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Abstract

It is well known that unstability of solutions to small changes in inputs causes many prob-
lems in numerical computations. Existence, uniqueness and stability of solutions are important
features of mathematical problems. Problems that fail to satisfy these conditions are called ill-
posed. The purpose of this study is to remind briefly some methods of solution to ill-posed
problems and to see the impacts or connections of these techniques to some statistical methods.
© 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

In general, a system (or problem) has an input (initial value, data)u and an output
(solution)r, wherer = R(u) andR is a method of solution.

Let u be in the metric spaceU with a metricdU andr = R(u) be in the metric
spaceF with a metricdF . Then the problem is called stable in the pair of spaces
(F,U) if for all ε > 0 there existsδ(ε) > 0 such that

dU(u1, u2) 6 δ(ε) ⇒ dF (r1, r2) 6 ε,

whereu1, u2 ∈ U andr1 = R(u1), r2 = R(u2).
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The problem of determining the solutionr in the spaceF from the initial datau
in the spaceU is said to be well posed on the pair of metric spaces(F,U) if the
following three conditions are satisfied:

(i) for every elementu ∈ U, there exists a solutionr in F ;
(ii) the solution is unique;
(iii) the problem is stable on(F,U).

Problems that fail to satisfy these conditions are called ill-posed. Problems that
satisfy conditions (i) and (ii) but not (iii) are called ill-conditioned, that is, problems
which are unstable are called ill-conditioned [1,2,20].

It should be pointed out that the definition of an ill-posed problem is related to the
pair of metric spaces(F,U). The same problem may be well posed in other metrics.

As a simple example let us consider the following two systems of equations:


1
6x + 2

6y + 3
6z = 1,

1
3x + 1

3y + 2
3z = 4

3,

0.4999x + 0.4999y + z = 1.999

with solutions

x = 1, y = 1, z = 1,

and 


1
6x + 2

6y + 3
6z = 1,

1
3x + 1

3y + 2
3z = 4

3,

0.4999x + 0.4999y + z = 1.998

with solutions

x = 10, y = 10, z = −8.

The only difference between these systems is the value of the third component in
the right-hand side vectors. If we take the right-hand side vectors as inputsu1, u2 ∈
U = R3×1, the inverse of the coefficient matrix asR and the solutions asr1, r2 ∈
F = R3×1, then according to the Euclidean metric

dU(u1, u2) =
√

(1 − 1)2 +
(

4

3
− 4

3

)2

+ (1.9998− 1.998)2 = 0.0018

and

dF (r1, r2) =
√

(1 − 10)2 + (1 − 10)2 + (1 − (−8))2 = 9
√

3.

Small changes in inputs result large changes in outputs.
In order to see that the problem is well posed, we need to check two things. First

one is the existence and uniqueness and the second one is the stability of the solution.
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For a real linear equation system it is easy to check the existence and uniqueness
of the solution. But it is more difficult to check the stability. Let us focus on the
latter problem. For a nonsingular matrixA ∈ Rn×n andb ∈ Rn×1 the solution of the
systemAx = b exists and is unique. Suppose that1A andδb are, respectively, the
perturbations ofA andb in the linear systemAx = b. If A is replaced by a nonsin-
gular matrixA + 1A andb is replaced byb + δb, then the error (change) in the
solution can be bounded as∥∥1x

∥∥ 6
∥∥A−1

∥∥(‖1b‖ + ‖1A‖ ‖x‖)
1 − ∥∥A−1

∥∥ ‖1A‖
for ‖A−1‖ ‖1A‖ < 1 (see e.g. [2, p. 404] and [8, 10]). When there is no change in
A, that is, when1A =0, then

‖1x‖ 6
∥∥A−1

∥∥ ‖1b‖.
The relationship between the relative error‖1x‖/‖x‖ and the relative change on

the right-hand side vector‖1b‖/‖b‖ is

‖1x‖
‖x‖ = k(A)

‖1b‖
‖b‖ ,

wherek(A) is the condition number ofA and is defined by

k(A) = sup
b

[
sup
1b

( ‖1x‖
‖x‖

/ ‖1b‖
‖b‖

)]
= ∥∥A−1

∥∥ ‖A‖ > max|λA|
min |λA| ,

where|λA| is the absolute value of an eigenvalueλA of A.

