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This paper describes the development of a numerical model for geometrically nonlinear membranes and
evaluates its performance for membranes at static equilibrium. The scheme has several features not com-
monly seen in structural finite element analysis: the point collocation method, group formulation, and a
staggered mesh. In the point collocation finite element method, the partial differential equations are
solved at each node instead of by integrating over elements. The group formulation simplifies the han-
dling of nonlinearities by interpolating the nonlinear products of variables, as opposed to seeking the
product of independently interpolated variables. The domain is discretized with a staggered mesh of lin-
ear triangles and associated polygons. Two sequential gradient recovery operations are performed: first
the gradients of the linear triangles are calculated and converted to stresses; then, polygon derivative
shape functions derived in this paper are used to determine the internal forces from the stress gradients.
The resulting system of nonlinear equations is solved with a Jacobian-free Newton–Krylov solver. The
code is first verified using the patch test and the method of manufactured solutions. Then the results
are validated using experimental data and benchmark code results in the literature for the Hencky prob-
lem (a circular membrane with a fixed perimeter and uniform inflation pressure). The observed rates of
convergence for both displacement and radial strain were two. For the configurations and grids used in
this investigation, the scheme was suitable for accurately predicting sub-hyperelastic deformations.

Published by Elsevier Ltd.
1. Introduction

Micro Air Vehicles often utilize flapping wings with membranes
as the lifting surfaces. Supported by a frame, the membrane’s pas-
sive response to aerodynamic loads can improve gust response
(Lian et al., 2003) and stall characteristics (Shyy et al., 2005).
Experimental examination of a fixed membrane wing indicated
the membrane oscillations strongly interacted with the separated
shear layer and vortex shedding, with up to five vibration modes
observed (Rojratsirikul et al., 2009). High-fidelity numerical simu-
lations of a similar configuration with a one-dimensional chord-
wise structural model realized both standing and traveling wave
responses depending upon the flow regime; it was concluded by
the authors that an advanced multidisciplinary approach was nec-
essary to fully grasp the complicated system (Gordnier, 2009). The
improved insight gained by such efforts will improve design opti-
mization and lead to superior performance. The contribution of
this paper is a two-dimensional, highly modular, geometrically
nonlinear membrane model, that when interactively coupled with
an aerodynamic model will accurately and efficiently predict the
membrane response.
Ltd.

ti).
Membranes are inherently nonlinear structures that undergo
large rigid body displacements and rotations, and often large
strains as well. Thorough discussions of membrane mechanics
and challenges may be found in Jenkins and Leonard (1991),
Jenkins (1996), Pai and Young (2003) and Pai (2007). The prototyp-
ical problem for static membrane study is the circular membrane
with fixed circumference that is inflated under constant pressure.
Commonly called the Hencky problem (Hencky, 1915), this config-
uration facilitates experimental investigation and permits analyti-
cal solutions. Analytical derivations commonly formulate the
radial and circumferential equilibrium equations using assumed
functions for the dependent variables and solve for the constant
coefficients (Liu et al., 1993; Fichter, 1997). Finite element (FE)
models have been applied to the Hencky problem using detailed
geometric surface descriptions with Jaumann strains and stresses
(Pai and Young, 2003). Others have utilized simple linear-elastic
elements applicable to the large displacement/small strain regime
(Pauletti et al., 2005). In numerical simulations the membrane
behavior may be modeled as linear, geometrically nonlinear, or
hyperelastic, in order of increasing complexity. The suitability of
each of these models is problem-dependent and is affected by
the desired ranges of external pressure and membrane prestress
(Stanford and Ifju, 2008). Based on those findings and a review of
typical Micro Air Vehicle wing designs, a geometrically nonlinear
model was selected for the present study. The validation section
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Nomenclature

a constant coefficient of x for the equation of a polygon
side

b constant coefficient of y for the equation of a polygon
side

E Young’s Modulus
E Green strain
f normal external force vector
g surface tangent vector
h membrane thickness
he representative element length
JA membrane area ratio (deformed/original)
Jh membrane thickness ratio (deformed/original)
j weighting coefficient for polygon shape functions
l linear formula for a side of a polygon
n̂ membrane unit normal vector
N second Piola–Kirchoff stress per unit length
Ni polygon shape function for the polygon’s vertex node i
p isotropic inflation pressure or order of convergence

(specified in the text)
q non-dimensional inflation pressure

Q vector of grouped degrees of freedom at a triangle cen-
troid

R membrane outer radius
R residual vector
TQn

a matrix partial derivative operator; obtains polygon
node values of @Q=@xa

Tuc
a matrix partial derivative operator; obtains triangle cen-

troid values of @u=@xa
Tun

a matrix partial derivative operator; obtains polygon
node values of @u=@xa

u nodal displacement
w transverse displacement (conventional label for u3)
x1; x2 Cartesian coordinates
x; y Cartesian coordinates (used in polygon shape function

development; same as x1; x2)
� relative error of approximate solution
m Poisson ratio
/ dependent variable of interest; specified as displace-

ment or strain as appropriate
w numerator polynomial of a polygon shape function
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of this paper will utilize the experimental data from Stanford and
Ifju (2008) to establish the model’s suitability up to the onset of
hyperelastic effects, which occurs at a center deflection of approx-
imately 25% of the circular membrane’s radius (Pujara and Lard-
ner, 1978).

