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Abstract Thin-walled structures are sensitive to vibrate under even very small disturbances. In

order to design a suitable controller for vibration suppression of thin-walled smart structures, an

electro-mechanically coupled finite element (FE) model of smart structures is developed based on

first-order shear deformation (FOSD) hypothesis. Considering the vibrations generated by various

disturbances, which include free and forced vibrations, a PID control is implemented to damp both

the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison.

The implemented control strategies are validated by a piezoelectric layered smart plate under var-

ious excitations.
ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
1. Introduction

Due to light-weight design, thin-walled structures are increas-

ingly applied in many fields of technology. Even though there
are many beneficial properties that can be derived, many neg-
ative effects, e.g. low damping and high vibration sensibility,

will be brought into the system as well.
One promising solution is to make the structure smart using

piezoelectrics, electrostrictives, magnetostrictives, etc., for
active vibration control. In order to avoid high costs of exper-
imental investigations, both theoretical models of smart struc-
tures and control strategies are necessary. The most accurate

models are derived based on 3-dimensional (3D) solid mechan-
ics, see e.g. Ref. 1–5 among others.

Due to small dimension of thickness, 1-dimensional (1D)

FE models based on Bernoulli beam theory6,7 and Timo-
shenko beam theory8,9, and 2-dimensional (2D) models based
on Kirchhoff–Love theory which is called classical theory10–12

and Reissner–Mindlin theory known as first-order shear defor-
mation (FOSD) theory, e.g. in Ref. 13–17 for linear FE models,
and Ref. 18–20 for nonlinear FE models, are much more effec-

tive, compared to 3D FE models. Shimpi and Patel21 presented
a model of two variable refined plate theory, which has a
strong similarity to the classical plate theory.

With the linear displacement distribution, FOSD hypothe-

sis is applicable for thin to moderate thick plates and shells. In
order to deal with thick structures, third-order shear deforma-
tion (TOSD) or higher-order shear deformation (HOSD)
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Fig. 1 Displacement distribution in thickness direction accord-

ing to the FOSD hypothesis.
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hypotheses have been firstly proposed by Reddy22 for compos-
ite structures. Later the theory was extended and developed by
Hanna and Leissa,23 Correia et al.,24 Moita et al.,25 Schmidt

and Vu26 for smart structures. Additionally, Vasques and
Rodrigues27 applied layerwise shear deformation theory,
while, Kapuria et al.28,29 developed third-order zigzag shear

deformation theory.
Concerning control method for vibration suppression of

smart structures, the majority of papers in the literature pre-

sented negative velocity feedback control using FE models
based on various hypotheses, e.g. classical plate theory,10,12,30,31

Timoshenko beam theory,8 FOSD hypothesis,14,32–35 TOSD
hypothesis,25 HOSD hypothesis,36 first-order zigzag hypothe-

sis37,38 and by using commercial software.39 In addition, Liu
et al.16 implemented the same control law but using a mesh-free
model based on the FOSD hypothesis. Furthermore, Kang

et al.31 implemented a negative velocity feedback control into
a real smart beam experimentally for vibration control. Apart
from negative velocity feedback control law, Narayanan and

Balamurugan,8 as well as Balamurugan and Narayanan32

implemented a Lyapunov feedback control for active vibration
control of smart structures based on the models obtained by the

FOSD hypothesis. Tzou and Chai6 applied bang-bang control
numerically based on Euler–Bernoulli beam theory, and they
also carried out the control schemes experimentally.

Optimal control laws are very popular in the simulation of

vibration suppression of smart structures. Numerous papers
can be found in the literature in which Linear Quadratic Regu-
lator (LQR) control with FE models were developed based on

e.g. classical plate/shell theory,31 Timoshenko beam theory,8

FOSD hypothesis,32,40 layerwise theory,38 3D solution41 and
others.42 Since LQR control is a full state feedback control,

all state variables have to be measured, which cannot be imple-
mented into real systems in most of the cases. Therefore, Linear
Quadratic Gaussian (LQG) control was implemented by Vas-