When the norm is the Euclidean norm andA is symmetric, then

k(A) = max|λA|
min |λA| .

If the condition numberk(A) of the coefficient matrix in the linear equation sys-
temAx = b is large, then the problem with inputb and outputx = A−1b is unstable,
that is, the problem (inverse problem) is ill-conditioned. The matrixA itself is called
ill-conditioned.

2. Some solution methods for ill-posed inverse problems

In general, an inverse problem contains a known operatorA, a function (a vector)z
which is a characterization of the phenomenon that we are going to model and input
u obtained from the measurements, such thatAz = u. The purpose of the inverse
problem is to solve forz. Since the input comes from measurements, we have some
ũ for u. If ũ does not belong to the range ofA, then there is a problem of existence
of a solution. Even if̃u is in the range ofA and the solution is unique it may not be
stable, that is, the inverse problem may be ill-conditioned. So, measurement errors
will cause some problems. Also, when the inverse problem is ill-conditioned andũ
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is an observation of a random function (or vector), then the solution (for example,
the estimate) will be unreliable.

Now we will remind some solution methods for ill-posed inverse problems from
the book [20] by Tikhonov and Arsenin. It will be supposed that the operatorA has
a closed range.

2.1. Selection method

Forz in F with a metricdF , u in U with a metricdU and an operatorA : F → U

let us consider the inverse problemAz = ũ. Then the selection method for ill-posed
inverse problems consists of a selection of a subsetV (V ⊂ F) and search for a
solutionz0 (z0 ∈ V ) such that

inf
z∈V

dU (Az, ũ) = dU(Az0, ũ).

WhenF,U are linear spaces,A : F → U is a linear operator andU is a Hilbert
space, for a subspaceV (V ⊂ F),

Az0 = PA(V )u, (1)

wherePA(V ) is the orthogonal projection ontoA(V ).

In this method, the question becomes the selection of the subspaceV in order to
overcome the ill-posedness, that is, the existence of a solution and (or) its unstability.

2.2. Replacement method

In this method, the operatorA in the equationAz = ũ is replaced by a regular
operatorA + δI (δ ∈ R, δ > 0 andI is the identity operator) and

zδ = (A + δI)−1ũ (2)

is taken to be a solution. The question is how to choose the regularization parameter
δ.

2.3. Regularization method

In this method, in order to stabilize the solution a continuous functional

W : F1 ⊂ F → R+ ∪ {0}
is defined and the functional

MW,α(z, ũ) = d2
U(Az, ũ) + αW(z)

is constructed, for a chosen valueα (α > 0). The functionalMW,α is called smooth-
ing functional for the inverse problemAz = ũ. The elementzα in F1 which mini-
mizes the smoothing functional is called regularized solution.

inf
z∈F1

MW,α(z, ũ) = MW,α(zα, ũ).
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The regularized solutionzα is a function ofũ andα and it also depends onW. So,
the question is how to chooseW andα.

WhenF,U are Hilbert spaces,A : F → U is a linear operator andW is a func-
tional defined by

W : F → R+ ∪ {0},
z → W(z) = ‖z‖2,

then the smoothing functional is

Mα(z, ũ) = ‖Az − ũ‖2 + α‖z‖2 = (Az − ũ)∗(Az − ũ) + αz∗z, (3)

where∗ denotes the conjugate transpose. In order to minimizeMα(z, ũ), the deriva-
tive with respect toz is set to zero and the following equation is obtained:(

A∗A + αI
)
z = A∗ũ.

The solution of this equation is the regularized solution

zα = (
A∗A + αI

)−1
A∗ũ =

∞∑
n=1

cn

λn + α
ϕn, (4)

whereλ’s andϕ’s are eigenvalues and eigenvectors ofA∗A, respectively, and the
coefficientscn are such thatA∗ũ = ∑∞

n=1 cnϕn.