The model developed here will utilize two approaches which
are relatively rare in structural finite element method (FEM) appli-
cations: the point collocation method and the group FE formula-
tion. Both approaches were selected for this effort because they
tend to result in simpler formulations (Christie et al., 1981;
Zienkiewicz et al., 2005), potentially offering greater code flexibil-
ity without sacrificing accuracy. Coincidentally, both the point col-
location method and group FE formulation have close ties with the
development of computational fluid dynamics (CFD) schemes.
Development of the group FE formulation in the literature centers
around fluid mechanics applications and examples (Christie et al.,
1981; Fletcher, 1983; Fletcher and Srinivas, 1985), and the similar
lumping of nonlinear terms in the flux vector is standard practice
for finite volume formulations (Hirsch, 2007). Similarly, the point
collocation method shares a history with and bears a resemblance
to the finite difference method (Zienkiewicz et al., 2005). The non-
linear wave equations that describe membrane dynamics offer an
interesting test case for further examining how well these CFD-
associated techniques transfer into the structural dynamics milieu.

The collocation method is commonly mentioned in the finite
element literature when listing the members of the Method of
Weighted Residuals family. However, it is rarely seen in practice.
The weighting function for each designated point in the domain
is the Dirac delta function. By definition, the Dirac delta function
equals zero everywhere except at its associated point, and its inte-
gral over the domain equals one (Zienkiewicz et al., 2005). The
resulting system of equations solve the PDE (Partial Differential
Equation) point-wise rather than in an integral sense. Thus, there
is no need for Gaussian integration over an element. Posed in the
strong form, the method requires the interpolation scheme to be
differentiable to the same order as the PDE (Zienkiewicz et al.,
2005; Aluru, 2000), but the formulation of the system of equations
has been found to be less complicated than when employing the
Galerkin method (Aluru, 2000).

Also, while certainly applicable to a conventional FEM mesh, the
point collocation method lends itself to a variety of unconventional
discretization and interpolation schemes. Element shapes can
expand beyond triangles and quadrilaterals to n-sided polygons.
Taking the concept even further, ‘‘meshless’’ (Belytschko et al.,
1996; Idelsohn et al., 2003) and ‘‘element-free’’ (Belytschko et al.,
1994; Krysl and Belytschko, 1996) methods use least-squares fits,
radial basis functions, or other neighboring-node-based techniques
for forming the system of equations. Using a meshless point collo-
cation method, Aluru (2000) solve a wide variety of problems
including heat conduction, Couette flow, and a cantilever beam.
In the interest of computational efficiency for the dynamic simula-
tion, the present model utilizes a staggered background mesh so it
does not fall into the meshless category.

In a group finite element formulation (also called ‘‘product
approximation’’ (Christie et al., 1981)), aggregated nonlinear terms
are first computed, then interpolated as a single degree of freedom.
Consider the term quv where q; u, and v are each dependent vari-
ables (Fletcher and Srinivas, 1985). Rather than applying trial solu-
tions /j to each of the variables, the group formulation interpolates
their precomputed products as

P
/jðquvÞj. Significant computa-

tional savings have been observed, with the benefits increasing
from higher dimensionality or order of nonlinearity (Fletcher,
1983). For some cases, point-wise accuracy may actually be higher
than that of the Bubnov–Galerkin method (Christie et al., 1981).
This observation hints at a potential synergy in the pairing of the
group FE formulation with the point collocation method.

In this paper a novel membrane model using the group finite ele-
ment formulation and point collocation method will be presented and
evaluated for static membranes. After summarizing the governing
equations and the material model, polygon interpolation formulas
will be derived to calculate gradients in a staggered grid approach.
The steps for calculating nodal force imbalances will be described in
detail. After the model is explained, verification will demonstrate
consistency and an observed rate of convergence of two. Finally, pre-
dictions will be validated against experimental results in the litera-
ture to show the model to be suitable through its range of intended
use (i.e., short of the onset of hyperelastic material response).

