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Asymptotics are obtained for the number of n x n symmetric non-negative 
integer matrices subject to the following constraints: (i) each row sum is specified 
and bounded, (ii) the entries are bounded, and (iii) a specified “sparse” set of 
entries must be zero. The result can be interpreted in terms of incidence matrices 
for labeled graphs. 

1. STATEMENT OF RESULTS 

Let .H(n, z) be the set of all IE x n symmetric (0, 1) matrices with at most 
z zeroes in each row. Let r be an TZ long vector over [0, d] = (0, l,..., d}. 
For ME d(n, z), let G(M, r, t) be the number of n x n symmetric matrices 
( gij) over [0, t] such that 

(i) gij = 0 whenever mij = 0, 
(ii) Cj gij = ri . 

By “A(w) - B(w) uniformly for w E Q as f(w) --+ co” we mean 

4~) --1 =o, 
L@z ;;izl eJ) w 

where the supremum over the empty set is 0 and O/O = 1 by convention. 
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We prove 

297 

THEOREM 1. For given d, t, and z 

G(M, t, t) - T(f, 8) ecaeb/17ri ! 

uniformly for (M, T) E UL, (&(n, z) x [O, d]“) as f + co where 

E=-lift=land+lift>l, 

b = ( C rirj + 1 ii))/! 
Wtij=O 2 

i-3 

S= 1 ri, 
Vlii’O 

and 

Tcf, 6) is the number of involutions on [ 1, f ] such that 
no element in some speciJied set of size 6 is fixed. 

We also prove the following: 

THEOREM 2. For Tcf, 6) defined as above, 

T(f 8) - W4f/2 exp(--k/2f+ k2/4f2) 
x (exp(k/f lj2) + (- l)f exp( --k/f 1/2))/21/2 

uniformly as f + co where k = f - 6. 
Remarks. Since f < dn, we have n ---f CO as f + co. Since z is fixed, the 

forced zeroes in the matrices being counted become very sparse as f -+ co; 
however, most entries will be zero since row sums are bounded and n -+ CO. 
Two graphical interpretations are of particular interest: Let I be the n x n 
identity matrix and J the n x n matrix of ones. Then G(J - I, r, 1) is the 
number of loopless labeled graphs with degree sequence r and G(J, r, 1) 
counts those graphs when loops are allowed. N. G. de Bruijn (unpublished) 
has obtained the asymptotic formula for G(J - I, r, 1) with all ris equal. 

A result similar to Theorem 1 without the symmetry condition was proved 
in [2]. We adapt the technique there to the symmetric case. The situation 
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is more complicated because we are enumerating certain classes of involutions 
rather than certain classes of permutations. 

2. PROOF OF THEOREM 2 

We have 

wi 6) = c (;) Cf-i 
z 

where c, is the number of ways to partition an m-set into blocks all of size 2 
and so 

c, = 
I 

Oifm odd 
m! 

2”l”(m/2) ! 
- 21/2(m/e)m/2 if m even. 

It follows that 

cfpi N 21/2(f /e)f12 f --il2 #Pf 

uniformly provided f - i is even and i 3 = O( f 2-u) for some u > 0. Define 
E = l/IO. 

Case (i). k 3 f1/2+e. Using the idea in [l, Sect. 31 we find that the 
maximum term occurs near i = k/f lj2 and that those terms with 
/ i - k/f1i2 I”/(klf”“) large do not contribute significantly to the sum. 
Summing over 1 i - k/f l/2 I < fr/7(k/f1/2)1/2 we obtain the estimate 

; 1 (k) 21/z (;jy-ii2 ei2/4f, 

where the factor of l/2 is due to the fact that c,,, = 0 when m is odd. In this 
range i2/4f = k2/4f2 + o(l). Thus 

T(f, 8) - (f/e)f12 e314p (1 + f -1f2)k/21/2. 

The estimate is uniform. 

