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Abstract

The fields of cluster analysis and concept analysis are both used to identify patterns
in data. Concept analysis identifies similarities between sets of objects based on
their attributes. Cluster analysis groups objects with related characteristics based
on some notion of distance.

In this paper, we investigate connections between these two approaches. In par-
ticular, for each binary relation defined on a set of objects O and attributes A, we
define distance functions p (on the power set of @) and § (on O).

We prove that p and § are pseudometrics and use them to

* specify a clustering algorithm that computes a subset of the concept lattice

* discover new interpretations of basic notions in concept analysis.

In particular, we characterize concepts in terms of p and characterize a family of
concept lattices based on all subsets with a fixed cardinality bound in terms of 4.

Our clustering algorithm differs from the classical algorithms since, first, the
values of p, not J, determine which pairs of sets are combined at each level, and
second, the clusters defined at each level in the algorithm are generally anti-chains
and may not be partitions. Therefore, the analysis of the algorithm depends on
the metric-geometry of p and is more involved than the analysis of the classical
algorithms.

We have developed a software environment that permits the execution of the
algorithm on finite relations and the storage and analysis of the resulting clusters.
The algorithm has been run on relations generated from a variety of sources ranging
from medical research to sporting events. Our results indicate that the number of
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iterations of the clustering algorithm is linear in the size of O and produces a linear
number of clusters that are concepts. Hence the algorithm can be a useful tool for
computing a tractable subset of a very large concept lattice.

1 Introduction

The fields of cluster analysis and concept analysis are both used to identify
patterns in data. Concept analysis identifies similarities between sets of ob-
jects based on their attributes. Cluster analysis groups objects with related
characteristics based on some notion of distance. In this paper, we investigate
connections between these two approaches.

The framework for concept analysis is a finite set of objects, a finite set of
attributes, and a binary relation between the two sets that describes objects
according to their attributes. A concept is a maximal rectangle in the relation.
The goal of concept analysis is to compute concepts and to analyze them for
significant groupings of objects and attributes. However, concept analysis is
not a practical tool for identifying patterns in large data sets. First, it can
be computationally expensive to compute all of the concepts. Secondly, the
number of concepts may be too large to analyze in a reasonable amount of
time.

In contrast to concept analysis, cluster analyses provide ways to group
objects according to nearest distances (assuming a collection of objects and
the ability to compute the distance between any two objects). Cluster analyses
tend to efficiently generate a set of clusters that is often proportional to the
number of objects. However, it is frequently unclear what distance function to
choose in order to perform a cluster analysis that guarantees that the clusters
found will be meaningful in some way independent of distance.

The main contribution of this paper is to provide a bridge between concept
analysis and traditional hierarchical clustering. The structure of the paper is
the following. Section 2 presents an introduction to concept analysis. Section 3
defines two distance functions pg and dr based on a binary relation R, presents
a proof that they are both pseudometrics (Theorem 3.3), and presents a metric
characterization of extents (Theorem 3.5). Section 4 discusses a family of
reduced contexts that generate a special class of lattices and presents a metric
characterization of the power set lattice (Theorem 4.1). Section 5 describes
a hierarchical clustering algorithm based on pgr that computes a family of
concepts. We prove that the algorithm always terminates (Theorem 5.3) and
present some insight into the behavior of the algorithm (Theorem 5.4). We also
show that, under a realistic hypothesis, both the number of iterations used by
the algorithm and the number of clusters generated are linear functions of the
number of objects (Corollary 5.5). Section 6 presents some conclusions and
Section 7 discusses related work. Section 8 contains summaries of statistics
obtained by running the algorithm on various types of data.
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2 Basic Concept Analysis

2.1 Preliminaries

In this section, we present the basic ideas in concept analysis needed for this
paper. Many of the ideas in this section are also presented in [8] using a
slightly different notation.

For each set S, P(S) [respectively Py, (S)] denotes the family of sub-
sets [respectively finite subsets| of S. For each P,@ C S, PAQ denotes the
symmetric difference of P and @) and for each P € Py;;,(S), |P| denotes the
cardinality of P. In general, O denotes a non-empty finite set of objects, A
denotes a non-empty finite set of attributes, and R C O x A denotes a rela-
tion that is called a context. The opposite relation R? C A x O is defined
by R? = {(a,x) | (z,a) € R}. Often, we view a context graphically by using
a 1 to denote that a row-column pair belongs to the context and a 0 other-

wise. For example, the following figure shows a context R C O x A, where
O0=1{1,2234}and A= {a,b,c,de, f,g,h}.

a|lblcld|le|flgl|lh
1{011]0|0j0O]0]|1|1
210011111 1(0(0
310101 ]0]1]0]|1|1
41110]1]0]0]0]0]0

Fig. 1.

Given a context R C O x A, define the mappings og: P(O) — P(A) and

Tr: P(A) = P(O) as follows: for each X C O and Y C A,

or(X)={a€ A| (Vz € X) (z,a) € R}

TR(Y)={z € O| (VYa€Y)(x,a) € R}.
For each x € O and a € A, we write og(x) = or({z}) and 7x(a) = Tr({a}).
For the context R in Figure 1, ox(1) = {b,g,h}, or({1,3}) = {g, h}, mr(g) =
{1,3}, and 7x({c,d, e}) = {2}.

A context R is strongly-well-formed if for each © # y € O,0r(x) is not a
subset of og(y). (This is a strengthening of the well-formed notion introduced
n [14].) A context R is reduced if both R and R’ are strongly well-formed.
For example, the context in Figure 1 is strongly-well-formed, but it is not
reduced since Tg(d) C Tr(e).

The mappings o and 7 satisfy the following properties: for each X, X’ C
Oand V,Y' C A,

+ X CX'= op(X') C op(X)
Y g Y = TR(Y,) g TR(Y)
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© X C mp(or(X))

Y g O'R(TR(Y)).
These properties are equivalent to the assertion that for each X C O and
Y CAY Cogr(X)ifand only if X C 74(Y). This says that the pair (og, Tr)
is a Galois connection [4].