2. Governing equations

For this study, a membrane is defined as a thin plate without
bending stiffness (Jenkins, 1996). The governing partial differential
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equations (PDEs) for the nonlinear membrane are those of a plate
undergoing finite deformations as derived in Reddy (1999), but
with the moment and curvature terms removed. The internal
stress components are N (second Piola–Kirchoff, per unit length)
with the subscripts denoting orientation with respect to the
Cartesian axis directions x1 and x2. The external pressure vector
components are represented by f. The terms are expressed in force
per unit area.

0 ¼ @N11

@x1
þ @N12

@x2
þ f1 ð1Þ

0 ¼ @N22

@x2
þ @N12

@x1
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The solution of the membrane surface displacements u begins by
recovery of the surface gradients. The gradients then lead to the
Green strain tensor components (Reddy, 1999; Bonet and Wood,
1997).
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The internal stresses are calculated using the conventional plane
stress constitutive relationship. Prestress is accounted for by the
vector N0. Note that the membrane thickness hðuÞ is a function of
the displacement field to take thinning into account as the mem-
brane stretches.
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3. Discretization and polygon interpolation formulas

By using the group formulation, all three governing PDEs (Eqs.
(1)–(3)) were cast into the same first-order PDE form

@Q 1

@x1
þ @Q 2

@x2
þ f ¼ 0 ð6Þ

where the vectors Q define the degrees of freedom as
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8><
>:
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The domain is discretized by forming a staggered mesh, meaning
different variables are evaluated at different points in the domain.
For example, the displacements u and the stresses N will not be
computed at the same nodes. As commonly found in finite differ-
ence discretizations, a staggered mesh enables more compact
stencils. In certain CFD applications, high-frequency oscillations
are reduced because the pressure and velocity fields are fully
coupled (Hirsch, 2007).

The staggered mesh consists of a primary mesh of three-node
linear triangles and a dual mesh of polygons. The nodes of the
primary mesh define the model’s collocation points and carry the
vectors u (displacement) and f (external force). The role of the
primary mesh is to recover the first partial derivatives of the mem-
brane surface. The calculated partials of each triangle are placed at
the centroid, as is common in post-processing gradient recovery
procedures (Cook et al., 2002; Zienkiewicz et al., 2005; Payen and
Bathe, 2011).

The dual mesh is formed by connecting the centroids of the tri-
angles to form vertex-centered polygons, also called tributary
areas (Zienkiewicz et al., 2005). Note that the polygons do not
overlap and are therefore not the same as an element patch. The
vertices of the polygons carry the Q vectors. The solution of the dis-
cretized governing equations, Eq. (6), requires an approximation of
the partial derivatives of Q at the center node. For this study, the
polygon patch interpolation presented in Dasgupta (2003) was
used. This interpolation is based on the linear interpolation along
the edge between adjacent nodes. The shape functions are rational
polynomials that interpolate a linear field exactly. For complete-
ness, we first list a few key equations from Dasgupta (2003), and
then derive the necessary partial derivatives of the shape
functions.

Let n be the number of vertices of the polygon and i be an index
of those n sides. To use the subscripts to indicate the pertinent
node, the coordinates (x1; x2) used so far will be renamed (x; y) in
this section. Each edge segment l is described by a line with con-
stant coefficients a and b.

li ¼ 1� aix� biy ð8Þ

Each polygon will have the center node as its local origin. The coef-
ficients a and b are then determined by the vertex coordinates in
the reference configuration.

ai ¼
yi � yi�1

xi�1yi � xiyi�1

bi ¼
xi�1 � xi

xi�1yi � xiyi�1

ð9Þ

The line coefficients a and b and the vertex coordinates are used to
calculate the relative weight coefficients j, which are normalized
by setting j1 to a value of one.

ji ¼ ji�1
aiþ1 xi�1 � xið Þ þ biþ1 yi�1 � yið Þ
ai�1 xi � xi�1ð Þ þ bi�1 yi � yi�1ð Þ

� �
; j1 ¼ 1 ð10Þ

The line equations and coefficients form the terms of wi, the numer-
ator of the shape function associated with perimeter node i.

wiðx; yÞ ¼ ji

Yj¼n

j–i
j–iþ1

ljðx; yÞ ð11Þ

The denominator polynomial is equal to the sum of all of the
numerator polynomials, thus forming the rational polynomial
shape function Ni for each node i on the perimeter of the polygon.

