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Abstract

An exact, nonlocal algorithm for Monte Carlo simulation of theories with dynamical fermions is proposed. The algorithm
is based on obtaining the new configuratioñU from the old oneU by solving the equationM(Ũ)η = ωM(U)η, whereM is
fermionic operator,η is random Gaussian vector, andω is random real number close to unity. This algorithm can be used for
acceleration of current simulations in theories with Grassmann variables. A first test was done for SU(3) QCD with purely
fermionic term in the action.

1. Introduction

From the earliest days of Monte Carlo simulations
in lattice field theory fermionic fields have caused an-
noying difficulty, which stems from their being anti-
commuting variables. It is not immediately straightfor-
ward to put fermions on a computer, which is expected
to manipulate numbers. This problem is only an algo-
rithmic one, since for the most actions in use one can
eliminate fermions by an analytic integration. How-
ever, the resulting expressions involve the determi-
nants of very large matrices, making the numerical
simulations extremely expensive.

Over the years many interesting tricks have been
developed to circumvent this problem. The most of-
ten used algorithm, Hybrid Monte Carlo (HMC) [1],
is now considered to be the standard simulation tool.
In recent years it was successfully challenged by the
Multiboson method, which has many attractive fea-
tures, like the possibility of simulation of an odd
number of quark flavors. The most popular version
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of Multiboson method, proposed by Lüscher [2], has
been intensively studied by many authors (see [3] and
references therein/thereon), and after various improve-
ments was claimed to be competitive or even slightly
better than HMC (see, for example, [4]). The Multibo-
son algorithm, proposed by Slavnov [5], is less known,
and was tested in [6]. Besides HMC and Multibo-
son method, I like to mention some interesting ideas,
which may finally result in efficient algorithms for
simulation of theories with fermions. They are based
on the polymer [7] and Jordan–Wigner occupation
number [8] representations of fermion determinant,
the direct evaluation of Grassmann integrals [9], the
separation of low and high eigenmodes of the Dirac
operator [10], and the direct simulation of loop expan-
sion by means of using the stochastic estimators [11].

Despite the variety of different approaches to the
problem, there is a common impression that all exist-
ing algorithms remain inefficient [12]. This is clearly
seen if we compare the computational cost for the
theories with dynamical fermions from the one side,
and purely bosonic theories from the other side. In
QCD even for heavy quarks the simulations are orders
of magnitude slower than the ones in the quenched
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regime (the approximation where the quark determi-
nant is set to be equal to unity). Such a situation sug-
gests that one should not stop the attempts to obtain
relatively cheap fermion simulation algorithm.

In this Letter I propose a new computational strat-
egy for treating dynamical fermions in Monte Carlo
simulations. It has the virtues of exactness, nonlocal-
ity and the potential to be made a finite-size update
algorithm.1 This makes the new method to be rather
attractive for practical simulations, although there are
still some problems to be solved.

2. The algorithm

Suppose that we aim at sampling the partition
function of theory with two flavors of degenerate
fermion fields:

(1)Zferm =
∫

Det
(
M†[U ]M[U ])dU,

whereM is the discretized fermion operator acting at
some vector spaceΩ , U denotes the bosonic degrees
of freedom coupled to fermion fields. For simplicity
of formulae I postpone the inclusion of purely bosonic
actionSb[U ]. The sampling of full partition function

(2)Zfull =
∫

e−Sb[U ] Det
(
M†[U ]M[U ])dU

will be considered later.
At the beginning let me introduce a simple auxiliary

algorithm, which will guide the later construction and
help to understand the basis of new method. Starting
from old configurationU , one executes the following
instructions:

Prescription A

• generate random vectorη ∈ Ω with Gaussian distri-
bution:PG[η] = Z−1

G e−|η|2;

1 There is a great probability, that a successful fermionic algo-
rithm must be nonlocal and have a finite step-size of update. In-
deed, HMC implies global changes in configuration space, but with
a small step-size which must be scaled asdt = const/V 1/4. This
drastically slows down the simulations, because the high energy bar-
riers become nearly impassable. Multiboson algorithm has the ad-
vantage of finite step-size, but it updates the fields locally. The large
autocorrelation times suggest that such local changes are not very
‘physical’ in this approach.