ques and Rodrigues36 numerically and by Dong et al.43 both
numerically and experimentally, in which the state variables
were estimated by using measured signals. Additionally, Stav-
roulakis et al.44 implemented LQR control and robust H2 con-

trol into the model derived based on Euler–Bernoulli beam
theory, and they compared the results with each other. Mari-
naki et al.9 developed a particle swarm optimization-based con-

troller for vibration suppression of beams. Moreover, Roy and
Chakraborty45 proposed a genetic algorithm-based LQR con-
trol for smart fiber reinforced polymer composite shell struc-

tures using the model derived by Bernoulli beam theory.
Some other advanced control schemes can also be found in

the literature. Chen and Shen,46 as well as Lin and Nien47 pre-
sented an independent modal space control for vibration sup-

pression of smart structures, while, Bhattacharya et al.48

proposed an independent modal space control-based LQR
control strategy for vibration control of laminated spherical

shell with different fiber orientation and varying radius of cur-
vature based on Reissner’s hypothesis. Furthermore, Manjun-
ath and Bandyopadhyay49 proposed a discrete sliding mode

control scheme with Timoshenko beam theory for the vibra-
tion control of smart flexible beams. A prediction control algo-
rithm was applied by Valliappan and Qi41 and a disturbance

rejection control was designed by Zhang et al.50 for vibration
control of piezoelectric patches bonded beams. In addition,
robust control has been considered by Li et al.,51 as well as
Marinova et al.52
From the literature cited above, most of them developed
simple mathematical models based on e.g. Euler–Bernoulli
beam theory, Timoshenko beam theory, classical plate theory

and FOSD theory used for control design. In those papers
which used FE models based on refined theories usually addi-
tional simplifications are introduced e.g. the neglect of strain

components which are distributed quadratically along the
thickness direction. One of the purposes of this paper is to con-
struct a FE model based on FOSD hypothesis without neglect-

ing any strain components. Secondly, the majority of
published papers only considered the free vibration case which
has no steady-state error. The most frequently used control
strategies, e.g. velocity feedback, LQR, etc., can damp the free

vibrations successfully. However, they cannot counteract the
steady-state error generated by a disturbance force. Therefore,
a PID control is developed and applied to counteract both the

free vibration and the steady-state error for the structure under
a disturbance force.

2. Dynamic FE model

In order to derive a dynamic FE model of a smart structure,
two coordinate systems are introduced, namely, the Cartesian

coordinate system represented by Xi(i = 1,2,3) as global coor-
dinates and the curvilinear coordinate system denoted by
hi(i = 1,2,3), which can be cylindrical, spherical or any other

coordinates, as shown in Fig. 1.
The left part of the figure shows the structure in the unde-

formed configuration, while the right part indicates the
deformed configuration. The quantities with over bar �� repre-

sent those in the deformed configuration. In the figure, u rep-
resents the displacement vector of an arbitrary point PV in the
shell space and u0 the displacement of an arbitrary point PX at

the mid-surface. Introducing a rotation vector u1 of the shell
director, which is defined as u1 ¼ �a3 � n, n is the base vector
in h3 direction in the undeformed configuration, and �a3 is the

base vector in the deformed configuration, one obtains the
expression of the displacement vector in the shell space based
on the FOSD hypothesis as

u ¼ u0 þ h3u
1 ð1Þ

with

u ¼
v1

v2

v3

264
375; u0 ¼

v01
v02

v03

264
375; u1 ¼

v11
v12
0

264
375 ð2Þ

Here, v1; v2; v3 denote the displacements in the shell space,
v01; v

0
2; v

0
3 are the translational displacements at the mid-surface,



Fig. 2 Nodal degrees of freedom.
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and v11; v
1
2 are the mid-surface rotational displacements, which

are called five parameters of the FOSD theory. In Eq. (1), h3

represents the distance between point PV and the mid-surface.
Furthermore, Eq. (1) can be expressed as

u ¼ Zu

u0

u1

� �
ð3Þ

where matrix Zu is composed of h3 (the details can be found in
Ref. 19).