Niðx; yÞ ¼
wiPn
j¼1wj

ð12Þ

Having summarized the work of Dasgupta (2003), we now obtain
the derivatives of the shape functions for use in the present method.
Application of the quotient rule leads to the expressions for the
shape function derivatives,

@Ni

@x
ðx; yÞ ¼

Pn
j¼1wj

� �
@wi
@x � wi

@
@x

Pn
j¼1wj

� �
Pn

j¼1wj

� �2 ð13Þ

@Ni

@y
ðx; yÞ ¼

Pn
j¼1wj

� �
@wi
@y � wi

@
@y

Pn
j¼1wj

� �
Pn

j¼1wj

� �2 ð14Þ

Each of the terms necessary for this calculation will now be simpli-
fied. Multiple applications of the chain rule to Eq. (11) result in the
expressions
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The partial derivatives of the linear edge functions are constants,

@li

@x
¼ �ai

@li

@y
¼ �bi

ð17Þ

which when substituted into Eqs. (15) and (16) reduce them to
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Since the local origin was placed at the center node, and the center
node is the only point at which this interpolation will be applied, all
of the non-constant terms of the derivative shape functions can be
disregarded. Then the calculations for the individual terms of Eqs.
(13) and (14) reduce to

wi ¼ ji ð19ÞXn

j¼1
wj ¼

Xn

j¼1

jj ð20Þ

@wi

@x
¼ �ji

Xk¼n

k–i
k–iþ1

ak ð21Þ

@wi

@y
¼ �ji

Xk¼n

k–i
k–iþ1

bk ð22Þ

@

@x

Xn

j¼1

wj

 !
¼
Xn

j¼1

@wj

@x
ð23Þ

@

@y

Xn

j¼1

wj

 !
¼
Xn

j¼1

@wj

@y
ð24Þ

These formulas are substituted into Eqs. (13) and (14) to provide the
derivatives of the polygonal shape functions at the center nodes.
Thus letting Qi be scalar values at the polygon vertices i ¼ 1 . . . n,
the partial derivatives of Q at the polygon’s center node are

@Q
@x
¼
Xn

i¼1

@Ni

@x
Q i ð25Þ

@Q
@y
¼
Xn

i¼1

@Ni

@y
Q i ð26Þ

To improve computational efficiency, much like global stiffness
matrices, the individual element interpolation functions are
assembled into global derivative matrices Ta � @=@xa, where
a ¼ 1;2 to indicate the direction of the partial derivative. To distin-
guish between the sets of matrices, let the superscripts indicate the
vector upon which the matrix operates (u or Q ) and the location of
the result (c for triangle centroid or n for the interior node of a
polygon). The derivative matrices Tuc

a recover the linear triangle
partial derivatives from the nodal displacements. The equations
for the gradients of linear triangles may be found in most introduc-
tory finite element texts. The derivative matrices Tun

a use the poly-
gon interpolations to recover the partial derivatives of u at the
polygon interior nodes from the displacements at the perimeter
nodes. Lastly, TQn

a use the polygon interpolations to recover the par-
tial derivatives of Q at the polygon interior nodes from the values
Q at the triangle centroids.

4. Residual calculations

The residual vector R contains the imbalance between the inter-
nal and external forces at the nodes for an approximate solution of
the governing equations, Eq. (6). The role of the solver is to reduce
the size of the residual vector to an acceptable level with the user
supplying the metric and tolerance. Using the entire domain, let ne

be the number of triangular elements, n be the total number of
nodes, and nn be the number of interior nodes. The following quan-
tities are calculated sequentially to return the residual vector R to
the solver.

1. Partial derivatives of u at the triangle centroids using the primal
mesh. Six operations are required (partials of three u vectors in
two directions) using the two pre-calculated discrete derivative
operators Tuc .
@ui

@xa
¼ Tuc

a ui; a ¼ 1;2; i ¼ 1;2;3 ð27Þ
2. Surface unit normal vector n̂ and area ratio JA at the center
nodes. The surface normals at the nodes were obtained via the
cross-product of two tangent vectors (Wriggers, 2008; Bonet
and Wood, 1997). The nodal partial derivatives required by the
tangent vectors can be obtained by gradient recovery techniques
or by applying the polygon interpolation Eqs. (13) and (14) to
the full element patch. The latter technique was applied using
the two pre-calculated constant matrices Tun in six operations,
@ui

@xa
¼ Tun

a ui a ¼ 1;2; i ¼ 1;2;3 ð28Þ
Thus at each interior node the tangent vectors were
g1 ¼ 1þ @u1

@x1
;
@u2

@x1
;
@u3

@x1

� 	T

g2 ¼
@u1

@x2
;1þ @u2

@x2
;
@u3

@x2

� 	T
ð29Þ
Their cross product’s magnitude, JA, is the ratio of the deformed area
to the undeformed area. The direction provides the components of
the external force vector. The unit normal vector is
n̂ ¼ g1 � g2

g1 � g2k k ¼
g1 � g2

JA
ð30Þ
3. External force fðuÞ at the center nodes. Let p be the spatially-
constant magnitude of inflation pressure that acts normal to
the membrane in its current configuration. The external force
vector is
f ¼ pJA n̂ ð31Þ
4. Thickness ratio Jh at the center nodes. Incompressibility is
assumed for the deformed thickness calculation. Since the vol-
ume V ¼ Ah is constant, the thickness ratio Jh is the reciprocal of
the area ratio.
Jh ¼
h
h0
¼ V=A