Case (ii). k < f112fr. The terms with i > f114-< = I now turn out to 
be negligible and the remaining sum is as given in the theorem because 

c (;) Cf-i 
i<I 

N 21/2(fle)fP C GI!!$!Y , 

where the sum is over i < I and f - i even. When f is even this is asymptotic 
to cosh(k/f 112) and when f is odd it is asymptotic to sinh(k/f r12). 1 
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The most important (for us) aspects of Theorem 2 are given below in 
(2) and (3). They follow easily from the theorem. Below and throughout the 
paper we make the following convention: 

T(C, P) = T(C, max@, S)>. 
Recall that A = w(B) means B = o(A). 

COROLLARY. We have 

T(f - j, 6 - j) N f -ilzT(f, 6) uniformly as f -+ co (24 

provided j2 = o(f) untformly and either j is even or k = u(f 112) untformly; 

T(f - j, 6 -3 ,< (JW/2 - KL 8) (W 

when j is even or k > f1J2/2. Also, 

TU 6 * e(f)) - T(f, 6) uniformly as f -+ co (3) 

provided e(f) = o(fll”) uniformly and k = w(e(f)) uniformly. 
We shall need the obvious 

T(r, s> d W, 8’) for s<s’ (4) 

from time to time. 

3. A LEMMA ON INVOLUTIONS 

Let a set 6 of objects and a finite set F of properties be given. For each 
X C 9, let N>(X) be the number of objects in 0 having at least the properties 
in X and let N=(X) be the number which, in addition, have none of the 
properties in 9 - X. Define 

P, = c N,(X) s, = 1 N>(X). 
IXI=u IXI=u 

LEMMA 1. Let A be a subset of [l, f ] and 9’ be a collection of unordered 
pairs {i, j} with i # j and 1 < i, j <f If Inv(9, A) denotes the number 
of involutions CJ on [I, f ] such that u(i) # j whenever {i, j} E B and u(i) # i 
whenever i E A, then 

Inv(9, A) - T( f, 6) . e-A 

5sd24/3-4 
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uniformly as f ---f CO for all A and all 9 satisfying 

I{i: {i,j} E~}I < C 

for some C and all j andf, where 6 = 1 A 1 and h = 19’ i/J 

Proof. Let 0 be all involutions a on [l, f] such that no element of A is 
&ted. Let 9 = B where (i, j} is the property “u(i) = j.” We want to com- 
pute P,, . Suppose XC 9 and 1 X 1 = u. Then N>(X) = T(f - 2u, 6 - l(X)) 
where 

(i) l(x) = /{i E A: {i, j} E X for some j}l 
(ii) X is independent; i.e., each i E [l,f] appears in at most one pair 

{i, j} E X. 

If X is not independent, N>(X) = 0. Note that S,, = Tcf 6). 
First suppose that I B I > flj*. Using (3) with e(f) = fljg and (4) we have 

N>(X) - T(f - 2u, 6 - 2u) 

uniformly for u = o(fl/$) and 6 <f - flj*. When u = o(fljg) almost 
all subsets of size u are independent (see [l, p. 4931). Hence 

s, - (1 T ‘j T(f - 2u, 6 - 2u) 

uniformly for u = o(fl’“) and S <f - fljs. 
Now suppose 6 > f - flls. We claim (5) still holds. The idea is that for 

almost all subsets XC B, X consists entirely of pairs made from A. Indeed, 
the number of subsets X with / X I = u and not made from A is bounded 
above by j’&Y(l~L;‘), where the first factor selects i $ A, the second selects 
j with {i, j} ~9, and the third completes X. This product is oC~-~“~(‘E~)). 
By (4), Tdf - 2r.4, 6 - 2~) >, T(f - 2u, 6 - l(x)), which proves (5) for all 6. 
BY (2) and (5) 

u!S, N h”T(f, 6). 

