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Abstract 

This paper deals with the problem of scheduling n jobs on m machines in order to minimize 
the maximum completion time or mean flow time of jobs. We extend the results obtained in 
Sotskov (1989, 1990, 1991) on the complexity of shop-scheduling problems with n = 3. The 
main result of this paper is an NP-hardness proof for scheduling 3 jobs on 3 machines, whether 
preemptions of operations are allowed or forbidden. 

Keywords: Combinatorial optimization; NP-hard problem; Optimal makespan schedule; Opti- 
mal mean flow time schedule; Job-shop; Flow-shop; Open-shop 

1. Introduction 

Let us consider the following scheduling problem. There is a set J = {J1, . . . . Jn} of 

n jobs that are to be processed on a machine set M = {Ml, . . . , M,}. At any time each 
machine M, E M can process at most one job Ji E J, and each job can be processed on 
at most one machine. Each job Ji E J consists of a sequence of ni operations, routes 
(machine orders) 1’ = (II, . . . , $), where M,; E M and 1 d q < ni, being given in advance 
(in flow-shop and job-shop) or may be arbitrary (in open-shop). Every operation (i, q) 

of job Ji E J on machine M:, 1 < q < tIi, requires given processing time (duration) 
ti, 2 0. If schedule s = s(t) 1s a nonpreemptive one, it is defined by starting times 
Jiq(S) 2 0 or by completion times ii,(s) 2 0 of all the operations (i, q). In this case 
,?i,(s) = tiq(S) + tiq, Ji E J, 1 < q < ni. Let pi mean completion time ofjob J< E J with 
schedule S, i.e. f<(s) = fini( 

Our terminology follows the classification of scheduling problems used in [lo, 111. 

When I’= (1 , . . . , m) for all jobs Ji E J, i.e., the routes are identical, we have a flow-shop 
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problem, indicated by n 1 m 1 F I@. When ni and I’ may vary per job we have a job-shop 
problem n 1 m I J I @. When the order of the machines in I’ is not fixed for any job Ji E J 
we have an open-shop problem n 1 m ( 0 I @. The parameter @ denotes an optimality 
criterion of a schedule. If @ = C,,,, the problem is to find a schedule s* = s*(t) of 
n jobs minimizing the maximum (total) completion time: 

Cmax(S*) = maX{fi(S*)IJiEJ}. 

If Cp = C Ci, the problem is to find a schedule s* = s*(t) of n jobs minimizing the mean 
flow time: 

We shall indicate the preemption allowance by a parameter Pr. For example, 

nlmlJ, PrIGax. The condition tiq > 0 indicates that processing times are strictly 
postive. 

There are many efficient algorithms and complexity results for the different cases of 
scheduling problems under the usual assumption n > m (see [S, 8-11,191). The 
purpose of this paper is to improve the results obtained in [14-161 on the study of the 
complexity of shop-scheduling problems with fixed number of jobs when n < m. 

In Section 2 we prove that the problems 3 13 1 J) C,,,, 3 ) 3 I J, Pr I C,,,, 3 13 I J 11 Ci 
and 3 13 IJ, Pr lCCi are NP-hard. In Section 3 the same results are obtained 
for jImIF, PrIGax, 3lmlF, PrlCCi, 3 I m I F, Pr, 4, > 0 I Cm,,, and 
3 I m I F, Pr, tiq > 0 11 Ci problems. The proof of 3 I 3 I J 1 C,,, problem NP-hardness is 
rather complicated, and we tend to present it in detail. The other results presented are 
based on negligible modifications of the polynomial reduction of the PARTITION 
problem to the problem 3 13 I J I C,,,. 

The complexity of n I m I 0 I C,,, and n I m IO I C Ci problems is discussed in Section 4. 
A brief survey of known and new results on the complexity of scheduling a fixed 
number of jobs is given in Section 5. 

2. Job-shop 

We shall use the NP-complete PARTITION problem in the following form [6]. Let 
theorderedset.4 = {l,..., 2~) be given. A strictly positive integer ei is connected with 
each element i E A, 1 i E A ei = 2E. If 4 c A, then Ek = C i E Ax ei. The question is, does 
there exist a partition of A into subsets A, and AZ such that El = E2 and set A1 
includes exactly one element from each pair 2i - 1, 2i where 1 9 i Q a. 