2.4. Iterative method

Assume that the inverse problemAz = ũ has a unique solution. An iterative meth-
od is given by

zn+1 = zn − hA∗(Azn − ũ), n = 0, 1, 2, . . . , (5)

wherez0 (z0 ∈ F) is an initial value andh is a number such that 0< h ‖A∗A‖ < 2
[4].

In this method,h can be chosen differently for every iteration orh can be replaced
by an operatorH.

By applying the replacement method to preceding equation system the following
solutions have been obtained:

Eureka—the solver, version1.0:


1
6x + 2

6y + 3
6z = 1,

1
3x + 1

3y + 2
3z = 4/3,

0.4999x + 0.4999y + z = 1.9998

with solutions

x = −0.00080016003, y = .00040008002, z = 2.0000000;
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Eureka—the solver, version1.0:


(
1
6 + 0.1

)
x + 2

6y + 3
6z = 1,

1
3x +

(
1
3 + 0.1

)
y + 2

3z = 4
3,

0.4999x + 0.4999y + (1 + 0.1)z = 1.9998

with solutions

x = −0.52670350, y = 1.0534070, z = 1.5786372;
Eureka—the solver, version1.0:


(
1
6 + 0.001

)
x + 2

6y + 3
6z = 1,

1
3x +

(
1
3 + 0.001

)
y + 2

3z = 4/3,

0.4999x + 0.4999y + (1 + 0.001)z = 1.9998

with solutions

x = 0.81628466, y = 0.81381356, z = 1.187302;
Eureka—the solver, version1.0:


(
1
6 + 0.00000001

)
x + 2

6y + 3
6z = 1,

1
3x +

(
1
3 + 0.00000001

)
y + 2

3z = 4
3,

0.4999x + 0.4999y + (1 + 0.00000001)z = 1.9998

with solutions

x = 0.99997502, y = 0.99997499, z = 1.0000250.

In the above computer output, it is seen that the solutions are dependent on the
values of the regularization parameterδ and they are getting better for small values
of δ.

3. The problem of multicollinearity

In statistics, our inputs (data) are observed values. Outputs are values of some
statistics. When the outputs are sensitive (unstable) to small changes in data we can
consider this sensitivity as an ill-conditioned problem. The variance of the statistic
is a natural measure of this sensitivity.

In statistical inference, the statistics (estimators) are obtained according to some
optimization criteria or principles. The best statistics under some criteria may be
sensitive (unstable) to data even though the criteria is the minimization of the vari-
ance. For example, in linear models, the Gauss–Markov estimator of any estimable
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linear combination of the parameter vector has minimum variance among all linear
unbiased estimators, but because of a bad design (multicollinearity) the variance may
be large and the estimated value may be far distant from the true value.

In this section, we will give a short summary of the problem of ill-conditioning
in linear models, that is, the problem of multicollinearity. We especially will empha-
size that the origins of methods to handle the multicollinearity are in the solution
techniques of ill-posed problems.

The multicollinearity is defined as the existence of nearly linear dependency
among column vectors of the design matrixX = [X1,X2, . . . , Xp] in the linear
modelY = Xβ + ε. The existence of multicollinearity may result in wide confidence
intervals for individual parameters (unstable estimates), may give estimates with
wrong signs and may affect our decision in a hypothesis testing. Severe multicol-
linearity may make the estimates so unstable that they are practically useless.

Multicollinearity is synonymous with ill-conditioning. So, the problem of multi-
collinearity is another version of the problem of ill-conditioning in the solution of
the following normal equations:

X′Xβ̂ = X′Y .

Therefore, in this inverse problem the condition numberk(X′X) is a measure of exis-
tence of multicollinearity. Even though the condition number gives some information
about the existence of multicollinearity, it does not explain the structure of the linear
dependency among the column vectorsX1,X2, . . . , Xp. The best way of explain-
ing the existence and structure of multicollinearity is to look at the eigenvalues and
eigenvectors of the matrixX′X [9,11,13,18].