V=A0
¼ A0

A
¼ 1

JA
ð32Þ
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5. Q 1 and Q 2 at the triangle centroids using Eqs. (4), (5), and (7).
The deformed thickness hðuÞ in Eq. (5) will need to be replaced
by Jhh0. Since Jh will be calculated at the center node, not at the
element centroids where Q exists, the undeformed membrane
thickness h0 is used for now. The membrane thickness will be
corrected in the last step, when the residual vector is calculated.

6. Partial derivatives of Q 1 and Q 2 at the polygons’ center nodes
by applying the two pre-calculated derivative operators TQn to
the three u vectors.
@Q b

@xa
¼ TQn

a Q b; a;b ¼ 1;2 ð33Þ
7. Global residual vector R. The nodal thickness ratio Jh from Eq.
(32) is now applied to the partial derivatives of Q to calculate
Rj 2 R3, residual vector of node j. The nodal residuals are
assembled into the global residual vector R 2 R3nn , which is
returned to the nonlinear solver for further minimization.
Rj ¼ Jh
@Q 1

@x1
þ Jh

@Q 2

@x2
þ f

� �
j

j ¼ 1 . . . nn ð34Þ
In the point collocation method, the residual equations for
points on the boundary are determined by the boundary conditions
and will be different from the domain interior’s governing equation
(Aluru, 2000). Here, for the homogeneous boundary conditions, the
displacements are simply set to zero, and the boundary nodes are
removed from the solution vector.
Fig. 1. Square 2� 2 5-node patch for the patch test. Solid lines are the triangles of
the primary mesh and dashed lines illustrate the node-centered polygon of the dual
mesh.
5. Nonlinear solver selection

The dynamic simulation under development which will use this
membrane model primarily employs an accelerated fixed-point
iteration algorithm. This method does not require the construction
of a Jacobian matrix (or even an approximation of one), so signifi-
cant savings in computational effort are expected. Since the
Newton–Raphson method will not be used, the tangent stiffness
matrix is not needed and will not be formulated analytically. Thus
for the static cases presented here it was necessary to find an
efficient alternative method that estimates the Jacobian or avoids
using it altogether.

For this study we utilized ‘‘family scipy.optimize.new-

ton_krylov’’, the Newton–Krylov nonlinear equation solver from
the Python library SciPy (Jones et al., 2001). The solver was sup-
plied an initial guess for u and a callable function that returned
the residual vector RðuÞ, Eq. (34). The loose generalized minimum
residual (LGMRES) method was selected as the inner solver (Baker
et al., 2005).

Broadly speaking, Newton–Krylov methods employ nested iter-
ative solvers. The outer solver performs corrections like the classi-
cal Newton method. The inner solver is one of many linear Krylov
subspace methods (Van der Vorst, 2003). Jacobian-free Newton–
Krylov (JFNK) methods like the one used in this SciPy routine are
efficient for large systems because they use a perturbation of the
entire solution vector to approximate Jacobian-vector products;
this approach is more efficient than the finite difference Jacobian
construction, which requires a perturbation of each element of
the solution vector (Knoll and Keyes, 2004; Kelley, 1995). The ac-
tual Jacobian is not needed, yet convergence can approach that of
the Newton method. Preconditioning by providing an approxima-
tion to the Jacobian is highly recommended and often necessary
for adequate performance (Benzi, 2002; Van der Vorst, 2003); how-
ever, for the simulations in this study, performance was more than
adequate without supplying a preconditioner to the solver.

Because stress stiffening is the source of transverse resistance,
the solver will fail when starting from a flat, slack membrane.
There are several remedies for this problem. The approach used
in this study was to prescribe an initially non-flat shape (Wu
et al. (1996) used this approach for a box-shaped membrane and
mentioned its necessity). Simple parabolic profiles were sufficient.
A second option, dynamic relaxation, uses a dynamic model with
damping to settle to the static solution (Jenkins and Leonard,
1991; Cook et al., 2002; Wriggers, 2008). This option is convenient
since it is not necessary to code a separate solver for the static solu-
tion; and it also has the benefit of verifying some aspects of the dy-
namic code. However, convergence can be extremely slow if the
damping mechanism is not carefully designed. Some of these chal-
lenges can be avoided by using pseudo-transient continuation (Gee
et al., 2009; Kelley and Keyes, 1998). The non-physical time step
sizes can be controlled using the successive evolution-reaction
(SER) technique (Knoll and Keyes, 2004). A third approach, also
not employed herein, entails applying a pretension initially to aid
the solver and later removing it for the final solution.