If such subsets A1 and AZ exist, we shall say that the PARTITION problem has 
a solution. Without loss of generality, we shall consider nontrivial PARTITION 
problems with ezi_ 1 # e2i for every i, 1 < i f a. Moreover, we assume that ezi- 1 > e2i 

for each pair 2i - 1, 2i, where 1 d i 6 a. 
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Theorem 1. The 3 ( 3 1 J 1 C,,, problem is NP-hard. 

Proof. We shall reduce polynomially the PARTITION problem to the following 
decision problem: Does there exist a shedule so = so(t) for the 3 13 1 J ) C,,, problem 
such that Cmax(so) < y for a given integer y. 

We construct the following 3 13 I J I C,,, instance. Let H be an integer, H > 8E. We 
set y = 6aH + E, 1’ = ([3,2,3,1,3,3]“), I2 = (Cl, 2,2,1-J”) and l3 = ([i, 2,3,2]“). Here 
and in what follows, [czlk indicates the sequence of k repetitions of the expression ~1, 
e.g., [1,2]’ means 1,2,1,2. If k = 0, then [M]” = 0 for any a. We set the processing 
times to be equal to the following values: 

k-l k-l 

t 1,6k+l = CA 20+1.20+2> t 1,6k+2 - - H - 2 1 Azv+1,2v+z, 

u=-1 u=-1 

k-l 

t 1, 6k+3 - -H+ c A 2u+l,2u+Z + eZk+Z? tl, 6k+4 = Azk+l, 2k+2, 
v=-1 

t 1,6k+S = 21.f - Azk+l,zk+z, tl,6k+6 = 2H, tz, 4k+ 1 = H, 

t 2.4k+2 = 2H, t2.4k-b3 = 2H, t2,4k+4 = H, t3,4k+l = eZk+l, 

t3,4k+2 = eZk+Z, t3,4k+3 = Azk+l.Zk+Z, t - H, 3. 4k+4 - 

where Aj,j+l = ej - ej+l, A-l.0 = 0, and k = 0, . . ..a - 1. It should be noted that 

ti, I = I;:-lA2,+1,2v+2 = A- l, o = 0 and so the route 1’ can be represented as 
1’ = (2,3,1,3,3, [3,2,3,1,3,3]“_‘). 

This313IJ(C,,, instance will be further referred to as Instance 1. Let us show that: 
a schedule so with Cmax(so) < y exists for Instance 1 ifs the PARTITION problem has 
a solution. 

SufJiciency. Since C,,, is a regular criterion we may consider only active schedules 
[S]. If the machine Ml E A4 processes operation (i, q) before the opertion (i’, q’), we 
shall denote it by (i, q) + (2, q’), and moreover, if the machine Ml processes opera- 
tion (i, q) directly before (i’, q’) (i.e., there is no operation (i”, q”) being processed 
after (i, q) and before (i’, q’)), we shall denote it by (i, q) =S (i’, q’). 

Suppose that the PARTITION problem has a solution: A = Al u A,, El = E2. 
It is easy to construct a no-wait active schedule s’ of jobs J1 and J2 with 

Cm&‘) = 6aH + cz= 1 eZk. Such schedule S’ for a = 2 is shown in Fig. 1. So for 
any schedule s of jobs Jl, J2, and J3 the following lower bound is valid: 

Cmax(S) 2 6aH + Ii=1 e2k. Let us construct the schedule so with the following job 
completion times ~I((s’) = 6aH + CiEA2ei = 6aH + Ez, f2(s”) = f3(s”) = 6aH 
+ CieA, ei = 6aH + El and with the following total completion time Cmax(so) = y. 

Recall that set Al includes exactly one element from the pair {1,2}. If 1 E AI and 
2 E AZ, then the initial part of the active schedule so formed by operation set 

No={(l,a)la=l ,..., 6}~((2,/3)Ifi=l,..., 4)u{(3,y)(y=l,..., 4) 
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Fig. 1. No-wait schedule of jobs .I1 and Jz for a = 2. 