Define the mapping ¢lg : P(O) — P(O) as follows: for each X C O, clp(X) =

Tr(ogr(X)). It follows from the above properties that op o T 0 o = o and
the following conditions hold:

e X g ClR(X),
« X C X' = ClR(X) - ClR(XI),
* ClR(ClR(X)) = ClR(X)

Therefore, cly is a closure operator [4]. For each x € O, we write clg(z) =
clr({z}). A subset X C O is an extent if X = clr(X). The collection of
extents of R is denoted by Extents(R) and for each X C O, clr(X) =[{C €
FEzxtents(R) | X C C} is the smallest extent containing X. If X C O is an
extent, then Y = og(X) is an intent and the pair (X,Y) is called a concept.
For the context R in Figure 1, clz({1,3}) = 7r(0r({1,3})) = (g, h) = {1, 3}
and clr({2,4}) = Tr(0r({2,4})) = Tr(c) = {2,3,4}. Hence {1, 3} is an extent
and the pair ({1,3},{g, h}) is a concept, but {2,4} is not an extent.

The set O is an extent and the empty set () is an extent if and only if for

each x € O,op(r) # A. The set Eztents(R) with the inclusion order is a
lattice where the meet and join of extents X, X' C O is given by

XAX'=XNnX" XVX =cr(XUX').

The lattice Extents(R) is equivalent to the notion of a concept lattice based
on the pairs (X, og(X)), but it is more convenient for the work in this paper.
The following figure shows the lattice of extents for the context in Figure 1.

{1,2,3,4}

ws ey \
/ \ / \

\\/

Fig. 2.
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By definition, an extent is a set of objects that is maximal in terms of its
common attributes. When examining real-world contexts, the family of ex-
tents may not include interesting sets of objects that have in common a lack
of certain attributes. In order to identify these sets, it is useful to augment
a context by adding negative information - namely the complements a' of ex-
isting attributes a. (An object has attribute a if and only if it does not have
attribute a'.)

Formally, given R C O x A, for each a € A, let A.. = AU A’, where
A ={d |ae A} and AN A = (. Then the context R.. C O x A, defined
by

R..=RU{(z,d") € O x A"| (x,a) ¢ R}.

is called the complemented extension of R. (A variant of this idea is found in
[14] where enough complemented attributes are added to make the resulting
context well-formed.) The complemented extensions of contexts satisfy the
following two properties:

* With respect to R.., the sigma set of a single object contains one-half of
the attributes in A..; hence, if R has no pair of identical rows, then R, is
strongly-well-formed.

» Extents(R) C Extents(R..) and, in most cases, the latter set is larger.
The following figure shows the complemented extension R. of the context

R C O x A represented by the first three columns of the figure, where O =
{1,2,3} and A = {a,b,c}.

Fig. 3.

In this case, Eztents(R) = {0,{1},{3},{1,3},{2,3}, O} and Extents(R..) =
Extents(R) U {{2}}.

3 Distance Functions

Given a context R, we would like to define a distance function on Eztents(R)
that captures the notion of two non-empty sets being ”close” exactly when
they have many attributes in common. More precisely, the distance function
should satisfy the following reasonable assumptions:

(1) it does not distinguish a set X from ¢lg(X), that is, the distance between
these sets is zero.
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(2) it assigns the same maximum distance to pairs of sets that have no at-
tributes in common.
For example, the distance defined by d(X, X') = |og(X)Acg(X')| satisfies
(1) since op(X) = or(clr(X)) but it does not satisty (2); if ox(X)Nor(X') =
0, then d(X,X") = |or(X)| + |or(X")| depends on the sizes of the respec-
tive sets of attributes. By normalizing the distance d, we can construct an
appropriate distance function. For each pair X, X’ € O, define

_ Joa(X0)As(X)]
02(X) Uon(X")]

pR(X7 XI)

if ox(X)Uog(X'") # (0 and 0 otherwise. Clearly, pg satisfies (1), but it also
satisfies (2) since the definition can be rewritten in the form

|or(X) N or(X")|

|or(X) U or(X")|

pR(X,X,) =1-

if O'R(X) U O'R(XI) 7£ @
For the context in Figure 1, og(1) = {b, g, h} and or(3) = {c,e, g, h}, so

_lonAce®] _ hec o
lor(1) Uor@)[  {b,c e,g9,h}]
Similarly, since 0r({2,3}) = {c, e}, pr({3},{2,3}) = 125 = 1/2. On the
other hand, pr({1,4},{1,2,3,4}) = 0 since clp({1,4}) = {1,2,3,4}. This
illustrates property (1). Also, pr({1,3},{2,3,4}) = 1 since og({1,3}) =
{g,h} and 05({2,3,4}) = {c} have no attributes in common. This illustrates

property (2).
The basic properties of pr are summarized in the following result:
Lemma 3.1 For each context R € O x A and each pair X, X' € O,
(a) 0 <pr(X,X') <1.
(b) pr(X, X") =0« o0r(X) =or(X') & clr(X) = clp(X').
(¢) pr(X, X") =1 or(X)Nor(X') =0 and or(X)Uor(X') # 0.

Proof. Parts (a) and (c¢) follow from the definition of pg. To show part (b),
suppose pr(X, X’) = 0. Then by definition, or(X) = or(X'), so clp(X) =
TrR(0R(X)) = Tr(0R(X")) = clg(X'). On the other hand, if clp(X) = clp(X’),
then op(X) = or(cl(X)) = or(cl(X")) = or(X'), so pr(X,X") = 0. O

pr({1}, {3})

To establish that pgr and Jg are credible distance functions (like the Eu-
clidean distance between n-dimensional vectors or the Hamming distance be-
tween fixed-length bit strings), we show that pg is a pseudometric on P(O);
namely, it satisfies the following conditions ([12], Chapter 4): for any subsets
P, Q and R:

¢ pR(Pap):Oa
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* pr(P,Q) = pr(Q, P)
* pr(P,Q) < pr(P, R) + pr(Q, R). [triangle inequality]

To establish the triangle inequality, we use the following distance function:
for each P, Q) € Pyin(A), define

PAGL i pUQ #£ 0,

p(P,Q) = e

0, otherwise.
By definition, pr(X, X') = p(or(X), or(X')).
Lemma 3.2 The distance function p is a metric on Ppy(A) 1.