It is worth mentioning a few other numerical alternatives that
may be used in the absence of an analytical Jacobian. A more com-
prehensive review of these alternatives may be found in Wriggers
(2008). Finite difference Jacobian approximations are easy to per-
form but are not robust, and they become very expensive as the
size of the problem increases. Automatic differentiation extracts
the derivatives directly from the code (Griewank and Walther,
2008). Multigrid methods (Briggs et al., 2000; Henson, 2003) (in
particular the Full Approximation Scheme (Brandt, 1977)), and
combinations of Newton–Krylov and multigrid methods (Jones
and Woodward, 2001; Gee and Tuminaro, 2006) require some
careful coding, but the ultimate computational efficiency gains
can be impressive. Lastly, depending upon how the method is for-
mulated, dynamic relaxation may also be a viable alternative.
6. Verification

Patch tests were performed for the linear plane stress scenario
(Hughes, 1987). All of the tests featured a unit vertical rigid body
translation. The square patch measured two units per side and
was centered at ð1;1Þ as shown in Fig. 1. The patch contained a sin-
gle interior node at ð1:6;1:4Þ, approximately on the perimeter of its
dual-mesh polygon. Given a linear displacement field, boundary
nodes were displaced accordingly and the displacement of the cen-
ter node was checked against the exact field. The physical con-
stants were E ¼ 1000; h ¼ 1, and m ¼ 0:5. The results in Table 1
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show that the model exactly reproduced the constant strains and
stresses, even with irregular elements.

Further verification and convergence determination was per-
formed using the Method of Manufactured Solutions (Roache,
1998; Burg et al., 2004). In this method, a solution is fabricated
(it does not have to be physically plausible), and the forcing func-
tion is calculated from the governing PDE; then the forcing func-
tion is used in the numerical model to obtain an approximate
solution. The error is then the difference between the model’s solu-
tion and the manufactured solution. The manufactured solution,
Eq. (35), was devised in accordance with the recommended guide-
lines found in Salari and Knupp (2000). Non-unity constants were
chosen such that the solution magnitudes and derivatives were of
approximately the same order of magnitude in all three axes such
that potential formula errors might be revealed.

uðx1; x2Þ ¼
0:17eðx1=2�x2=2Þ

�0:37eð�x1=4�x2=2Þ

0:71eðx1þx2Þ

8><
>:

9>=
>; ð35Þ
Table 1
Patch test results. A star (⁄) indicates a non-zero magnitude of less than 10�11; strains
and stresses for all four elements were reported as exact when integer values, and
exact to at least eight decimal places when fractional.

u field u(1.6,1.4) E N=h

(1,0,1) (1,0⁄,1) (0,0⁄,0⁄) (0⁄,0⁄,0⁄)
(0,1,1) (0⁄,1,1) (0,0⁄,0⁄) (0⁄,0⁄,0⁄)
(x,0,1) (1.6,0⁄,1) (1.5,0⁄,0) (2000,1000,0)
(0,x,1) (0⁄,1.6,1) (0.5,0⁄,0.5) (666.7,333.3,333.3)
(y,0,1) (1.4,0⁄,1) (0,0.5,0.5) (333.3,666.7,333.3)
(0,y,1) (0⁄,1.4,1) (0,1.5,0⁄) (1000,2000,0⁄)

Fig. 2. Top row: hexagonal grids with he ¼ 0:5;0:25, and 0:0625 (hex2, hex4, and hex16)
(circle3, circle2, and circle1, left-to-right).
The lengthy formulas for the corresponding anisotropic pressure
vector were obtained by substituting the manufactured solution u
of Eq. (35) into Eqs. (1)–(5). This process was performed indepen-
dently of the point collocation code. The pressure vector formulas
were generated symbolically with the Python library SymPy (SymPy
Development Team, 2009) and inserted into the point collocation
model. The Dirichlet boundary conditions were satisfied by con-
straining perimeter node displacements in accordance with the
manufactured solution, Eq. (35).

