - Yl. 

(8) ~ (26): Note that for N = l, (8) and (26) are the same condition. We now give a coun- 
terexample for N = 2, q = 0.8, ~ = cx~, v = (1, 1) +, II" tin = II" II~, and 

Gk(x ) = { Ax, xl >10, 
Bx, Xl < 0, 

where 

A =ql,  

(o,) 
B = q  10  " 

Obviously, (8) holds for n = 1,2. 
Suppose there exists an H such that for all x E R 2, 

]a~(x)l ~< h,~ Ix, [ + h,2[x21, (31) 

IG2k(x)[ ~< h2~ Ix, I + h22[xzl, (32) 

and if we can prove p(H) > 1, we obtain the conclusion. 
From (31), (32), we have for all x E R 2, 

Iak(x)l <. nlxl. (33) 

For all x > 0, from (33), we have 

Ax = IGk(x)[ ~< Hx, (34) 

Bx = I B ( - x ) l  = I a k ( - x ) l  n l ( - x ) l  = nx. (35)  

But (34) and (35) mean that H / >  A, and H >I B, hence, 

(11) 
H>~q 11 " 

From nonnegative matrix theory [5] one has p(H) >1 2q > 1. 
(28) 7~ (27): Same example as in (26) 7~ (25). 
(8) 7~ (28): Other components of  I x - x *  I may be larger than Ix,-x~, I. 
(28) 7~ (29): In (28), there is no restriction on those components of  G k which do not enter the 

iteration. [] 

So, theoretically, (8) is a weaker condition than the others that have appeared in the literature 
so far. In practice, when we need to test whether an operator satisfies the contraction condition, 
conditions ( 2 5 ) ( 2 9 )  may be easier to check than (8). 
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R e m a r k  The example y --- sin(x 2) (which is similar to the one used to show that (26) ~ (25))  
was used by Eisner et al. in [10] to demonstrate the difference between a paracontracting operator 
and a strictly nonexpansive operator. 
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