• propose new configuratioñU with symmetrical
probability

(3)P0[U → Ũ ] = P0[Ũ → U ];
• accept̃U with the probability

(4)Pacc[η;U → Ũ ] = min
(
1, e|η|2−|M̃−1Mη|2).

Here ZG normalizes the distribution:

(5)ZG =
∫

e−|η|2 dη dη†.

In Eq. (4) and below I use the following short
notations:M̃ ≡ M[Ũ]; M ≡ M[U ] .

The full transition probability

P [U → Ũ ]

(6)

≡ P0[U → Ũ ]
∫

dη dη†PG[η]Pacc[η;U → Ũ ]

satisfies the detailed balance condition with respect to
the partition function (1):

(7)Det
(
M†M

)
P [U → Ũ ] = Det

(
M̃†M̃

)
P [Ũ → U ].

This can be easily seen by making the change of
variables

(8)η → M−1η, η† → η†(M−1)†

in the expression (6). Therefore, if the proposal ma-
trix (3) ensures ergodicity, thenPrescription A is
a valid algorithm for sampling the partition func-
tion (1).

However, this exact algorithm is expensive due to
the necessity to invert the large matrix̃M in the
expression (4). The cost of inversion is proportional
to the volume of the systemV , so if one updates the
fieldsU locally, the computational cost of updating the
entire configuration grows asO(V 2). One can be more
clever and perform the global updates by fixingφ =
Mη, introducing fictitious momentump conjugate to
the fieldsŨ (or some functions of̃U ), and pursuing a
discrete integration of Hamilton evolution (this is the
core of HMC algorithm, which in its traditional form
has a volume dependence likeV 5/4). Nevertheless,
the procedure remains expensive, because one should
scale the size of molecular dynamics steps asdt =
const/V 1/4 for keeping constant integration errors,
and again invert the matrix̃M during the integration.
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Can one somehow modify thePrescription A to
escape the inversion of matrix̃M , implementing the
global updateU → Ũ in configuration space? The
answer is ‘yes’!

The key idea is to introduce into proposal matrix (3)
the dependency onη to make the new configuration
Ũ satisfy the approximate equalitỹM−1Mη ≈ η, or
equivalently,

(9)M̃η ≈ Mη.

The symmetry of expression (9) under the interchange
of variablesU ↔ Ũ will help to guarantee the re-
versibility of algorithm. Moreover, the acceptance
probability (4) should be large, if the approximate
equation (9) is close enough to its exact analogue.

After these handwaving speculations let me present
a rigorous construction. I do it in two steps. Firstly,
I prove the detailed balance condition for some gen-
eral Prescription B, in which the proposal matrix
P0[ω,η;U → Ũ ] depends onη and random real num-
berω distributed in the narrow interval near unity. Sec-
ondly, I specify the particular choice ofP0[ω,η;U →
Ũ ] and present the final algorithmic scheme.

Prescription B

• generate random vectorη ∈ Ω with Gaussian distri-
bution:PG[η] = Z−1

G e−|η|2;
• generateω ∈ [1− ε;1/(1− ε)] with the probability

µ[ω], satisfying

(10)
1

ω2
µ

[
1

ω

]
= µ[ω];

• propose new configuratioñU with the probability
P0[ω,η;U → Ũ ], satisfying the following symme-
try relations:

(11)P0[ω,η;U → Ũ ] = P0

[
1

ω
,η; Ũ → U

]
,

P0
[
ω,M−1η;U → Ũ

]
(12)= P0

[
1

ω
,M̃−1η; Ũ → U

]
;

• accept̃U with the probability (4).

Here ε is the algorithmic parameter lying in the
interval 0� ε < 1.

The condition (10) provides the invariance of the
measureµ[ω]dω under the change of variableω →

1/ω. Indeed, using Eq. (10), one can easily check
that for any integrable functionf (ω) the following
equality holds:

(13)

1/(1−ε)∫
1−ε

µ[ω]f (ω) dω =
1/(1−ε)∫
1−ε

µ[ω]f (1/ω)dω.