By [l, (4.3)] the lemma follows for I B / > f1i4. 
Now suppose that I 9 I < f1j4. Then S, < I B / 7’(f - 2,s - 2) = 

O( f-lW(f, 6)). s ince S, >, PO 2 SO - S, , we are done. 1 

4. OUTLINE OF THE PR~~F 

Suppose that d, z, and t are fixed, ME &(n, z) and r o [0, d]*. Consider 
a set F of cardinality f and an ordered partition 

F= R,vR,v~~~uR, 



NUMBER OF LABELED GRAPHS 301 

where 1 Ri 1 = ri . Define the set 0 of objects to be all involutions u on F 
such that 

(a) o(Ri) n Rj = o whenever mij = 0, 
(b) if LY and a(a) are in the same Ri , then u(a) = LY. 

By the lemma of the previous section, 

So - T(f 6)e-b uniformly as f -+ 03. (6) 

Let @ be a map from involutions (T to n x n symmetric matrices G defined 
by gij = 1 o(Ri) n Rj j. The set Q(0) is precisely those matrices counted 
by G(m, r, d) and for G E Q(O), 

I @-‘(G)l = n ri !/ 2Q gij 1. . 
We now define a set Z? of properties for 0. These have the form 

“I u(Ri) n R, 1 = k” where d > k 3 2 and mij = 1. We can always take 
i < j. We abbreviate the property as “(i,j) = k.” We will consider three 
classes of X_C 9: 

(I) All k’s = 2, no m appears in more than one (i,j); 
(II) All k’s = 2, some m appears in more than one (i,j); 

(III) Some k 3 3. 

Let the contribution of the three classes to P,, and S,, be denoted by 
P’, , P”, , P”, , S’, , S”, , and S”, respectively. We shall show that class I 
provides the only significant contribution and that large u is unimportant. 
This is summarized in 

LEMMA 2. Suppose thatfor some C 

u! S’, = SdP(1 + o(l)) + 4-W”) 
u! S”, = o(S,C”) 09 
u! s”, = 0(&p) 

uniformly as f ---f 00 for u < A( f ), where A(f) --f co. Suppose further that 

u!S, < S,K” (9) 

for all u > 0 andsome K. Then Theorem 1 is valid. 

Proof. Let t(f) be a function such that t(f) ---f 0 and the little-ohs in (8) 
are bounded by S,$?t(f). Since S,C”t(f) < So(t(f))1/2 for u < min(/l, 
-l/2 log t/l log C I), we may assume C = 1 in (8) provided /1 is replaced 
with the above minimum and t is replaced by T = t112. 
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Suppose first that 2 log a 3 -(-log 7)1/Z and that (8) holds. For 
u < min(A, (-log ~)l/~) we have uniformly U! S’, - &au, U! S”, = o(S,aU), 
and u!S”, = 4-W). BY [l, (4.311 

P’, - PI, - Soecaaklk ! (10) 

uniformly for k < u(f) where g is some function such that Q -+ cc. 
For t = 1, Theorem 1 then follows by (6) and (10) with k = 0. Suppose 

t > 1. By (7) as in [2, pp. 222-2231 

n ri ! G(M, r, t) >, c P’,2” - S,,ea 
k<u 

uniformly by (10). Also, 

n ri ! G(M, r, t) < c P’$” + 1 (s”, f yk)(d!)k + c Sk(d!)k 
k(o k<o k>o 

= Soea(l + o(1)) + 0(&e”!) + O(S,(eKd!/up) 

uniformly as f + cc by (8) and (9). This proves that Theorem 1 is valid in 
the case 2 log a 3 -(-log ,)li2. 

Now suppose that 2 log a < -(-log 7)l12. By (8), S,, - S’, and 
U! S, = o(S,,) for I < u < A(f). As in [l, (4.3)] one easily has P,, - S,, 
uniformly. As in the previous paragraph, 

n ri ! G(M, r, t) 3 P, - S,, , and 

n ri ! GM, r, t) < p, + il sect + 1 sk(d!)k 
k>A 

= S,(l + o(l)) + 0(&e”!) + O(S,(eKd!/rl)“) 

--so. I 

5. DETAILS OF THE PROOF 

First we reduce to the case in which no ri is zero. Let r* denote r with the 
zeroes deleted and M* denote M with the corresponding rows and columns 
deleted. Since G(M, r, t) = G(M*, r*, t), f = f *, a = a*, b = b*, and 
6 = 8*, the theorem is unchanged. Hence we may assume ri # 0. Thus 
nd>f 3n. 