Proof. By definition, p(P,P) = 0 and p(P,Q) = p(Q, P), so we need to
establish the triangle inequality

p(P,Q) < p(P,R) + p(Q, R).

It is straightforward to check that the inequality holds if any one of the three
sets P, () or R is empty, so we can assume that P, () and R are non-empty
sets. Define the following quantities:

a=|PNQLa=|PUQ[b=|PNR,f=|PUR,c=|QNR[],y=|QUR|
O=[PNQNR,z=[P\(QUR)y=[Q\ (PUR),z=|R\(PUQ)|

Then the triangle inequality is equivalent to the statement
l—a/a<1-0/+1—c/y,

or
(1) b/B+c/y<1+a/a
To establish (1), let k =a — 20 and p =b+c+ k. Then a =z + y + p,

B=x+2z+p,and v =y + z+p, so a calculation establishes that
©) b6+ /v —1=nfd
where

n=—(x+2)(y+2)—O0+k)(z+2) —(c+k)(y+2) —kp

d=(z+z+p)(y+z+p)
By definition, a,b,¢c > q, so a+ k,b+ k,c+ k > 0. Without loss of generality,
assume that p = b+c+k > 0; otherwise, 0 < § < max{a,b,c} < a+b+c—20 =
p<0,s0a=b=c=60=0and (1) holds. We claim that n and d satisfy the
following inequalities:
(3) n<ap
(4) d>p(z+y+p).

1 Most likely, this statement is found in the literature, but we don’t have a reference for
the result.
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To establish (3), note that n = —(zv+2)(y+2) — (b+k)(x+2) — (c+k)(y+
z) — kp, son < —kp < ap since z,y,z> 0, p>0,and a+ k, b+ k,c+ k > 0.
To establish (4), note that

d=(z+2+4p)y+2+p) Zplr+y+22)+p" Za+y+p
since z,y,z > 0 and p > 0. It follows from (2), (3) and (4) that
b/B+c/y—1=n/d<a/(x+y+p) =ala
which establishes (1). O

In the sequel, the following restriction 6z of the distance function pg to
the singleton subsets of O is also used; for each x,y € O, define dp(z,y) =

pr({r}, {y})-

Theorem 3.3 The distance functions pr and 0r are pseudometrics on P(O)
and O, respectively. Therefore, pgr is a metric on Extents(R).

Proof. The first statement follows from Lemma 3.2 and the equality pr(X, X') =
p(or(X),0r(X')). Hence, the second statement follows from Lemma 3.1(b).0

By definition, for each context R € O x A and X € O, pr(X,clr(X)) =
0. Hence pg is a metric if and only if Extents(R) = P(O). Similarly, dg
is a metric if and only if each singleton subset of O is an extent. In fact,
this condition is equivalent to saying that R is strongly-well-formed: Suppose
each singleton set is an extent and op(z) C og(y) for z,y € O. Then y €
Tr(0r(Y)) C Tr(0R(7)) = clr(z) = {z}, so x = y; hence R is strongly-well-
formed. Conversely, suppose R is strongly-well-formed and y € clg(z). Then
or(z) = og(clr(z)) C or(y), so v = y; hence clg(x) = {z} is an extent.

The pseudometric pgr also satisfies the following inequality with respect
to unions. This result will be used for analyzing the clustering algorithm in
Section 5.

Lemma 3.4 For each X, X' € O, pr(X, X UX'") < pr(X, X') with equality if
and only if or(X") C op(X).

Proof. By definition, pr(X, X') = p(or(X),or(X")) and since ox(XUX') =
O'R(X) mUR(XI),

pr(X, X UX') = p(or(X),or(X UX')) = plor(X),0r(X) Nor(X")),

so the inequality is a consequence of the following result:

Claim: For each P,Q € Prin(A), p(P, PN Q) < p(P,Q) and equality holds if
and only if Q C P.

To establish this fact, note that by definition,
8
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1-|PN(PNQ)| _ 1-|PNQ| if P 7£ @7

(5) p(P,PNQ) = [PU(PNQ)] —  |P]
0 otherwise
and
LIPAQL e pyQ # ()
e
(6) p(P,Q) =
0 otherwise.

Therefore, if P = @ = 0, then p(P,P N Q) = p(P,Q) = 0. Otherwise,
PUQ # 0, so it follows from (5), (6) and the inequality |P| < |P U Q)| that
p(P, PNQ) < p(P, Q) with equality if and only if |P| = |PUQ)| or, equivalently,
QCP. 0

The final result in this section provides a characterization of extents in
terms of pg.
Theorem 3.5 Suppose C C O and n = |og(C)|. Then C is an extent if and
only if

(7) n>0 and (Vp¢ C) or(p) =10 or pr(p,C) >1-— n

|UR(P)|.

In this case, for each x € C,

pr(z, C) = {(1)_ ma@n W or(@) #0

otherwise.

Proof. We use the following fact to show that every extent satisfies (7):

A ANB
(8) If A and B are non — empty finite sets, then A C B & % < :A 5 B:'
Suppose C'is an extent. If n = 0, then C' = 7(0r(C)) = Tr(0) = O, which
is a contradiction; hence n > 0. Suppose p € O\ C. If og(p) # 0, then
A = op(C) is not a subset of B = ox(p) [otherwise, A C B = p € 1x(B) C
Tr(A) = clg(C) = C]. Hence, it follows from (8) that

el now)
lor(C)Uor(p)| ~ |or(p)|

SO
n

lor(p)|
Conversely, suppose (7) holds and let p € clg(C). Then og(clr(C)) =
or(C) C og(p) and og(p) # 0 since n > 0. Therefore, by definition,
pr(p,C) =1 — w:w, so by (7), p € C. Hence, clg(C) = C, so C is an
extent.

Finally, if z € C, then o(C) C og(z), so if og(x) = (), then by definition
pr(z,C) = 0. If op(z) # 0, then pr(z,C) = 1 — la@torOl _ 4 2

lor(z)Uor(C)] ~ or@]

pr(p,C) =1—-r>1

Theorem 3.5 has a particularly nice formulation if R is the complemented
extension of a context on O x A, where |A| = N. In this case, |og(z)| = N

9
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for each x € O, so the result can be restated in the following form where the
value 1 — £ is independent of the points p or x selected.