Using condition (11) together with the property
(13), one can demonstrate the symmetry of averaged
overη,ω proposal matrix

P av
0 [U → Ũ ]

(14)

≡
1/(1−ε)∫
1−ε

µ[ω]dω
∫

dη dη†PG[η]P0[ω,η;U → Ũ ]

under the interchange of variablesU ↔ Ũ :

(15)P av
0 [U → Ũ ] = P av

0 [Ũ → U ].
This makes the algorithm reversible.

Finally, condition (12) ensures the fulfillment of
detailed balance equation (7) for the full transition
probability

P [U → Ũ ] ≡
1/(1−ε)∫
1−ε

µ[ω]dω
∫

dη dη†PG[η]

(16)
× P0[ω,η;U → Ũ ]Pacc[η;U → Ũ ].

Indeed, making the change of variables (8) in expres-
sion (16), one obtains:

Det
(
M†M

)
P [U → Ũ ]

=
1/(1−ε)∫
1−ε

µ[ω]dω

×Z−1
G

∫
dη dη† min

(
e−|M−1η|2, e−|M̃−1η|2)

(17)× P0
[
ω,M−1η;U → Ũ

]
.

Expression (17) is symmetrical with respect to the
interchangeU ↔ Ũ due to the Eqs. (12), (13).
Therefore,Prescription B is again a valid algorithm
for sampling the partition function (1), if the averaged
proposal matrix (14) provides ergodicity.
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Now I propose to specify the choice of the matrix
P0[ω,η;U → Ũ ] by defining it through the equation:

(18)M̃η = ωMη.

It means that, analytically or numerically, one finds
some solutioñU of Eq. (18) and propose it as a new
configuration. A good recipe for the numerical search
may be the local iterative minimization of the quantity

(19)R ≡ |(M̃ −ωM)η|2

for fixedU,ω,η. Starting fromŨ = U , the minimiza-
tion proceeds untilR < δ is reached, whereδ deter-
mines the accuracy of solving the Eq. (18). One should
construct the minimization procedure in a way that en-
sures reversibility of the algorithm (i.e., probability
to obtain the configuratioñU starting fromU at any
ω should be equal to probability to obtainU starting
from Ũ at 1/ω).

It can be checked that the proposal matrix, de-
fined2 through the Eq. (18), satisfies the symmetry
relation (11). Indeed, Eq. (18) is invariant under the
simultaneous interchange of variablesU ↔ Ũ ;ω ↔
1/ω. Therefore, the proposalsP0[ω,η;U → Ũ ] and
P0[1/ω,η; Ũ → U ] are equiprobable, because they
are defined through the same equation.

The same logic is applicable for proving the fulfill-
ment of symmetry relation (12). The lhs of expres-
sion (12) is defined through the equatioñMM−1η =
ωη, meanwhile the rhs is defined through the equation
MM̃−1η = 1

ω
η. These equations are both equivalent to

the equationM−1η = ωM̃−1η. Therefore, the propos-
als P0[ω,M−1η;U → Ũ ] andP0[1/ω, M̃−1η; Ũ →
U ] are also equiprobable.

Let us note, that on the surface (18) the acceptance
probability (4) acquires the following simple form:

(20)Pacc[ω,η] = min
(
1, e(1−1/ω2)|η|2).

The calculation ofPacc becomes extremely cheap,
since one does not need to invert the matrix̃M

anymore. Moreover, the expression (20) does not
depend oñU , so one can accept or rejectω (or the
pair (ω,η)) even before solving Eq. (18).

2 The definition means the choice of some concrete reversible
procedure of finding the solutioñU .

We also need to specify the probabilityµ[ω].
A good choice is the following expression:

(21)µ[ω] ∝ min
(
1,1/ω2)

which, evidently, satisfies the condition (10). Consid-
ering together the expressions (20), (21), one gets the
unified probability distribution forω:

P[ω,η] =µ[ω] × Pacc[ω,η]
(22)∝ min

(
1/ω2, e(1−1/ω2)|η|2).

Now we are ready to write down the final algorith-
mic scheme for sampling the partition function (1):

The algorithm

• generate random vectorη ∈ Ω with Gaussian distri-
bution:PG[η] = Z−1

G e−|η|2;
• generateω ∈ [1− ε;1/(1− ε)] with the probability:

P[ω,η] ∝ min(1/ω2, e(1−1/ω2)|η|2);
• find the new configuratioñU by solving the equa-

tion: M̃η = ωMη.