H+ml 2H+e2 2H+- SH+. 6H+e 
1 1 1 

Fig. 2. Initial part of schedule so for 1 E Al and 2 E AZ 

can be uniquely defined by the following conditions: 

(391) * (2,1>, ~1~2) - ~3~2)~ 

(193) * <3,3), (273) * (37 4) (1) 

(see Fig. 2). It is easy to make sure that within closed interval [0,6H] job Jz is 

processed with a delay S; equal to e, and job J1 is processed without delay: Sy = 0. 
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% , 2 

I 0 1 I I I b t 
H 2H+3 4H+92 4M-b~ 

H+-1 2H+r2 8H+e2 6H+r2 6H++ 
1 

Fig. 3. Initial part of schedule so for 2 E AI and 1 E Az 

Obviously, the following equalities are true: 

flAsO) = : r i, a + S? = 6H + e2, 
Ir=l 

f2, &O) = i t2, B + Sg = 6H + el and f~, Aso) = k Aso) 
p=1 

due to the relation (2,3) + (3,4) and equalities t2, 4 = t3, 4 = H. 

If 2 E A1 and 1 E AZ, let us build the initial part of the active schedule so under the 
conditions 

(2,1> - (3,1>, (222) * (3,2), 

(135) * (3,3), (293) * (394) (2) 

(see Fig. 3). In this case there is a job Ji delay Sy equal to A1,2 and a job J2 delay 
Sq equal to e2. Thus, fi, &so) = C8=, tl,, + 8: = 6H + ez + A,, z = 6H + e,, 

f2, ‘ho) = c;= 1 t2,p + 6; = 6H + e2 and t;, &‘) = fz2, &‘) due to (2,3) * (3,4) 
and t2, 4 = t3, 4 = H. It will be shown later, that conditions (1) (and conditions (2) also) 
really specify a part of feasible schedule. 

Consider the next part of schedule so formed by operation set 
N,={(l,cr)la=7 ,..., 12}~{(2,/?)1/?=5 ,..., S}u{(3,y)~y=5 ,..., S}. 

If 3 E A1 and 4 E AZ, let machine set M process operations Ni in a sequence similar 
to that in Fig. 2, namely, 

(3,5) * (2,5>, (1,8)*(3,6X 

(1,9> * (3,7), (237) * (328). (3) 
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0 

H+ei 2H+r2 2H+r 6H+r 
1 I 

6H+rn1 7H+e2*,2 2H+r,+g 

Fig. 4. Part of schedule so for 1 E A,, 3 E A,, 2 E A2 and 4 E A,. 

In this case job Jr is processed without delay (8: = 0), and there is a job J2 delay 
8: = e3 within closed interval [6H, 12H]. Thus, 

12 

fl, 12(S0) = fl, r&O) + 1 Cl, d + s: 
a=7 

(6H + ez) + (6H + e4) = 12H + e2 + e4 if 1 E Ai, 2 E A2, = 

(6H + el) + (6H + e4) = 12H + e, + e4 if 2 E Ai, 1 E A,; 

(6H + er) + (6H + e3) = 12H + e, + e3 if 1 E Ai, 2 E A2, = 

i (6H + e2) + (6H + e3) = 12H + e2 + e3 if 2 E Ai, 1 E AZ; 

and f3, .&O) = fz2, &‘) due to (2,7) * (3,s) and equalities t2, s = t3, 8 = If. The parts 
of schedule so for operation sets No and Nr are represented in Fig. 4 (for 1 E Al, 2 E A2) 
and in Fig. 5 (for 2 E Al, 1 E A,). 