Suppose C' C O and |og(C)| =n. Then C is an extent if and only if

9) n>0 md(w¢cvwwxn>1_%.

In this case, for each v € C, pp(z,C) =1 — .

4 Power Set Contexts

This section will investigate the structure of the reduced contexts whose family
of extents are the k-n-subsets lattices. The main result of the section (Theo-
rem 4.1) establishes a precise correspondence between a special restriction on
the pseudometric dp and the Extents(R) forming the power-set lattice.

Theorem 4.1 The following statements are equivalent for a reduced context
RC O x A, where n = |0| = |A|:

(a) Extents(R) = P(0O).

(b) For each x #y € O,0r(x,y) = 2.

(c) For each S,T C O,

S|+|T|=2|SNT .
BRAZSL ifSnTCo

pR(Sa T) =

0 otherwise.

As an illustration, for n = 4, the following reduced context satisfies condi-
tion (b).

alb|cld
11111710
211(1]0|1
31110111
410111171
Fig. 4.

Given a finite set of objects O and 1 < k < n = |0, we will call P,(O) =
{S C O ||S| < k}U{O} the k—n-subsets lattice. For example, P;(O) consists
of the singleton subsets, (), and O and P, _1(O) is the power-set lattice P(O).

The proof of Theorem 4.1 uses two auxiliary lemmas. The first lemma says
that if a reduced context generates a k — n-subsets lattice, then the sizes of
the sigma sets are completely determined.

10
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Lemma 4.2 Suppose R is a reduced context, 1 < k < n = |0|, and Extents(R)
s the k — n-subsets lattice. For each S C Q,

Cn—|S[,k—|S]) f|S|<k
lor(S)] =
0 otherwise.

[Here C'(m, ) = number of ways to choose [ items from m items].

Proof. We claim that
(10) For each a € A, |Tr(a)| = k.

Since R is strongly-well-formed, 7r(a) # O. Since T 0 0 0 TR = Tg, each
Tr(a) is an extent, so by the hypothesis |7g(a)| < k. Choose T C O such
that 7r(a) € T and |T| = k. Since T is a proper extent, op(T) # 0, so
there exists b € og(T). Hence, Tp(a) C T C 1x(b), so a = b since R is
strongly-well-formed. Therefore, T' = 7p(a) and |Tg(a)| = k.

To prove Lemma 4.2, notice that if a € og(5), then S C 7x(a), so it follows
from (10) that |S| < k. Hence if |S| > k, then |og(S)| = 0. If |S| < k, define

F={TCO|SCT and |T|=k}.

Choose T' € F. Since T is both a proper subset of O and an extent, there
exists ar € ogr(T). Therefore, T C 7g(ar), and by (10) |tr(ar)| = k, so
T = TR(CLT).

Let A = {ar | T € F}. The preceding work shows that T — ar is a
one-to-one mapping, so |A| = |F|. We claim that

(11) UR(S) = A.

By definition, S C NF = N{7g(ar) | T € F} = 7r(A), so A C og(S). On
the other hand, if a € og(S), then S C 7x(a), so by (10), |7g(a)] = k. By
definition, T'= 7x(a) for some T € F. Since T — ay is a one-to-one mapping,
a = ar; hence a € A, so og(S) C A. This establishes (11).

Since n = |0], it follows from (11) that |og(S)| = |A| = |F| = C(n —
ST, k= 15])- =

The second lemma establishes that if d5 is a metric that assumes only one
non-zero value, then every set of objects is an extent.

Lemma 4.3 Suppose R is a reduced context and n = |O| = |A|. If or(x,y) =
2 for each pair of distinct points x,y € O, then Extents(R) = P(O).

Proof. The case n = 2 can be checked directly, so without loss of generality,
assume that n > 2. For each x # y € O, define s, = |og(z)| and s,, =
lor({z,y})|. By assumption, for each x # y € O,

1 2

5R(x7y):1_ (F—l) :E

11
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where
o lon(@)| +lonl)] _ sty
lor(z) Nor(y)| Sa.y
Rearranging terms, we obtain the following set of equalities:
(12) For each v # vy, (n—2)(sy + sy) =2(n — 1)s4,.
We claim that
(13) For eachx € O, s, =n — 1.

Choose y,z € O\ {z} with y # z. By (12),
(1) (n—2)(sz +5y) =2(n—1)s5,,.
(2) (n—2)(sx+52) =2(n —1)s,..
(8) (0= 2)(sy + ) = 2(n ~ Vs
Subtracting (3) from (2), we obtain
(4) (n=2)(s0 = 5y) = 2(n = 1)(52,2 = 5y,¢)-
Adding (1) and (4), we obtain (n—2)s, = (n—1)p, where p = s, + 55, — 5y,
Since ged(n —2,n—1) =1, (n — 2)|p; hence s, = (n — 1)q for some integer
g. Since R is strongly-well-formed, 0 < s, = (n — 1)g < | A| = n. Therefore,
¢ =1, s0 s, =n— 1. This establishes (13).
Since R is strongly-well-formed and n = |O| = | A|, it follows from (13)
that

(a) For each z € O, there exists a, € A such that op(z) = A\ {a,}.
(b) For each x € O, 1g(a;) = O\ {z}.

(c) A=A{a, |z € O}.
Based on (a) and (c), for each S C O,

~— —

or(S) =nN{A\{a,} |z € S} = A\ {a, |z € S} ={a, |z ¢ S}.
Therefore, by (b)

Tr(0r(S)) = {O\{z} & ¢ 5} =5,
which establishes P(Q) = Extents(R). O

Proof of Theorem 4.1 The implication (b) = (a) follows from Lemma 4.3
and it is straightforward to verify (c¢) = (b) using the fact that dg(x,y) =
pr({z},{y}). To show (a) = (c), we use Lemma 4.2 with £ =n — 1. In this
case, for each S C O,
(14) lor(S)| = C(n—[S],n—1—|S]) =n—|5].
Suppose S,T°C O and SNT C O. By definition,
lor(SUT)| 1
S T)=1- =1-
P = o) Do~ D
12
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_ lor(S)|+|or(D)]
where F' = R\(TR(SU;H .