The only computationally expensive ingredient of
the algorithm is the obtaining of solutioñU of Eq. (18).
One can expect, that the usage of the local iterative
minimization of the functional (19) gives the computa-
tional cost proportional only linearly to the volumeV .

If the procedure for obtaining the solution of
Eq. (18) is fully specified, the algorithm has only one
free parameterε, which controls the size of the de-
viation of ω from unity. A rather intriguing possi-
bility is to set ε = 0, therefore fixingω = 1. This
makes the algorithm ‘energy conserving’, in a sense
that |M̃−1Mη|2 = |η|2. Unfortunately, in this case the
search for the solution of Eq. (18) by minimizing
the functional (19) does not work, because one im-
mediately obtains the trivial solutioñU = U . How-
ever, in typical case (e.g., SU(3) QCD), the solutions
of Eq. (18) are highly degenerate, and the subspace
of nontrivial solutions in configuration space is not
empty. Finding the reversible procedure of nontrivial
solving of equationM̃η = Mη is the perspective sub-
ject for future investigations.

In gauge theories one can use the gauge freedom to
simplify the procedure of solving the Eq. (18). Indeed,
under the gauge transformations

(23)U → Ug, Ũ → Ũg
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Eq. (18) acquires the form:

(24)M̃ηg = ωMηg,

where ηg ≡ Gη, G is the matrix representing the
gauge transformation on the vector spaceΩ . Solving
the Eq. (24) can be particularly simple for someηg .

Finally let me note, that the same algorithm can be
used for simulations in theories with bosonic determi-
nants, if we change the acceptance (20). Sampling the
partition function

(25)Zboson=
∫

Det−1(M†[U ]M[U ])dU
one should usePacc[ω,η] = min(1, e(1−ω2)|η|2) in-
stead of the expression (20).

3. Potential problems

Despite the simple formulation and cheapness of
the considered algorithm, it may be not applicable for
some models. The main danger is the possible absence
of solutions of Eq. (18). This problem may be principal
(no solutions exist at all), or mild (no solutions exist
for some particularη,ω). In the second case one can
reject the pairs(η,ω) until the solution is found. The
value of this ‘hidden’ acceptance would determine the
actual efficiency of the algorithm in such a case.

Another possible problem may be connected with
the procedure of finding the solutions of Eq. (18). Sup-
pose that one uses the local iterative minimization of
the quantity (19) for this purpose. If the functional (19)
can have some local minima at whichR > 0, then min-
imization procedure can stick at some of these minima
before reachingR = 0. In that case one should think
of the other way for solving the Eq. (18).

The ergodicity of the algorithm may also be under
the question. One should check for the model of
interest if any region of configuration space can
be reached by the sequential updates via Eq. (18).
If the algorithm is nonergodic, it can be used for
the acceleration of other algorithms, like HMC and
Multiboson.

For given U,η,ω the Eq. (18) can have many
degenerate solutions.3 This is not a problem at all, if

3 Such a situation takes place in SU(3) QCD, where the expres-
sion (18) for unconditioned fermion matrix provides(2× Ndirac×

one respects the symmetry relations (11), (12) when
some particular solution is being chosen. However,
one should be careful in order not to violate the
detailed balance and reversibility.

In order to see, if these potential problems can
cause any real troubles, I made some tests for the case
of SU(3) QCD with purely fermionic term.4 Let us
however note, that these tests are preliminary, since for
the reasons of simplicity and lack of computer time I
did not include pure bosonic partSb[U ] into the action
(this corresponds toβ = 0). The more complicated
simulations for the full QCD in physically interesting
region will be done in the future [13].

4. Tests for SU(3) QCD with purely fermionic
term in the action

The simulations were performed at 84 lattice for the
partition function (1) with

(26)M[U ] = 1− k2DeoDoe,

whereD[U ] is usual Wilson difference operator

Dxy =
∑
µ

(1− γµ)Uµ(x)δ
(4)
x+µ̂,y

(27)+ (1+ γµ)U
†
µ(x −µ)δ

(4)
x−µ̂,y

andDoe means that this operator acts from even to
odd space sites. I used even–odd preconditioning to
reduce the computational cost of the algorithm. By
doing so one also increases the degeneracy of solutions
of Eq. (18), which now provides 12V real equations
for 32V unknown variables, sinceM[U ] acts only on
even space manifold.5

The hopping parameterk was chosen to bek = 0.2,
which gives the plaquette valueP = 0.0089(1). The
performance of algorithm was compared with that of
usual HMC.