If f = 6 is odd, then G = T = 0. Hence we may assume T(f, S) # 0. 
We begin with (8) and (9) for class III. Let X be a set of properties of 

class III, containing w properties of the form (i,, , j,) = k, and u - w of the 
form (I,, 1,) = in, . Let Zk, = 2w + A and ZmQ = 2(~ - w) + B. Then 
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w(d-2)~A~0,(u-w)(d-2)3B~0,andA+B~1.Supposea 
is counted in N>(X). We can define (T to satisfy (l, I) = m in at most 

(2) < (;) d-2 < (;) dt 

ways and to satisfy (i,j) = k in at most 

(2)(z) k! < 2 (;)(;) d2t 

ways. The part of (T not specified by X can be chosen in at most T(f - L, 6*) 
wayswhereL=2~+2~+2A+Band6-6* <L.Notethatifu=w, 
then B = 0 and so L is even. By (4) and the above 

N>(X) < d2t” n (3) n 2 (>)(3) T(f - L, 6 - L). 
9 P 

(11) 

Now fix U. Summing over all X with u = w we obtain 

by (2b). Since x:i (2)lf < (d - 1)/2, we have 

u! & wm = c”w 6) Wf) 

for some C. Summing (11) over all X with u > w we obtain 

(12) 

T, = max T(f - L, 6 - L) where L ranges over (U + w) t 3 L > 2~ + 2~ 

< ~22 T(f - I, 6 - I)(K/f)“+” by (2b). 

Hence 

= R((D + N)” - N”) 
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where R = (dtK)2u max,,, T( f - I, 6 - 1) 

Iff - 6 > f 2/3, we can apply (2b) and combine the result with (12) to obtain 
u!s”, = o(C”T(f, 8)) uniformly for some C and all u. If k = f - 6 < fV, 
we have 

D < k d/2f = O(k/f) 

and (x + h)” - x” < (x + h)“-l uh for h > 0. 
Using these in (13): 

u! c N>(X) = O(C”kf -lyy T(f - I, 6 - I)). 
w<u 

(14) 

The maximum occurs at either 1 = 1 or 1 = 2. If it occurs at I = 2, 
or if k >, f 1/2/2 then (2b) applies. When k <f 1/2/2 it is easily shown from 
Theorem 2 that T(f - 1, S - 1) < 2(1 + o(l)) T( f, 6)/k. Combining this 
with (12) and (14) we obtain u! S”‘, = o(C”T(f, 6)) again. 

The argument for class II is similar. Define X, u, and w as before. We then 
have equation (11) with L = 2u + 2w, since A and Bare zero for Xin class II. 
Summing (11) over all X of class II, using (2b) 

* (24 + w - l)(i) T(f, 6) . (K/f)“+w . d2tu 

d C” * T(f, 8) * OWf). (15) 

This establishes (8) for class II. 
We now estimate class I. Let X be class I with w properties ‘<(iv , j,) = 2” 

and u - w properties “(I,, l,J = 2”. The number of 0 counted in N>(X) 
can be factored as I(X) J(X) where 

and J(X) is the number of ways to complete the definition of u on the 
remaining f - 2u - 2w elements of F in such a way that the properties of 
X are preserved. Thus J(X) is the number of involutions on a subset F’ 
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of F containing f - 2u - 2w elements and, in the notation of Lemma 1, 
9’ is the set of all {ar, /3} such that 01, /3 E P’, a < /3, and 

(i) 01 E Ri , fi E Rj , “(i,j) = 2” E X; or 
(ii) 01 E ri , /3 E Rj , mij = 0; or 

(iii) 01, j? E Ri . 