If 4 E Ai and 3 E A2, then machine set A4 processes operations N1 according with 
the order like in Fig. 3: 

(295) * <3,5), (296) * (3,6X 

(1,11)*<3,7), ~2~7) + (3,s); (4) 

and there is a job J1 delay 8: = A3, 4 and a job J2 delay S: = e4 within closed interval 
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d2 

@Jl 

t 
I 0 I 1 I + 

H 2H+3 4H+r 
2 

H+ea 2H+r2 3H+r2 6W+r2 

L:++ ..I+,+4 Im:+.~+.*Ihln+m2+.2 

6H+-17H+-l-Ahl . 2VW+r2+m2 12H 1 .a+.* 

Fig. 5. Part of schedule so for 2~ Al, 3~ A,, 1 E A2 and 4~ AZ, 

[6H, 12H]. Thus, we have 

t;, I&O) = t;, &O) + : t1, L1 + 8: 

= (6H+ez)+(6H+e4)+d,,,=12H+e,+e, if l~Ar,2~&, 

(6H+e1)+(6H+e4)+d,,,=12H+e,+e, if 2~Ar,l~_&; 

t;,8(S0) = t;.4b0) + 5 t2,p + 6: 
j3=5 

(6H+e,)+(6H+eB)=12H+e,+e4 if l~Ar,2~,4~, 

= (6H+e2)+(6H+e,&= 12H+e2+e4 if ~EA,,IEA~; 

and t;, *(so) = t;, s(s’) due to (2,7) Z- (3,8) and t2, s = t3, 8 = H. The corresponding 
parts of schedule so for operation sets No and Nr are represented in Figs. 6 and 7. 

Let us show that each set ofconditions (l), (2), (3), or (4) uniquely specijies a part ofan 
active schedule, i.e., no machine processes two or three operations simultaneously if 
only conditions (i) hold, i E { 1,2,3,4). 

Machine Ml processing operation sets Nk, k E (0, l}. The precedence constraint 
(2,4k + 1) 3 (3,4k + 1) or (3,4k + 1) * (2,4k + 1) with k E (0, l} is given. This 
implies that the operations (2,4k + 1) and (3,4k + 1) never conflict. 

We now show that operations (2, l), (3, l), and (1,4) never conflict, as well 
operations (2,5), (3,5), and (1,10) never conflict. 
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<B#’ ~3 z:)ca aa 
.: 

da .: P b b 
l 1 -2 *1.2 

Ji 

t. 
I 

0’ ’ I I I 

‘1 I4 2H+3 
I l 

W4+m2 6l4+= 
' 'H+.,+L, 
2 Isu+~2+r~12"+L2+~, 

H+mz 2~+-~ au+= WI+* 6H+r mi+m2+.* vHm.l+ro 
I 

1 1 1 12H+r1+9 

Fig. 6. Part of schedule so for 1 f A,, 4~ Al, 2~ A, and 3 E A, 

d2 
H 2H n H en H 

<x.7> 

Fig. 7. Part of schedule 8’ for 2 E AI, 4 E A,, 1 E A2 and 3 E AZ. 

The inequality max {t;, I(~‘), t;, ,(s”)} < tI, 4(s”) is true since 

!I,&~) = tl, I + tl, z + tl, 3 = 2H + e2, 

mW2, l(so), f3, l(so)> = t2, 1 + t3, 1 = H + el, 

and so 

!I,&~) - max{t;, I(s”), t;, I(so)> = (2H + e2) - (H + el) 

= H + e2 - e, > 8E + e2 - el > 0. 
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Similarly, the inequality max{fi, =,(s’), t;, ,(s”)} < tr, ro(so) is true since 

tl, lO(s') = f1,6(sO) + @1,7 + l1,8 + h,9) 

>, (6H + min{e,,e*}) + (2H + e4) 

= 8H + e, + e4, 

max{t;, a, G, &“)> = f2, 4(s") + (t2, 5 + t3,5) 

< (6H + max{eI,e2}) + (H + e3) 

= 7H + el + e3, 

and so 

il, ro(so) - max(C2, s(s”), C3, s(s”)] > H + e2 + e4 - el - e3 

>8E+.e,+.e,-el-e,>O. 

As far as t;, 4(s”) = t;, 4(s”) the relation (2,4) + (3,5) is true in the case of order (3) 
or relation (2,4) 3 (2,5) is true in the case of order (4). 

The inequality II, 4(s”) d t2, 4(s”) is true since 

t;,4(so) = tl, 1 + tl, 2 f tl, 3 + tl, 4 = 2H + e2 + dl, 2 = 2H + el, 

t2, 4(s”) = t2, 1 + t2, 2 + t2, 3 + Si >, 5H + e2 

and 

12, 4(s”) - fl, 4(s”) 2 (5H + e2) - (2H + el) 

= 3H + e2 - e, 

> 24E + e2 - el > 0. 