The minimization of functional (19) was imple-
mented by making the random moves in each color

Ncolor × V ) = 24V real equations for(Ngenerator× 4V ) = 32V
variables.

4 The choice of model is motivated by the popularity of computer
simulations in QCD.

5 One may assume, that the more degenerate the solutions
are, the faster the configuration space is sampled, although this
conjecture should be confirmed in the future.
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direction for all links lexicographically. Such mini-
mization algorithm guarantees reversibility of the pro-
cedure.

Firstly I checked the existence of solutions of
Eq. (18) at differentω for typical equilibrated con-
figurationsU . The tests were done in the interval
ω ∈ [0.9,1.1]. The good news is that for the consid-
eredω one always finds some solution (i.e., for anyδ

the minimization procedure finally givesR < δ). No
local minima of the functional (19)Rmin > 0 were ob-
served.

On the average solving the Eq. (18) atε = 0.05 with
precisionδ = 5×10−7 required 42 minimization itera-
tions (it was checked, that improving the precision did
not affect the results). Since the cost of one iteration
is roughly equal to 2× Ngenerator= 16 multiplications
by matrixM[U ], the total cost of finding the solution
of Eq. (18) was approximately 670 matrix multiplica-
tions. This has to be compared with the cost for gener-
ating one trajectory with HMC. At step-sizeτ = 0.033
and trajectory length equal to 1 (this ensures 70% ac-
ceptance), one trajectory cost approximately 4420 ma-
trix multiplications,6 i.e.,≈ 6.6 times more expensive
than solving Eq. (18).

Performing the tests it was observed that our al-
gorithm (let me name it Omega-algorithm in the fol-
lowing text) alone can not be used for sampling the
partition function (1). The problem is that probabil-
ity P[ω,η] to acceptω < 1 is strongly suppressed by
large factor in the exponent. One knows that the value
of squared norm of Gaussian vector can be estimated
as|η|2 ∼ Idof, whereIdof is the dimensionality of vec-
tor space on whichη is defined. For even–odd pre-
conditioned SU(3) QCD at 84 lattice one hasIdof =
24576! Therefore, using Omega-algorithm alone, one
is restricted to choose between two unfavorable possi-
bilities:
(1) Using ε ∼ 1/Idof. It was observed that at such
small values ofε the evolution ofU fields becomes
very slow, because the new configuratioñU always
lies too close to the old one (large autocorrelation
times);
(2) Usingε � 1/Idof. Thenω < 1 is almost never ac-

6 One trajectory included 33 conjugate gradient inversions of
matrixM[U ]. Each inversion cost approximately 134 matrix multi-
plications.

cepted, and the configurations are gradually becoming
smoother.7

In the second case the trouble appears due to the
nonergodicity of algorithm at largeε. Nevertheless,
even at largeε Omega-algorithm can be used for
acceleration of other fermionic algorithms like HMC
or Multiboson, since the ergodicity is provided by
them.

I tested the combination of Omega-algorithm and
HMC. After each HMC trajectory the global move in
gauge configuration space was implemented by using
Omega-algorithm atε = 0.05. The average plaquette
value for this algorithmic mixture wasP = 0.0091(1),
coinciding with correct one within the error bars. The
efficiency of HMC–Omega mixture was estimated by
measuring the autocorrelation times for the plaquette.
The results were: pure HMC, 1000 trajectories:τint =
1.4(2); HMC+Omega, 1000 (traj+ω-update):τint =
0.7(1).

Note, that autocorrelation time was reduced almost
at no cost, because the global Omega-algorithm up-
date is much cheaper, than HMC trajectory. Of course,
these tests are not very illustrative, because the auto-
correlation times for theory with pure fermionic term
at this kappa value are rather small. The further tests
in models of practical relevance are needed. In partic-
ular, one should find a cheap way of inclusion of pure
bosonic actionSb[U ] in simulations. This issue is dis-
cussed in the next section.