Based on the predefined base vectors and the FOSD
hypothesis, the Green–Lagrange strain tensor of the in-plane
eab and the transverse shear ea3 components can be obtained

as (for more detailed information please refer to Ref. 19,20,53)

eab ¼ e0ab þ h3e1ab þ ðh3Þ2e2ab

ea3 ¼ e0a3

(
ð4Þ

For geometrically linear plate and shell theory the strain terms
in the above equations are

2e0ab ¼ u0
ab þ u0

ba

2e1ab ¼ v1ajb � bk
bu

0
ka þ v1bja � bd

au
0
db

2e2ab ¼ �b
k
bv

1
kja � bd

av
1
djb

2e0a3 ¼ v1a þ v03;a þ bd
av

0
d

8>>>>><>>>>>:
ð5Þ

with

u0
ka ¼ v0kja � bkav

0
3

vnkja ¼ vnk;a � Cd
kav

n
d

(
ð6Þ

Here bka and bk
a are the covariant and mixed components of the

curvature tensor, and Cd
ka represents the Christoffel symbols of

the second kind. Furthermore, ðÞja and ðÞ;a denote respectively
the covariant and spatial derivatives with respect to ha. The
Greek indices represent the numbers 1 or 2, the right super-

script n assumes 0 or 1.
Due to the assumption of small strains, linear piezoelectric

coupled constitutive equations are considered, which are given

by

r ¼ ce� eTE

D ¼ eeþ vE

�
ð7Þ

where e, r, E and D are the Green–Lagrange strain vector, the
second Piola–Kirchhoff stress vector, the electric field vector
and the electric displacement vector, respectively. Addition-
ally, c, e and v denote the elasticity matrix, the piezoelectric

constant matrix and the dielectric constant matrix, respec-
tively, in which e = dc. Concerning the details of all the matri-
ces, one could refer to Ref. 19.

In order to represent the five parameters, we introduce five
nodal degrees of freedom (DOFs) including three translational
DOFs (u, v, w) and two rotational DOFs (u1;u2), as displayed

in Fig. 2, where aa represents the covariant base vectors with
respect to ha.

Consequently, the strain vector can be expressed by element
nodal DOF vector q as

e ¼ Buq ð8Þ

in which Bu is the strain field matrix.
Since weak electric potential applied on piezoelectric mate-

rial is considered, the electric field is assumed to be constant

through the thickness direction, which can be expressed by
E ¼ �r/ ¼ B// ð9Þ

where r represents the gradient operator, B/ the electric field
matrix, and / the electric voltage vector on piezoelectric
patches.

In order to obtain the dynamic model, Hamilton’s principle
is employed, which is described as that the integral of virtual
energy over time t1 to t2 is equal to 0, given byZ t2

t1

ðdT� dWint þ dWextÞ dt ¼ 0 ð10Þ

Here d represents the variational operator; dT, dWint and dWext

denote the variation of the kinetic energy, the internal work

and the external work and are expressed as

dT ¼ �
R
V

qduT€u dt

dWint ¼
R
V
ðdeTr� dETDÞ dV

dWext ¼
R
V

duTfb dVþ
R

X duTfs dXþ duTfc

8><>: ð11Þ

where fb, fs and fc are the vectors of body, surface and concen-
trated force, and X, V represent the mid-surface area and vol-
ume space. Substituting Eq. (11) into Eq. (10) and considering

the linear strain–displacement relations, one obtains a linear
electro-mechanically coupled dynamic FE model, including
the equation of motion and the sensor equation, which are

given as50

Muu€qþ Cuu _qþ Kuuqþ Ku//a ¼ Fue

K/uqþ K///s ¼ 0

�
ð12Þ

HereMuu, Cuu, Kuu, Ku/, K/u and K// denote the mass matrix,
the damping matrix, the stiffness matrix, the piezoelectric cou-

pled matrix, the coupled capacity matrix and the piezoelectric
capacity matrix, respectively. Furthermore, Fue, q, /a and /s

are the external force vector, the nodal displacement vector,

the actuation voltage vector and the sensor voltage vector,
respectively. In Eq. (12), _� and €� represent the first and sec-
ond time derivatives. The above system matrices and vectors
are calculated by