To investigate the effects of discretization error, verification was
performed on two domains: a hexagon and a circle. The hexagonal
domain was ideally discretized with a structured, symmetrical
primary mesh of equilateral triangles to minimize discretization
error. The six points of the domain laid on the unit circle. The
unit-radius circular domain was discretized with asymmetrical,
unstructured grids—the same grids which will be used later in
the validation phase. Three grids from each domain are shown in
Fig. 2. All grids were created using the open source software Gmesh
(Geuzaine and Remacle, 2009), which contains a ‘‘refine by split-
ting’’ feature (elsewhere called ‘‘refine by quartering’’ (Knabner
and Angermann, 2003)) to easily perform structured refinement
with a grid ratio of two. For this study the representative element
size of a mesh, he, was calculated as the length of the side of an
equilateral triangle, where the area of the triangle was equal to
the mean element area. The error measures �u and �E were the
Euclidean norms of the displacement error vector and the strain er-
ror vector at the origin, respectively. The strain was recovered as
the mean of the strains of the surrounding triangular elements.
Both measures were normalized by the value of the exact solution.

The convergence study results are shown in Table 2 and Fig. 3.
The observed order of accuracy p converged to two for both
. Bottom row: the three finest circular grids used for both verification and validation



Table 2
Convergence study results. The hexagonal grids are labeled with the number of
elements from the origin to the vertex at ð1;0Þ. The circular grids are numbered
sequentially from fine to coarse.

Grid he log (he) log (�u) pu log (�E) pE

hex2 0.5 �0.30 �1.04 – �0.98 –
hex4 0.25 �0.60 �1.74 2.32 �1.75 2.56
hex8 0.125 �0.90 �2.36 2.07 �2.39 2.13
hex16 0.0625 �1.20 �2.97 2.02 �3.00 2.03
hex32 0.03125 �1.51 �3.57 2.00 �3.60 2.01
hex64 0.015625 �1.81 �4.17 2.00 �4.21 2.00

circle4 0.537 �0.27 �0.77 – �1.02 –
circle3 0.273 �0.56 �1.47 2.39 �2.93 6.50
circle2 0.137 �0.86 �2.10 2.10 �2.80 �0.42
circle1 0.069 �1.16 �2.72 2.05 �3.29 1.63
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displacement and strain in the hexagonal domain. The displace-
ment errors were slightly higher for the circular grids due to the
discretization error of the unstructured grid; however, the same
order of convergence was observed. The strain convergence in
the circular grid did not behave as neatly because the individual
strain vector components converged differently: E11 from above,
E12 from below, and E22 non-monotonically. Thus the vector norm
converged non-monotonically. The slope of a least-squares linear
fit of the four circular grids’ strain errors provided p ¼ 2:24, more
in line with the other convergence rates. Interestingly, the circular
grids produced more accurate strain predictions than the hexago-
nal grids despite the non-monotonic strain convergence behavior
and lower displacement accuracy.

The verification process has demonstrated that the model cor-
rectly and consistently solved the coded governing equations.
The method’s observed order of convergence of both displacement
and strain was two. Also, the circular grids introduced an accept-
ably small amount of discretization error and are therefore suitable
for use in the validation phase.
7. Validation

The point collocation model was validated against the exper-
imental and finite element model results in Stanford and Ifju
(2008). In that study, a latex rubber sheet was inflated from
below, and the displacement field was extracted by optically
Fig. 3. Convergence study. The triangle displays a reference slope of two. Dashed lines are hexagonal grid results and solid lines are circular mesh results. Grids hex2 and

circle4 from Table 2 are omitted.
tracking a random speckling pattern on the membrane surface.
Strains were calculated from the displacement field during
post-processing. A geometrically nonlinear finite element model
was compared to another finite element approximation by Small
and Nix (1992), then validated against the experimental data.

Two cases were selected for validation in this paper: one with
and the other without uniform prestress. In the case without
prestress, model predictions were compared directly to the
experimental data. The physical constants were outer radius
R ¼ 57:15 mm, thickness h ¼ 0:12 mm, modulus of elasticity
E ¼ 2 MPa, and Poisson ratio m ¼ 0:5.

In the prestressed case, a non-isotropic prestrain field precluded
use of the experimental results. The geometrically nonlinear finite
element model was therefore used as a benchmark for this study.
The FEM model was suitable as a benchmark because it was vali-
dated in Stanford and Ifju (2008) against the experimental data
for the same problem configuration (including geometry, boundary
conditions, material, and load type) and to much greater loads and
deformations. The physical constants for this case were
R ¼ 3:5 mm, h ¼ 1:0 lm, E ¼ 71:0 GPa, and m ¼ 0:345. Following
convention for the Hencky problem, the lateral deflection is nor-
malized as w=R, and the nondimensional pressure q normalizes
the inflation pressure as q ¼ pR=Eh.