Let me summarize the results of the first test for
Omega-algorithm. In its present version the algorithm
was found to be nonergodic. Nevertheless, it was
demonstrated, that Omega-algorithm can be efficiently
used for acceleration of other fermionic algorithms.

Here I want to emphasize, that nonergodicity is
not intrinsic for Omega-algorithm. It can be rather

7 This is an example of how the lack of ergodicity can cause
the wrong results, although the detailed balance is satisfied. To
understand this situation more clearly let us consider the sampling of
vector �x = (x1, . . . , xS) with the Gaussian probability distribution:

µ[�x] ∝ e−|�x|2. Now suppose that we construct our algorithm in the
following way: (1) start from some properly distributed�x0; (2) allow
only the changes�x → �x ×λ or �x → �x/λ, whereλ > 1 is some fixed
real number. It is clear that if(λ2 − 1) × S � 0, then one finally
obtains�x ≈ 0, although the algorithm may be quite valid. This is
due to the restriction of configuration space which does not allow
for the properly distributed configurations to emerge.
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attributed to the unfavorable procedure of finding the
solution of Eq. (18) by minimizing the functional (19),
which forces us to use largeε. One can still hope
that it is possible to useε ∼ 1/Idof, or evenε = 0,
and obtain nontrivial solutions̃U far away fromU

at the same time. This hope is based on the high
degeneracy of solutions of Eq. (18). The main problem
is to guarantee the reversibility of the procedure. An
investigation along these lines is in progress [13].

5. Inclusion of bosonic action

Now let us consider the sampling of full partition
function (2). The simplest way to include the contribu-
tion of purely bosonic sector is to add to the algorithm
of the previous section the following instruction:

• accept the new configuratioñU with the probability

(28)P boson
acc = min

(
1, eSb[U ]−Sb[Ũ ]).

The reader can easily check that one gets a valid al-
gorithm for sampling the partition function (2). How-
ever, the new configuratioñU , obtained by solving the
Eq. (18), differs globally from the old one, so the ac-
ceptance (28) can be very small. Of course, one can
try to make the new configuration lying close to the
old one to ensure the reasonable acceptance, but by
doing so one loses one of the main advantages of the
new algorithm—the finite step-size of update.

A more radical way is to rewrite the partition
function (2) in the form:

(29)Zfull =
∫

Det
(
B†[U ]B[U ])dU,

where operatorB satisfies the following identity:

(30)DetB[U ] = e−Sb[U ]/2 DetM[U ].
After that one can use the algorithm of the previous
section with the equation

(31)B[Ũ ]η = ωB[U ]η
instead of Eq. (18). There is a large degree of ambigu-
ity in defining the operatorB. For example, one can
chooseB[U ] = e−Sb[U ]/2NM[U ], whereN is the size
of matrixM. A more rational way is, probably, to in-
sert the bosonic contribution into the operatorM lo-
cally. One can represent the bosonic action as a sum

over local contributions:

(32)
1

2
Sb[U ] =

N∑
i=1

S
(i)
b [U ]

(some ofS(i)
b can be equal to zero), and then define the

matrixB as follows:

(33)Bij = e−S
(i)
b Mij , 1 � i, j � N

(no summation overi is assumed in (33)). In any case,
one should try to choose the most convenient version
of operatorB in order to simplify the procedure of
solving the Eq. (31).

6. Discussion

The new method, proposed in this Letter, can
provide a cheap simulation algorithm for theories with
dynamical fermions.

Although in its present version the algorithm was
found to be nonergodic, it can be used in combination
with other ergodic algorithms like HMC and Multibo-
son. One may expect a good performance for such al-
gorithmic mixture when the lattice volume increases,
since computational cost for our new algorithm grows
only linearly with the volume of system.

The efficiency of algorithm can be strongly affected
by the clever choice of procedure of solving Eq. (18).
Due to the high degeneracy of solutions one may
hope to find the procedure, which makes the algorithm
ergodic, and samples the configuration space fast
enough. Also one can speculate on possibility of
finding some analytic solutions for Eq. (18). If this is
feasible at all, one can obtain a very cheap fermionic
algorithm, comparable in cost with the algorithms for
purely bosonic theories.
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