Muu ¼
R
V

qNT
vZ

T
uZuNv dV

Kuu ¼
R
V
BT

ucBudV

Ku/ ¼ KT
u/ ¼ �

R
V
BT

u e
TB/ dV

K// ¼ �
R
V
BT

/vB/dV

Fue ¼
R
V
NT

vZ
T
u fbdVþ

R
X NT

vZ
T
u fs dX

þNT
vZ

T
u fc

8>>>>>>>>>><>>>>>>>>>>:
ð13Þ

where q is the density, Nv the shape function matrix, Bu the
strain field matrix and B/ the electric field matrix. The damp-
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ing matrix Cuu is calculated using Rayleigh damping coeffi-

cients, computation method, which is linear with respect to
mass and stiffness matrices.

3. State space expression

Due to large number of DOFs of the dynamic FE model, a
truncated modal matrix54 Sr including the first r modes is

introduced to decompose and reduce the model to avoid high
costs of computation time. Therefore, the nodal displacement
vector q can be transferred to a modal displacement vector zr
with small number of DOFs as

q ¼ Srzr ð14Þ

Substituting Eq. (14) into Eq. (12) and left-multiplying it by
the transposed modal matrix, one obtains the decomposed
and reduced equation of motion asfMuu€zr þ eCuu _zr þ eKuuzr ¼ ST

r Fue � ST
r Ku//a ð15Þ

where fMuu, eCuu and eKuu are the modal mass, damping and
stiffness matrices, respectively, which are diagonal. Again
using Eq. (14), the sensor equation given in Eq. (12) can be

expressed by modal coordinates as

/s ¼ �K�1//K/uSrzr ð16Þ

Defining the state vector x(t), the measured output vector y(t)
and the control input vector u(t) as

x ¼
zr

_zr

� �
; y ¼ /s; u ¼ /a ð17Þ

and the dynamic FE model of the smart structure can be
expressed in state space form as

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ

�
ð18Þ

where A, B and C denote the system matrix, the control matrix

and the system output matrix, respectively. They can be
obtained as

A ¼
0 I

�fM�1
uu
eKuu �fM�1

uu
eCuu

� �
B ¼

0

�fM�1
uuS

T
r Ku/

� �
C ¼ �K�1//K/uSr 0

h i

8>>>>>>><>>>>>>>:
ð19Þ
4. PID control algorithm

PID control can be realized by applying the proportional, inte-
gral and derivative of the output error e(t) on actuators, as
shown in Fig. 3.
Fig. 3 Sketch of PID feedback control system.
In Fig. 3, we define r(t), y(t), e(t), and u(t) as the reference
signal, the measured output, the output error, and the system
input (or manipulated variable), respectively. Additionally, the

output error is defined as

eðtÞ ¼ rðtÞ � yðtÞ ð20Þ

According to the strategy of PID control, the control input
vector can be defined as a summation of proportional, integral

and derivative of output error as

uðtÞ ¼ KpeðtÞ þ Ki

Z t

0

eðsÞ dsþ Kd

deðtÞ
dt

ð21Þ

Here, Kp, Ki and Kd denote the proportional gain, integral gain
and derivative gain, respectively. If only Kd is non-zero and
other two gains are zero, the PID control will be reduced to
D control. D control with respect to sensor voltage or displace-

ment is equivalent to velocity feedback control, which has been
implemented by many researchers. Analogously, neglecting the
integral part leads to a PD control law, which considers

steady-state error.
In the application of vibration suppression, we need the

measured output signal to be zero, meaning that the reference

signal is zero here. Therefore, Eq. (20) becomes

eðtÞ ¼ �yðtÞ ¼ �CxðtÞ ð22Þ

In order to derive the closed-loop system with PID control
integrated, a new state variable has to be introduced, which

is defined as

f ðtÞ ¼
Z t

0

yðsÞds ð23Þ

Taking the time derivative on both sides yields

_f ðtÞ ¼ yðtÞ ð24Þ

Further substituting Eqs. (22)–(23) into Eq. (21) yields

u ¼ �KpCx� Ki f� KdC _x ð25Þ

Extending the state variables to

ex ¼ x

f

� �
ð26Þ

the closed-loop state space equations with PID controller can
be obtained in terms of the extended state variables as