Let the column vectorsX1,X2, . . . , Xp be standardized such thatX′X is in the
form of a correlation matrix. Let the spectral decomposition ofX′X be

X′X = V




λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λp


V ′ = V DV ′ =

p∑
i=1

λiviv
′
i ,

whereλ1 > λ2 > · · · > λp > 0. If the condition numberk(X′X) = λ1/λp is large,
then the multicollinearity exists and its structure is explained by eigenvectorvp as

[X1,X2, . . . , Xp]vp ≈ 0.

In the last one to two decades, there are a number of papers on the cause of
multicollinearity. It is found that some observations may be influential on the value
of condition number. The omission of such observations may create or remove the
problem of multicollinearity [3,5–7,23].

Hundreds of studies have been done on the problem of multicollinearity. Even
though many solution methods have been proposed, the problem has not been solved
completely. Among the methods, the most popular one is the ridge method proposed
by Hoerl and Kennard [12]. The ordinary ridge estimator is
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β̂
k

= (X′X + kl)−1X′Y (6)

obtained by adding a small positive numberk to the diagonal elements of the normal
equations. Notice that this estimator has the same expression as the solution in the
replacement method (2) and regularization method (4).

Ridge method has been a popular estimation method for over 25 years. It can
yield more reliable point estimates of the cofficients than the ordinary least-squares
estimates by reducing the standard errors of the estimates at the expense of intro-
ducing some bias. However, there are some problems with the choice of the biasing
parameterk.

The addition of a small number to the diagonal elements of a matrix was also
familiar to Marquardt [14], who used it in his algorithms for nonlinear optimiza-
tion. Marquardt defined a class of generalized inverse estimators and discussed their
properties in the frame of biased estimators including the ordinary ridge estimator
[15].

Let us now consider the normal equationsX′Xβ̂ = X′Y with ill-conditioned ma-
trix X′X and let us try to solve the normal equations by the selection method. For a
subspaceK(K ⊂ Rp) we look for a solutionβ̂

0
∈ K such that

min
β̂∈K

dE

(
X′Xβ̂,X′Y

) = dE

(
X′Xβ̂

0
,X′Y

)
,

wheredE is the Euclidean metric onRp. From (1)

X′Xβ̂
0

= P
X

′
X(K)

(X′Y). (7)

WhenK = span{v1, v2, . . . , vm}, that is,K is spanned by eigenvectors correspond-
ing tom largest eigenvaluesλ1, λ2, . . . λm with m < p, thenX′X(K) = K and

PX′X(K) = PK = W(WW ′)−1W ′ = WW ′,
whereW = [v1, v2, . . . , vm]. Moreover, from (7)

β̂
0
=(

X′X
)−1

WW ′X′Y = V D−1V ′WW ′X′Y

=V D−1




1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
0 0 · · · 0
...

...
...

0 0 · · · 0




W ′X′Y = V




1
λ1

0 · · · 0

0 1
λ2

· · · 0
...

...
...

0 0 · · · 1
λp

0 0 · · · 0
...

...
...

0 0 · · · 0




V
′
X

′
Y

This estimatorβ̂
0

obtained by the selection method is the principle component
estimator ofβ. In the selection method, the trouble was selecting the subspace for
the solutions. Here the trouble is in choosing the integerm, the number of principal
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components. There are numerous suggestions in the literature concerning appropriate
criteria for retention or deletion of components.

Estimators based on the iterative method (5) and their statistical properties are
also investigated. An estimation procedure based on the iterative method can be con-
structed as follows. Let̂β

(0)
be a fixed point in the parameter space and

β̂
(n)

= (I − hX′X)β̂
(n−1)

+ hX′Y , n = 1, 2, . . . ,

whereh ∈ (0, 1/λ1). For β̂
(0)

= 0 and suitable chosen valuesh, n the estimator̂β
(n)

can have smaller mean-squared error than the least-squares estimator [17]. An esti-
mator similar toβ

(n)
is proposed by Trenkler [21]. Trenkler’s motivation is based on

a serial expansion for the Moore–Penrose generalized inverse.
The estimators considered above are better than the ordinary least-squares esti-

mator in the case of multicollinearity according to the mean-squared error criteria.
Nowadays the problem of multicollinearity is also a subject of research in gener-

alized and multivariate linear models.
The ridge method, which corresponds to operator replacement method for ill-

conditioned problems, is used extensively in linear models as a solution method to
overcome multicollinearity. The ridge method is also used in statistical analysis tech-
niques which involves matrix inverses. For example, the Mahalonobis distance