Therefore, by (14),

pon=ISI=|T 20— |S|-|T]
T Th_|SUT|  n—|S[—|T[—[SnT[

which establishes
S+ T =2[SNT]

pR(SaT)_ n—|SﬂT| . O

5 Clustering Algorithm

In this section, we present a hierarchical clustering algorithm based on the
set pseudometric pr and analyze some of its characteristics. The clusters
generated by the algorithm are a family of subsets of Extents(R) that is usually
significantly smaller than the entire collection.

Assume that O and A are finite non-empty sets and R C O x A is a
context. Define the join operator ¢: Extents(R) x Extents(R) — Extents(R)
by ¥(C,C") = clg(CUC") =C Vv C".

The following pseudocode specifies the clustering algorithm:

clusters < C + {clg(z) | z € O} -1
while (|C| > 1) do -2
m < min{pg(C,C") | C # C' € C} -3
E <« {(C,C") e Cx C|pr(C,C") =m} -4
V—{CeC|(3C"eC)(C,C")eE} -5
L < [E] —6
C+ (C\V)uL -7
clusters < clusters U L -8

}

The algorithm proceeds from the bottom up using the worklist C. Initially,
C consists of the atoms (the closures of singleton objects) on line 1. The
algorithm continues by considering certain pairs of clusters from the current
worklist C and using these pairs to update C and the overall set of clusters.
This is done until the cluster O is obtained. On each iteration, if C has more
than one member, the following four items are computed on lines 3 — 6:

— the minimum distance m between any pair of distinct clusters in C (by
Theorem 3.3, (Extents(R), pr) is a metric space, so m > 0)

— the set E consisting of all pairs of clusters that are distance m apart (viewed
as edges of a graph)

— the set 'V of clusters that participate in any pair in E (vertices induced by
the edges of the graph)

13
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— the set L consisting of the join of each pair in E (labels on the edges of the
graph)

On line 7, the worklist C is updated by (i) removing any clusters in C that

belong to V and (ii) adding the members of L. On line 8, the clusters in L are

also added to the total clusters. The loop terminates when C contains exactly

one cluster. In that case, by Lemma 5.1 below, the cluster must be O.

The following example illustrates the algorithm. Suppose R is the con-
text in Figure 1. Each singleton set is an extent, so C is initialized to
{{1},{2},{3},{4}}. The minimum distance m = 0.6 is obtained with the
pair ({1}, {3}). Therefore, on the first iteration of the loop, C is updated to
{{2},{4},{1,3}}. On the second iteration, m = 0.8 is obtained with the pair
({2},{4}). Since cl({2,4}) = {2, 3,4}, C is updated to {{1,3},{2,3,4}}. On
the next iteration, m = 1 and C = {O} is obtained, so the algorithm ter-
minates with clusters = {{1}, {2}, {3}, {4}, {1,3},{2,3,4},{1,2, 3,4} }, which
represents all non-empty extents with the exception of {2, 3}.

One way in which the algorithm presented here differs from traditional
hierarchical clustering algorithms ([1], [10]) is the way in which ties are han-
dled. On each iteration, pairs of clusters that are a minimum distance apart
are identified. A tie occurs if two or more pairs of clusters are each a minimum
distance apart. Traditionally, ties are broken arbitrarily: one of the closest
pairs is considered to be the basis for the new cluster. In our algorithm, we
add clusters based on all ties to avoid non-determinism and to increase the
chance of finding potential clusters of interest. This decision means that the
analysis of the algorithm is significantly more involved than the analysis of
classical algorithms.

To analyze the algorithm, we use the graph-theoretic interpretations in-
troduced in the description of the algorithm: V denotes the vertices in the
subgraph induced by the edges E and L denotes the labels on the edges. For
instance, in the preceding example, on the first iteration, V. = {1,3},E =
{({1},{3})}, and L = {{1,3}}. For each iteration & in the main loop of the
algorithm (lines 2 — 8), let Vi, Ei, Ly, and Cyy; denote the sets V, E, L
and C, respectively, and let my denote m. The cardinalities of the respective
families are denoted by v, = |Vi|, ex = |Egl, lx = |Li|, and ¢ = |Ck|.

Using this notation,

my =min{pr(C,C") | C # C" € Cy}
Ek:{(C, C,) S Ck X Ck | pR(C, C,) = mk}
V,={C € C|3C" € C such that (C,C") € E;}
Ly =0[EK] = {CV C' | (C,C") € By}

Ck+1 - (Ck \ Vk) U Lk.

Lemma 5.1 For each iteration k,Cy is a cover of the set O. Therefore, if
the algorithm terminates on iteration K, then Cx = {O}.

Proof. We use induction on the iteration k. Since {z} C clgz({z}) for each

14
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r € O, Cy is a cover of @. Suppose C} is a cover of O. Let x € O and
choose C' € Cy, that contains z. If C' ¢ Vi, then C' € C, 1, so x belongs to a
member of Cy,,. If C' € Vi, then by definition there exists D € Cj such that
(C,D) € Ei. Hence x € C'V D € Cyyq, so Ciyq is a cover of O. O

The next result demonstrates how termination occurs for a wide class of
contexts.

Lemma 5.2

(a) If my =1 on iteration k, then the algorithm terminates on iteration k+1.

(b) If the algorithm terminates on iteration K and or(O) = 0, then my 1 =
1,Cx 1 =Vik_1, and (Vk_1,Ex_1) is a complete graph.

Proof. (a) By Lemma 3.1(a), pr < 1, so by the assumption my = 1, Vj, =
Ci. Since pr(C,C") = 1 for each (C,C") € Ei, then by Lemma 3.1(c),
or(C)Nog(C") = 0. Hence

1[)(0, O,) = TR(O'R(C U Cl)) = TR(O'R(C) N O'R(O,)) = TR(@) = O

so Ly = {O}. Therefore, Cy11 = (Cy \ Vi) UL, = {O}.