The inequality fl, lo(so) < t2, s(s”) is true since 

fl,lo(sO) = G,6(S0) + (t 1, 7 + t1.8 + tl,9 + tl, 10) 

6(6H+max{eI,e2))+(2H+e4+d3,4) 

= 8H + e, + e3, 

!2,8(so) = t;.4(so) + (t 2,5 + t2.6 + t2,7 + &) 

3 (6H + min(el, e2>) + (5H + min{e3,e4j) = 11H + e2 + e4 

and 

!2, 8(s") - fl, lo@') > (11H + e2 + e4) - (8H + el + e3) 

= 3H + e2 + e4 - el - e3 > 24E + e2 + e4 - er - e3 > 0. 

Machine M2 processing operation sets Nk, k E (0, 11. The precedence constraint 
(2,4k + 3) = (3,4k + 4) with k E (0, l} is given for orders (1) (2), (3), and (4). 

The inequality t;, 4(s”) d 2 1, s(s”) is true since 

f3, 4(s") = f2, 4(s") d 6H + max{el, e2} = 6H + el 
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and 

t1, ho) = t;, 6(S0) + t l,7~(6~+min(el,e2})+~l,2 

=6H+e2+~,,2=6H+e,. 

If conditions (1) take place for k = 0, then the precedence constraint (1,2) * (3,2) 
is given and the inequality C,, 2(s”) < t2, 2(s”) is true since 

&, 2(s0) = fl, 2(s”) + t3, 2 = H + e, 

and 

62, 2(s”) = t3, I + t2,,1 = H + el. 

Similarly if the conditions (3) take place for k = 1, then the precedence constraint 
(1,8) * (3,6) is given and the inequality t;, 6(s”) < i2, &‘) is true since 

t;. 6(S0) = fl, dso) + t3, 6 

= t;, 6(so) + (h, 7 -t tl, 8) + t3, 6 

< (6H + max{el,e2)) + (H - d,,2) + e4 

=7H+el-A1,2+e4 

= 7H + e2 + e4, 

t2, 6b”) = f2, 4(s0) + (t3.5 + t2.5) 

2 (6H + min{el, e2>) + (e3 + H) 

= 7H + e2 + e3, 

t2, .5(s”) - t;, 6(s”) 2 (7H + e2 + e3) - (7H + e2 + e4) 

= e3 - e4 > 0. 

If the conditions (2) take place for k = 0, then the inequality fi, 2(s”) < t2, 2(s”) is 
true since fl, 2(s”) = H = t2, 2(s”), the precedence constraint (2,2) =z. (3,2) is given 
and the constraint (3,2) 3 (2,3) follows from (2,2) 3 (3,2), (2,2) + (2,3), 
(2,3) => (3,4), (3,2) + (3,4), and it is guaranteed by ~52 = t3, 2 = e2. 

Similarly, if the conditions (4) take place for k = 1, then the inequality 
fi, s(s’) < 22, 6(s”) is true since 

fl, *(so) = fl, 6(so) + @I, 7 + tl, 8) 

f (6H -t- max{el, e2}) + (H - Al, 2) 

=7H-tel-A1,2=7H+e2 

and 

J2, 6(s”) = Lz, 4(s”) + f2. 5 2 (6H -t- min(el, e2}) + H = 7H + e2, 
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the precedence constraint (2,6) =P (3,6) is given and the constraint (3,6) S- (2,7) 
follows from (2,6) S- (3,6), (2,6) + (2,7), (2,7) =S (3, S), (3,6) + (3,8), and it is 
guaranteed by S: = t3, 6 = e4. 