_~x ¼
eA11

eA12

C 0

" #
~x ¼ eA~x

y ¼ ½C 0 �~x

8><>: ð27Þ

with

eA11 ¼ ðIþ BKdCÞ�1ðA� BKpCÞeA12 ¼ ðIþ BKdCÞ�1ð�BKiÞ

(
ð28Þ

The plant system input signal which is also the output of the

PID controller can be calculated by

u ¼ ðIþ BKdCÞ�1½ �ðKpCþ KdCAÞ �Ki �~x ð29Þ
5. LQR optimization method

LQR optimal control, which is a full state feedback control, is

briefly introduced for comparison with PID control. An



Table 1 The first five eigenfrequencies of piezolaminated
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optimized control gain can be obtained by minimizing the fol-
lowing cost function given as

JLQR ¼
Z 1

0

ðyðtÞTQyðtÞ þ uðtÞRuðtÞÞ dt ð30Þ

Here, Q and R are the weighting matrices for the system out-
put and the system input vectors, respectively, which are sym-

metric positive definite matrices. The weighting matrices can
be approximated by Bryson’s rule as

Qii ¼
1

maxðjyij
2Þ

and Rii ¼
1

maxðjuij2Þ
ð31Þ

If all the state variables are measured, the control input can
be designed as

u ¼ �Kx ð32Þ

with

K ¼ R�1r BTP ð33Þ

Here, the symmetric positive definite matrix P is the solution of
the following algebraic Riccati equation as

ATPþ PAþQr � PBR�1r BTP ¼ 0 ð34Þ

with

Qr ¼ CTQC and Rr ¼ R ð35Þ

Substituting Eq. (32) into the state space model in Eq. (18)
yields the closed-loop system with consideration of LQR con-

troller as

_x ¼ ðA� BKÞx
y ¼ Cx

�
ð36Þ
plate.

Mode Eigenfrequency (Hz) Discrepancy (%)

Lam et al.55 Present

1 21.4657 21.5083 0.20

2 63.3491 63.2409 0.17

3 130.8221 129.9076 0.79

4 182.4224 183.4276 0.55

5 218.2750 217.8606 0.19

Table 2 PID control parameters.

Control type Kp Ki Kd

D control 0 0 0.01

PD control 2 0 0.01
6. Active control simulation

6.1. Piezolaminated composite plate

The example for control simulation of smart structures is a
cantilevered PZT layered composite plate proposed by Lam

et al.,55 which is shown in Fig. 4.
The cantilevered piezolaminated composite plate consists of

one composite master layer, on which two PZT layers with
opposite polarizations pointing outward are bonded at the top

and bottom surfaces. The host structure is made of T300/976
graphite-epoxy composite material with four substrate layers,
the stacking sequence of which is antisymmetric angle-ply

[�45/45/�45/45]. The length and width of the composite struc-
ture are both 200 mm. The total thickness of the master layer is
1 mm with the thickness of 0.25 mm for each substrate, and the
Fig. 4 Piezolaminated composite plate.
thickness of each PZT layer is 0.1 mm. The material
properties of T300/976 composite material are E1 = 150 GPa,
E2 = 9 GPa, G12 = G13 = 7.1 GPa, G23 = 2.5 GPa, m = 0.3,

q = 1600 kg/m3, and those for PZT layers are E = 63 GPa,
m = 0.3, q = 7600 kg/m3, d31 = d32 = �2.54 · 10�12C/N,
v33 = 1.5 · 10�8F/m. The smart plate is meshed with 5 · 5 ele-

ments. The damping matrix is obtained by Rayleigh damping
coefficient computation method in consideration of the damp-
ing ratio of 0.8% for the first six modes.

In order to validate the present dynamic FE model, the first
five eigenfrequencies of the plate are calculated (see Table 1),
which implies good agreement with that reported in Ref. 55

6.2. Control parameters

Due to the large size of the present FE model, the dynamic
model is reduced to retain only the first 12 modes for control

simulation. The upper PZT layer acts as a sensor, while the
lower one acts as an actuator. The control parameters of
PID and LQR control strategies are given in Tables 2 and 3.