Representative grid convergence results are shown in Table 3.
The format of the presentation comes from Celik et al. (2008),
which put forth useful guidelines to standardize the reporting of
CFD numerical study results. As explained earlier, all grid ratios
are equal to two. The symbol / represents the magnitude of the
field variable (displacement or strain). A subscript 1, 2, or 3 indi-
cates the results were obtained from the grid circle1, circle2, or cir-
cle3 respectively (see Table 2 and Fig. 3). The calculated order of
accuracy is p. The symbol /32

ext indicates the value was obtained
from Richardson extrapolation using grids 2 and 3. The approxi-
mate and extrapolated relative errors (magnitude percentage
change in / from one grid to the next finer) are shown as �a and
�ext .

The convergence study confirms that the grids were sufficiently
refined, as indicated by the convergence of the extrapolated values
/ext and the low relative errors �. The extrapolated values /21

ext were
taken as the model solution for the remaining discussions. The sec-
ond-order observed accuracy from the verification phase was
maintained for both displacement and strain within the range of
the model’s expected applicability. The order of convergence of



Table 3
Validation convergence study for displacement (w=R) and radial strain (Er) at the
origin.

Dep. variable / w=R w=R Er Er w=R

Prestress None None None None 250 MPa
q 0.024 0.048 0.048 0.083 0.0030

/3 (coarse mesh) 0.1748 0.2223 0.0339 0.0525 0.08005
/2 (medium) 0.1739 0.2212 0.0348 0.0541 0.07983
/1 (fine) 0.1737 0.2210 0.0350 0.0546 0.07978

p 2.00 1.96 2.04 1.98 2.05

/32
ext

0.1736 0.2209 0.0350 0.0547 0.07976

/21
ext

0.1736 0.2209 0.0350 0.0547 0.07976

�21
a 0.13% 0.12% 0.59% 0.76% 0.07%

�21
ext 0.04% 0.04% 0.19% 0.26% 0.02%

Fig. 5. Validation of the prestressed case by comparison to the FEM benchmark.
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w=R deteriorated to below one for large deformations (i.e., for
w=R J 0:4).

The point collocation model predictions are compared to the
experimental results in Fig. 4 and to the FEM model benchmark
in Fig. 5. Agreement is excellent with and without prestress up to
w=R � 0:25, beyond which the point collocation model begins to
underestimate the displacement. This behavior is in agreement
with the comparison of Mooney–Rivlin and Hookean material
models in Pujara and Lardner (1978), so the gradual loss of
accuracy beyond this point may be attributed to the onset of
hyperelastic effects. The nodal strain predictions continue to match
the experimental data beyond w=R � 0:45. Just as in the verifica-
tion phase, the strains are actually more accurate than the dis-
placements. Typically the directly-calculated derived variables
(strains and stresses) converge more slowly than the displace-
ments, though post-processing recovery procedures may improve
the accuracy (Zienkiewicz et al., 2005; Payen and Bathe, 2011).
The staggered mesh of this model uses constant-strain triangles,
so nodal strain values must be recovered by one of the gradient
recovery procedures. Simple averaging from neighboring elements
was sufficient to produce the excellent relative accuracy of strain
at the center node.

Validation against the experimental data has shown that the
model is accurate for displacements up to w=R � 0:25, at which
point a hyperelastic model would be more appropriate as dis-
cussed in Stanford and Ifju (2008).
Fig. 4. Validation with no prestress by
8. Conclusions

A membrane model intended for eventual use in dynamic aero-
elastic simulations was presented in this paper, and its performance
for membranes at static equilibrium was investigated. The model
effectively combines several unconventional formulations in
structural engineering, including a staggered grid with robust
low-order interpolation schemes, grouped nonlinear products as
degrees of freedom, and the point collocation method. Method
capabilities include variable thickness, follower forces, and arbi-
trary prestress. Rigorous verification demonstrated consistency,
and the observed order of convergence was two for both displace-
ment and strain. During validation with respect to a static circular
membrane (the Hencky problem), the point collocation model pre-
dictions agreed with experimental data and benchmark FEM code
until the region where hyperelastic response began to dominate.

The primary feature that distinguishes this approach is its sim-
plicity. Element integration is avoided entirely. The group formula-
tion permits the same treatment to all three axes, and the resulting
code is explicit and self-documenting. Overall, the framework of
the approach is highly modular and flexible. Any given step can
be performed by interchangeable subroutines. For example, the
comparison to experimental data.
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polygon interpolation technique could be replaced by least squares
or radial basis function routines without upsetting the remaining
code. The residual subroutine readily accepts different strain–
displacement or material models (including nonlinear models).

Evaluation of the method’s suitability for dynamic cases is in
progress. As for the scheme itself, further effort is necessary to
investigate the sensitivity of the solution to mesh geometry, in
particular through analytical a priori error estimates and
determination of the scheme’s order of accuracy. Application to
other systems such as hyperelastic membranes and thin plates also
offers opportunities for future work.
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