(b) Choose (A,B) € Ex ;. Since Cx = {O}, AV B = O, so og(A)
or(B) = or(AV B) = og(O) = 0. Hence by Lemma 3.1(c), mg_1
pr(A,B) = 1, so each distinct pair C, D € Cyg_; satisfies pr(C,D) =
Therefore, Cx_1 = Vi_; and (Vi_1,Ex_1) is a complete graph.

oI D

The next result establishes that the algorithm always terminates.

Theorem 5.3

(a) For each iteration k,Cy \ Cii1 # 0.
(b) For each m # n, C,, # C,; hence the algorithm terminates.

Proof. (a) Choose D € Vy, such that |D| = min{|C| | C € V}. By defini-
tion, D ¢ L;,so D € C, \ Ck—i—l-
(b) Suppose there exist integers 1 < m < n such that C,,, = C,, and define
C=U{Cy |m<k<n}
C'=n{Cy |m <k <n}.
We claim that C = C*. If C\ C* # (), choose P € C\ C” such that

(15) |P| =min{|P| | P € C\ C"}.
Then the following assertion holds:
(16) There exists m < k < n such that P € Cgyq \ Cy.

[Define p=min{m <j<n|PeC;}andg=max{m<j<n|P¢C,} If
m < p, then (16) holds with k =p — 1. If m = p, then C,, = C,, implies that
q < n, so (16) holds with k = ¢.]

Based on (16), there exist Ay, By such that (Ay, By) € E; and P = AyV By.
Since Ay € Cy, Ag € C, and since P ¢ Cy, Ay C P, so by (15), Ay € C*.
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In particular, Ag € Cry1 N Vi C Lg, so there exist A; and B; such that
(A1, By) € E; and Ay = A; V By. Without loss of generality, assume that
A; C Ap. Since A; € Cy, A; € C, so it follows from (15) that A; € C*; hence
A; € Cpyy NV, C Li. Continuing in this manner, we construct an infinite
sequence ... C Ay C Ay C Ay, which contradicts the fact that O is a finite
set. Hence, C\ C* = ().

Since C = C*, C,,, C C,,,+1, which contradicts part (a). Therefore, C,, #
C,, for each m # n, so by Lemma 5.1, {C,,} is a family of distinct covers.
Since O is a finite set, it has only a finite number of covers; hence the algorithm
terminates. O

The proof of Theorem 4 5.3 does not provide any reasonable estimate for
either the number of iterations or the number of clusters. In particular, the
analysis of the complexity of the algorithm is complicated by the fact that
the covers Cj may not be partitions. This is a consequence of how ties are
handled: at each iteration, the joins of all nearest pairs are added to the set
of clusters.

In certain cases, we can predict the number of iterations used by the algo-
rithm and the set of clusters generated. For example, consider the following
reduced contexts that generate the k—n-subsets lattices discussed in Section 4.

Suppose n = |O,1 < k < n,A={S C O | |S| = k}, and define the
reduced context

R={(z,5) € O x Alz € S}.
Then for each S C O,|ogr(S)| = C(n — |S|,k —|S]) if |S] < k, and is 0
otherwise. Furthermore, the clustering algorithm terminates in £+ 1 iterations
with clusters = Extents(R) \ {0} = P,(O) \ {0} and on iteration 1 < h < k,

® Ch:Vh:{SQ(’)||S|:h},
« B, ={(S,7)||S|=|T|=hand |SNT| =h— 1},

2(n—k)
2n—k—h"

s my =

Based on appropriate assumptions about either the number of nearest pairs
on each iteration or the structure of the covers {Cy}, we can establish linear
bounds on both the number of iterations and the number of clusters. The key
insight is suggested by the following result.

Theorem 5.4

(a) For each iteration k, (Cy \ Vi) N L = 0; hence cxy1 = ¢k + U, — vy

(b) If the algorithm terminates on iteration K, then S{l, — vy | 1 < k <
K} =1- Ct.

Proof. (a) Suppose L = AV B € C; \ Vi, where (4, B) € E;. Without loss
of generality, suppose A # L. By Lemma 3.4, pr(A,L) = pr(A,AV B) <
pR(A, B) = M.

Since pr(A, L) > 0, it follows that pr(A, L) = my, contradicting the fact
L ¢ V. Hence (Cy \ Vi) NLy = (. Based on the algorithm, Cy,; =
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(Ck \ Vi) ULy, so it follows from the above work that ¢ = ¢ + I, — vg.
(b) By assumption, cx = 1, so by repeatedly applying part (a), we obtain

l=cg =ck-1+Ilgk—1—vK_1
=cr_o+ (lk—o — vi—2) + (lk—1 — VK _1)
== +2{ly—v |1 <k <K}

which establishes the result. O

If a context is strongly-well-formed, each singleton subset is an extent (by
the discussion after Theorem 3.3). In this case, C; = {{z} | x € O}, so
c; = |O| and by Theorem 5.4(b), ¥{l; — v, | 1 <k < K} =1-|0|.

This equality can be rephrased in terms of average values of [, and v, on
the first K — 1 iterations:

1-10]
(17) average(l) = average(v) + 1
In other words, the average number of labels is always smaller than the av-
erage number of vertices. In fact, for the majority of examples that we have
considered, on every iteration, the number of labels is less than the number
of vertices. Based on this assumption, we can establish the following result.

Corollary 5.5 Assume that the algorithm terminates on iteration K and l;, <
v for each 1 <k < K. Then K <|O] and |clusters| < |O*.

Proof. By the hypothesis and Theorem 5.4(b), 1 —¢c; = X{ly — v, | 1 < k <
K} < (-1)(K —1),s0 K <¢; <|0O]. By the hypothesis and Theorem 5.4(a),
Ckr1 = Ck + Il — v < ¢x. Hence ¢ < ¢g for each 1 < k < K, so by the
hypothesis and lines 1, 5, and 8 in the algorithm,

lclusters| <ecl + S{lx | 1 <k < K}
<cp+3X{w |1 <k <K}
<+ X |1<k< K} <Kcq.
By the first part of the proof, K < |O|; hence |clusters| < |O2. O

Our experience with both real-world data and randomly generated data
indicates that the assumption [, < v holds on almost every iteration. This
point is discussed further in Section 6.