D(x − µ) = (x − µ)′R−1(x − µ)

involves a matrix inversion, wherex is an observed vector,µ andR are the mean
vector and covariance matrix of the distribution (population). SubstitutingR + kI

for R,

Dk(x − µ) = (x − µ)′(R + kI)−1(x − µ)

is called the ridge type Mahalonobis distance. In discriminant analysis applications
the classification rule based on the Mahalonobis distance involves sample covariance
matrix R̂. By substitutingR̂ + kI for R̂ a ridge type classification rule is obtained
[19].

As another example let us consider the canonical correlation analysis:[
X1
X2

]
p×1

k×1
∼ N

([
µ

1
µ

2

]
,

[
R11 R12
R21 R22

])
,

V1 =
p∑

i=1

αiX1i , V2 =
k∑

j=1

βjX2j .

Canonical correlation analysis problem is to find the coefficientsα’s andβ ’s such
that the correlation coefficient between the random variablesV1andV2 is maximized.
Hottelling proved that the problem becomes the eigenvalue and eigenvector analysis
of R−1

22 R21R
−1
11 R12. In applications, the ridge type canonical correlation analysis [22]

is based on(R̂22 + k2I)−1R̂21(R̂11 + k1I)−1R̂12.
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In computations which frequently involve matrix inversion, as in control theo-
ry and nonlinear models, the ridge method can be used as a powerful tool against
ill-conditioning.

4. Conclusion

A statistical analysis can be affected by ill-conditioning in three ways (stages).
First, measurement errors can create some problems in the presence of ill-condition-
ing, since the outputs will be sensitive (unstable) to small changes in the inputs. At
this stage the problem is the sensitivity of measurement devices and it looks more
technological rather than statistical. Although statisticians ignore the measurment
errors, sometimes they consider models with errors in variables. When errors are
included in some variables, the statistical inference procedures will require some
information about the distributional properties of these errors.

Second, inference procedures based on the optimization of some statistical criteria
can give misleading results in the presence of ill-conditioning, caused by bad design
or sampling. Because of randomness there always will exist a natural variability in
the observations. Therefore, it is necessary to check the existence of ill-conditioning
before performing the statistical analysis. That is, in some way, we have to check
whether the values of statistics (outputs) concerned in an inference procedure are
sensitive to small changes in the data (inputs).

Third, rounding errors (small changes in the inputs) can create problems in sta-
tistical computations when ill-conditioning exists. This computational aspect of the
ill-conditioning is a purely numerical problem and is the most difficult one in numer-
ical analysis. Perhaps, because of this, “Why has no one noticed” asked McCullough
and Vinod [16]. They also added “It is understandable that economists have paid
little attention to whether or not econometric software is accurate. Until recently,
econometrics texts rarely discussed computational aspects of solving econometric
problems. . . Many textbooks convey the impression all one has to do is use a com-
puter to solve the problem, the implicit and unwaranted assumptions being that the
computer’s solution is accurate and that one software package is as good as any
other. . . pencil-and-paper arithmetic is not like computer arithmetic”.

To overcome the problems mentioned we can use some robust numerical algo-
rithms and statistical procedures, make operations like in variable selection or outlier
detection techniques or apply some “cure methods” like in ridge regression.

Finally, let us remind that the problem associated with ill-conditioning is a prob-
lem of severity rather than existency. The method of computation and the method
of statistical inference greatly affect the results. In the last 40 years, some known
numerical methods were adopted to obtain some statistical methods for inference
in the presence of ill-conditioning. Some of the pioneers are Marquardt [15], Hoerl
and Kennard [12], etc. Conversely, some results obtained by statisticians, for ex-
ample, the research on leverage and influential observations, are helpful in creating
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numerical algorithms and performing numerical computations when ill-conditioning
exists. In the frame of software reliability statistical methods play a great role in the
development studies of numerical methods which are robust against ill-conditioning.
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