Also d consists of all 01 E F’ such that 

(i) 01 E Ri and mid = 0; or 
(ii) 01 E Ri and “(i, i) = 2” E X. 

By a careful consideration of definitions: 

bffwd2>IBI >bf-4&(2+1), 

6 + d(z.4 - w) 3 1 A 1 > s - 4w, 

where b and 6 are as in Theorem 1. The collection of all B arising above 
satisfy Lemma 2. Hence 

J(x) - T(f - 2u - 2w, 6 + r(x)) ecb 

where [ r(X)1 < 4ud, uniformly for u = o(f). By (2) 

J(X) - T(f, 6 + r(X) + 2u + 2w)f-“-We-b (16) 

uniformly. Notice that r(X) + 2u + 2w 2 2(u - w) 3 0 and so by (4) 
the right side of (16) is bounded by T(f 8)f-“-we-b. 

We now distinguish cases. Define 

P = j{i: ri > l}l, 

Q = I{i: ri > 1 and mii = I}]. 

The cases are 

(A) P <f71a 
(B) P > f7/8, Q > f 2/3 

(C) P > f ‘j8, Q < f 2’3. 

Consider case A. We have 

a < (Pd2/2f)2 + Qd2/2f < (Pd2/f)2 -c d4/f1/4. 
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Proceeding as for classes II and III. 

u! S’, = 0 (g (,“) N”D”-WT(f, S)) 

= O(@T(f 6)) = o(S,) for u > 0. 

Since a = O(f-‘/3, this establishes (8). 
Consider case B. We have 

f--S= c ri>2Q>f2i3. 
?Q=l 

BY (161, (3), and (6) 

J(X) - T( f, 6) f u-we-b N S,f +--W 

uniformly provided u does not grow too rapidly. Summing 
class I and cardinality U: 

(17) 

over all X of 

where the sum ranges over all i 2, , j, , 1, such that there are no repeats, 
y,.i, = 1, ml #1 = 1, and the number of p’s plus q’s equals U. An upper 
bound for thilsem is 

; -$ (7 (‘;)/f 1”” (u 2 $1 ( g (;)/f)“-w = aw. 08) 
“rr 1 

A lower bound for this sum is 

c 1 u) w! (u - w)! [NWD- - (” ; “) n(z + l)(d2/2f)lNV’-w-j 

>c 
NwDu-w 

po w! (u - w)! (1 - u2n(z + 1) d4/2f2D2) 

D = 1 (‘;)/f 3 Q/f > f-1’3. 
T?Lpl 
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Thus 

u2n(z + 1) d4/2f 2D2 = O(~zf-l/~). 

Hence S’, - auS,, uniformly provided u does not grow too rapidly. 
Now consider case C. First consider those X with u - w > 0. We have 

by (16) and the idea leading to (18) 

U! w& N&X’) d CT(f 8) rb 1 (i) N”D”-” 
w<u 

= CT(J; S) e-b((N + 0)” - N”) 

< CT(f, 8) e-b $ (N -t 0)” 

= O(a”S,,uD/N) by (6). 

Since N > (P/f)2 > f -II4 and D < Qd”/f < d2f -113 we see that when 
ZJ = o(f 1/12) this is o(a”S,). Hence 

u! S’, = 1 N>(X) + o(a”S,) (19) 

uniformly as f -+ co and u slowly growing, where the sum is over those X 
of class I, cardinality u and no “(i, i) = 2.” We now estimate this sum. The 
procedure is like case B but the estimates are a bit easier. Using this, (19), 
and N - a, we obtain (8). 

We now prove (9) for class I. We return to J(X) and note that 

J(X)<T(f-22u-2w,IdI) 
~T(f-2u-2w,S-4w) 
<T(f-22u-2w,6-22u-2w) 

by (4). Using (2b) 

J(X) < (Wf)“+w T(f, 8). 

Using this and the idea leading to (I 8): 

c N&Y) < (aK2ju T(f 8)/u! < (K’)U S,, . 

This proves (9) for class I. 
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