The parameters for LQR control (Case 1) are tuned in order
to get the similar vibration effect with D control, and those
for the Case 2 are chosen to keep the same maximum control

voltage with that obtained from PID control of Case 3. Using
these parameters of LQR and PID control, several cases are
simulated, including free vibrations and forced vibrations
under various excitation forces.
PID control, Case 1 2 100 0.01

PID control, Case 2 2 100 0.03

PID control, Case 3 2 400 0.03

Table 3 LQR control parameters.

Control type Q R

LQR control, Case 1 1/52 1/8.52

LQR control, Case 2 1/52 1/702
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6.3. Free vibrations

In the first vibration control simulation, the proposed control
strategies are applied to free plate vibrations starting from an
initial configuration generated by a uniformly distributed pres-

sure of 100 Pa. The sensor signals and the control input signals
are presented in Fig. 5(a) and (b), respectively.

From the results, it can be seen that D control and LQR
control of case 1, which will generate similar control input sig-

nals, perform similarly on vibration suppression. Adding pro-
portional or proportional-integral effects leads to worse
control results using the same derivative gain. This is because

free vibrations have no steady-state error. Therefore, the pro-
portional or integral part has no contribution to vibration sup-
pression. In contrast, it will deteriorate the dynamic behavior.
Fig. 5 Dynamic responses of free plate vibra

Fig. 6 Dynamic responses of plate by LQR, D

Fig. 7 Dynamic responses of plate by LQR an
6.4. Step excitation

The second simulation considers the plate excited by a step force
1 N at point A starting from 0.1 s. The uncontrolled/controlled
vibrations and the actuation voltage signals are given in Figs. 6

and 7.
From Fig. 6, one can see that D control only damps the free

vibration part without counteracting the forced vibration.Anal-
ogously, LQR control of case 1 performs similarly to D control,

but it will counteract slightly the forced vibration part. Adding
the control action of the proportional of steady-state error leads
to a PD control, which can counteract the steady-state error.

However, PD control cannot completely cancel the steady-state
error. Further adding the integral part, the resulting PID control
will completely compensate the steady state error in a certain
tions damped by various control strategies.

and PD control under a step force excitation.

d PID control under a step force excitation.



Fig. 8 Dynamic response of plate by LQR and PID control under a harmonic and random force excitations.
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period, as shown in Fig. 7. Since the integral control action will
increase the overshoot, the free vibration suppressed by PID
control of case 1 becomes worse than that byD control. Increas-

ing Kd (PID control of Case 2) will lead to small amplitudes of
the free vibration signal due to large control action. To get a fast
suppression of vibration in a short period, one can increase Ki,

for example from 100 to 400, leading to PID control of case 3.
However, even though the maximum control voltage of LQR
control reaches as large as that generated by PID of case 3, there

still exists steady-state error(see Fig. 7).
6.5. Harmonic excitation

In this application, a harmonic periodical force is considered

to excite the plate at point A, generated by the function
f(t) = cos(2pt) N. The dynamic response and control input sig-
nals are respectively displayed in Fig. 8(a) and (b). The figure

illustrates that the vibrations suppressed by PID control of
Case 3 have the smallest amplitude among other controllers.
PID control of Case 1 and Case 2 performs similarly and the

latter one has smaller amplitudes of free vibration. The ampli-
tudes of vibrations suppressed by PID control of Case 3 are
smaller than those by LQR control, even though they have

similar maximum control voltage appearing in the beginning.

6.6. Random excitation

In the last simulation, a random excitation signal is considered.

The results are shown in Fig. 8(c) and (d). Similar control
effects like the previous simulations can be observed. The
PID control of Case 3 produces the best results compared to

other control strategies. PID control of Case 1 and Case 2
are quite similar, both of which suppress the vibration simi-
larly with LQR control of Case 2.
7. Conclusions

(1) D control only counteracts the free vibrations, but has
no effect on the steady-state error.

(2) The proportional and integral part will counteract the

steady-state error, but have a negative effect on free
vibration suppression.

(3) For the forced vibrations, in which both the dynamic

and steady-state error exist, PID control gives the best
results compared to LQR, D and PD control.
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