The final two results in this section show that the hypothesis in Corol-
lary 5.5 is satisfied if natural restrictions are placed on either the number of
nearest pairs or the structure of the sets of clusters. Define the number of ties
on iteration k as

tiesk = |Ek| — 1.
In particular, if there is a unique nearest pair of sets at iteration k, then there
are “no ties”, i.e. tiesy = 0.

Corollary 5.6 Assume that the algorithm terminates on iteration K.
(a) If tiesy, <1 for each iteration k, then K < |O| and |clusters| < 3|O|.
17
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(b) If tiesy =0 for each iteration k, then |clusters| < 2|O)|.

Proof. (a) By hypothesis, e, < 2 for each k, so e, < vg. Since [ < ey, it
follows that [, < vy, so by Corollary 5.5, K < |O|. Therefore,

lclusters| <c; + X{ly |1 <k < K} <|O|+2(K —1) < 3]0|.
(b) By hypothesis, [, = e, = 1, so by part (a),
lclusters| <c +X{ly |1 <k < K} <|O|+ K —1<2|0|. O

Corollary 5.7 Assume that the algorithm terminates on iteration K.

(a) If Cky1 is a partition for some 1 < k < K, then every edge in a compo-
nent of the graph (Vi, Ey) has the same label and I}, < vg.

(b) If Cy is a partition for each iteration k, then K < |O| and |clusters| <
2|0|.

Proof. (a) Let E denote the set of edges in a component of the graph (V,, Eg).
If there exists a pair of edges in F with distinct labels, then there exist ad-
jacent edges (A, B) and (B,C) in E such that L = AV B # BV (C = L*.
Therefore, B C L N L* and {L, L*} C Cy,1, which contradicts the fact that
Cy1 1s a partition. Hence every member of £ has the same label.

Assume that (Vy, Eg) has py components. By the above work, [, = py.
Since each component contains at least two vertices, 2p, < vg, S0 [ < vg.

(b) The first estimate in part (b) follows from part (a) and Corollary 5.5.
To establish the second estimate, by part (a), [y = pr = 2pr — pr < v — I, SO
by Theorem 5.4(b),

lclusters| <ec; +3{lx | 1 <k < K}
SCl—FE{Uk—lk | 1§]€<K}
=2c;—1< 2|O| O

6 Discussion

The two principal contributions of the paper are the definition of the distance
functions pr and dr and the formulation of the clustering algorithm. The
distance functions provide a natural way to measure the distance between sets
and objects that can be used to characterize extents (Theorem 3.5) and power-
set lattices (Theorem 4.1). The clustering algorithm provides a method for
computing a tractable number of potentially useful family of extents without
excessive computational cost.

The algorithm differs from the classical clustering algorithms described
in [10]. First, the values of the set function pg, not dg, determine which
pairs of sets are combined on each iteration. Second, the clusters defined on
each iteration are generally anti-chains and may not be partitions. Third, the
joins of all nearest pairs of clusters are included to ensure that no potentially
interesting cluster is eliminated. Therefore, the analysis of the algorithm is
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more involved than the analysis of classical algorithms. The difficulty with
the analysis is inherent in using the join operation to guarantee extents. Even
if no ties occur, the covers {Cy} still may not be partitions.

Currently, we do not have general results that provide reasonable bounds
on the number of iterations of the algorithm. However, experiments on a
variety of contexts confirm that the number of iterations is approximately
equal to the number of objects. In fact, Example 8.2 shows that on trials
with randomly generated data, the number of labels is less than the number
of vertices for over 99% of the total number of iterations, and Example 8.1
shows that for the cancer data, the inequality holds on every iteration. Hence
the linear behavior is guaranteed by Corollary 5.5.

Using the joins of all nearest pairs of clusters also increases the worst-
case upper bound on the number of clusters generated. The reduced contexts
that generate the k£ — n-subsets lattices (discussed before Theorem 5.4) show
that, in general, there is no polynomial bound on the number of clusters as a
function of the number of objects. However, this exponential blowup has never
occurred in running the algorithm on any real-world or randomly generated
contexts. In all cases, the number of clusters generated is approximately equal
to twice the number of objects. This assertion is supported by the data in
Example 8.1 and 8.2. Therefore, the addition of joins of all nearest pairs
to the set of clusters enriches the set of overall clusters without significantly
increasing the computational cost.

In terms of data analysis, the algorithm provides a useful technique for
generating a manageable number of concepts to examine as opposed to com-
puting the entire concept lattice. The approach is especially advantageous
as the density of 1’s approaches 50% in a context. In this case the concept
lattice is usually very large; for example, randomly generated contexts of size
60 x 60 have, on the average, over 280,000 concepts (Example 8.3). An addi-
tional advantage of the algorithm is that computational cost is not increased
significantly by adding extra attributes. Therefore, we can freely use the com-
plemented extension of a context to represent negative information. Also, if
the context is derived from discretizing continuous data (as in Example 8.1),
there is no significant cost penalty for improving the accuracy of the approx-
imation by adding more attributes. In fact, Example 8.2 shows that as the
number of attributes increases, the number of ties decreases, which provides
further evidence that the number of iterations and the number of clusters will
be linear functions of the number of objects.

For most of our work, we have focused on the join operator used in the
algorithm. However, we have also studied the union version of the algorithm
where ¢ is defined by ¢(C,C") = C U C'. This version has the apparent
disadvantage that it may generate clusters that are not extents. Also, the
algorithm needs to handle the special case when the minimum distance m is
zero (which can happen for distinct sets that are not extents). However, the
union version is useful for assessing the degree to which the data is “well-
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structured”, that is, most of the clusters obtained are extents.

The clustering algorithm has been implemented in a Windows based sys-
tem that includes a user interface with a variety of execution and display
options, a database facility for storing and analyzing clusters, and a facility
for conducting statistical trials on randomly generated contexts. The imple-
mentation of the algorithm can be further optimized, but in spite of this fact,
relatively large contexts (on the order of 200 x 400) can be processed in a
few minutes on a 200 MHz Pentium machine. In particular, the algorithm has
been run on contexts generated from a variety of sources ranging from medical
research to sporting events. Example 8.1 shows the results from using a set
of cancer data. Overall, the implementation is a useful tool for computing a
tractable subset of potentially very large concept lattices.

7 Related Work

Historically, cluster analysis is divided into two main categories: bottom-up
and top-down. Our algorithm is bottom-up (also known as hierarchical) so it
is related in spirit to classical clustering algorithms such as single-linkage and
complete-linkage. There are several well-known books on cluster analysis ([1],
[10]) that discuss these topics. More modern approaches to cluster analysis
are found in ([6], [7]).

The literature on concept analysis can be divided into three areas: the gen-
eral theory, efficient generation of concept lattices, and applications of concept
analysis. Reference [8] presents the mathematical foundations of the subject
and [4] also contains an introduction to closure operators, Galois connections,
and concept analysis. The reference [13] describes an implementation of an al-
gorithm to compute concept lattices and [9] describes incremental algorithms
for generating concept lattices. There are numerous papers regarding the ap-
plication of concept analysis, perhaps most notably relating to data mining
([3], [11]) and software engineering ([14], [15]).

To our knowledge this paper is the first to formally investigate the relation-
ship between cluster and concept analyses. The paper [5] presents an informal
discussion of the comparative advantages and disadvantages of each approach.
Finally, we have not seen the distance function pg discussed in the literature,
but there are several indirect references to dg. For example, in ([1], p. 117),
1 — dp is called the Jaccard coefficient and in ([2], p. 409) the same quantity
is used. The latter reference states without proof that 0z is a metric.

8 Examples

Example 8.1 We used a subset of the cancer data [16] consisting of 200 rows
and 390 columns of 0’s and 1’s (|O| = 200, | A| = 390). Each row represents one
tumor and various sets consisting of 39 columns represent the discretization
of 10 distinct attributes of the tumor such as mass and diameter. The rows
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represent equal percentages of benign and malignant tumors. Running the
algorithm on this context required 191 iterations and generated 389 extents.
The algorithm found one extent of size 90 that is 88% malignant, but it failed
to find any cluster of significant size that was over 50% benign. Running the
algorithm on the 200 x 780 complemented extension of the context required
151 iterations and generated 409 extents. The algorithm found one extent of
size 81 that is 85% malignant and one extent of size 95 that is 88% benign. The
following chart shows the distribution of ties for the complemented extension:
on 86% of the iterations, there was no tie, and on 94% of the iterations there
was at most one tie.

number of iterations | 129 | 12 | 3 1 2 1 2

tiesy, 0 112 3 4 6 13

% of iterations 86 | 8 |210.67]1.34|0.67]|1.34

Fig. 5.

Example 8.2 The following tables are based on running the algorithm on
100 randomly generated contexts where the probability of a 1 in a row-column
entry is 0.5. In Tables II(a) and II(b), the algorithm was run on the comple-
mented extension of randomly generated contexts with one-half the number
of attributes listed for |A|. For each row in Table I(a) and II(a), the average
number of iterations on a given run is less than |O| and the average number of
clusters per trial is approximately 2|O|. A comparison of rows 1 and 2, and 2
and 3, respectively, in Table I(a), and rows 2 and 3 in Table II(a), shows that
as the number of attributes increases, the average number of ties/iteration
on a given run significantly decreases. Table I(b) (Table II(b)) shows that
for over 94% (84%) of the iterations on contexts of any size, the number of
ties is at most 2. Furthermore, the two tables show that for over 99% of the
iterations on contexts of any size, the number of labels is less than the number
of vertices in the graph.
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iterations clusters ties/iteration
I(a) | |O] | |A| | average | max | average | max | average | max
1 25 25 20.09 23 49.97 25 0.56 1.20

2 25 20 21.96 24 48.65 ol 0.31 0.79

3 50 50 40.23 47 98.98 105 0.52 0.89

4 50 100 44.02 48 96.92 102 0.35 0.70

5 | 100 | 100 81.71 90 196.05 | 201 0.56 0.88

% of iterations: ties % of iterations: [, — vy,
I(b) | |O] | |A| =0 | =1 |=2|>2] <0 |=0 >0
1 25 25 71.50 | 16.82 | 6.44 | 5.24 | 99.74 | 0.26 0.00
2 25 50 83.83 | 10.11 | 3.44 | 2.62 | 100.0 | 0.00 0.00
3 20 50 78.49 | 14.70 | 2.78 | 4.03 | 99.95 | 0.05 0.00
4 20 100 | 89.40 | 7.51 | 0.63 | 2.46 | 99.98 | 0.02 0.00
5 [ 100 | 100 | 83.11 | 12.42 | 2.46 | 2.01 | 100.0 | 0.00 0.00
Table 1

iterations clusters ties/iteration

II(a) | |O] | |A| | average | max | average | max | average | max

1 25 | 50 18.85 22 53.39 64 0.82 1.69

2 50 | 50 31.08 37 | 109.63 | 128 1.34 2.24

3 50 | 100 | 33.76 40 105.16 | 118 0.99 1.76

4 100 | 100 | 57.78 67 | 215.03 | 230 1.54 2.09

% of iterations: ties % of iterations: I, — vy
o) | 1o/ 14| =0 | =1 |=2| >2 | <0 | =0] >0
1 25 | 50 | 66.27 | 13.62 | 8.85 | 11.26 | 99.27 | 0.62 0.11
2 50 | 50 | 64.66 | 14.53 | 4.89 | 15.92 | 99.60 | 0.30 0.10
3 50 | 100 | 71.28 | 11.05 | 4.97 | 12.70 | 99.69 | 0.31 0.00
4 100 | 100 | 71.12 | 12.48 | 4.21 | 12.19 | 99.84 | 0.16 0.00
Table 2
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Example 8.3 The following table shows the average number of concepts gen-
erated by running the algorithm described in [13] on 50 randomly generated
contexts where the probability of a 1 in a row-column entry is 0.5.

|O| | |A| | concepts | 1g(concepts) |O| | |A| | concepts | lg(concepts)
40 | 40 20390 14.32 80 | 80 | 2188215 21.06
60 | 60 | 284693 18.12 100 | 100 | 11077685 23.40
Table 3
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