Machine M3 processing operation sets Nk, k E (0, l}. If the conditions (1) take place 
for k = 0 or conditions (3) take place for k = 1, then the precedence constraint 
(1,6k + 3) + (3,4k + 3) is given and the inequality t -~,~~+3(sO) G tl. 6k+5(~o) is true 

since f3,4k+3(S”)=fl,6k+3bo)+ t3,4k+3 =fl,6k+3b0) + ~l,6k+4=~1.6k+5(~“)~ 

If conditions (2) take place for k = 0 or conditions (4) take place for k = 1, then 
the precedence constraint (1,6k + 5) =a (3,4k + 3) is given and the constraint 
(3,4k + 3) a (1,6k + 6) is fulfilled due to the delay 8: = dZk+l, 2k+Z = t3,4k+3. 

We can continue similarly for sets N2, N3, etc. up to set N,_ 1: If (2k + 1) E Al, 
(2k+2)dz,kE{2,..., a - l}, then machine set M processes the operation set Nk = 

{(1,6k+rx)la= l,..., 6}~((2,4k+B)I~=l,..., 4}~{(3,4k+y)ly=l,..., 4) 
similar to the order shown in Fig. 2, namely, 

(3,4k + 1) * (2,4k + l), (1,6k + 2) j (3,4k + 2), 

(1,6k + 3) * (3,4k + 3), (2,4k + 3) * (3,4k + 4). (5) 

In this case there is no job J1 delay (6: = 0) and there is a job Jz delay Sk, = eZk + 1 
within closed interval [6kH, 6kH + 6H], and the following equalities are true: 

t;, 6k+6b”) = t;, Sk@‘) +  5 t 1,6k+a + 6: = fl, Sk@‘) +  6H + eZk+Z, 

Cl=1 

t;, 4k+4b”) = t;, 4kb”) +  i t 2,4k+p + 8 = f2. 4kb”) +  eH + e2k+l, 

fi=1 

and f 3, 4k+4(~o) = f2, 4k+4(s”) due to the relations (2,4k + 3) =S (3,4k + 4) and 

t2,4k+4 = t3,4k+4 = H. 

Otherwise (i.e., if (2k + 2) E Al and (2k + 1) E A2) the order 

(2,4k -t 1) * (3,4k + l), (2,4k + 2) = (3,4k + 2), 

(1,6k + 5) =a (3,4k + 3), (2,4k + 3) * (3,4k + 4) (6) 

is used for sequencing operations Nk (see Fig. 3). In this case jobs Jl and J2 are 
processed with delays 8: = Azk + 1, 2k +2 and Sk, = e2k + 2, reSpeCtiVdy, within closed 
interval [6kH, 6kH + 6H], and the following equalities are true: 

t;, 6k+6b”) = fl, 6kb”) +  5 tl+ 6k+a + 6: 

= t;, Sk@‘) +  (6H + eZkt2) +  A2k+1,2k+2 

= fl,6k(s”) +  6H + e2k+l, 

f2, 4k+4b”) = f2, 4k(S”) +  5 t 2.4k+p + a”, = f2.4k(s”) +  6H + eZk+Z, 
/?=l 
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and t;, 4k+4(~o) = f 2, 4k+4(~o) due to the relations (2,4k + 3) * (3,4k + 4) and 

t2,4k+4 = t3,4k+4 = H. 

As in the case of k E (0, l> we show that the conditions (5) or (6) also uniquely 
specify a part of an active schedule for k = 2, . . . , a - 1. 

Machine Ml processing. The precedence constraint (2,4k + 1) =P (3,4k + 1) or 
(3,4k + 1) =S (2,4k + 1) is given. This implies that the operations (2,4k + 1) and 
(3,4k + 1) never conflict. 

We now show that these operations cannot conflict with operation (1,6k + 4). 
Indeed the inequality max{t-,,,k+l(so), t;,4k+1(so)} d J1,6k+&o) is true since 

tl, 6k+4b”) = fl, 6kb”) + (t 1,6k+l + tl,6k+2 + h,6k+3) 

2 (6kH + min{ei, e2} + min{e3,e4} + ... + min(ezk_i,e2k}) 

+ (2H + e2k+2) 

and 

= (6k + 2)H + e2 + e4 + ... + e2k + eZk+2, 

max{f2,4k+1(s”), f3,4k+l(S”)} = f2,4kb”) + @2,4k+l + t3,4k+l) 

< (6kH + max{e,, e2} + max(e,, e4) + ... 

+ max{e2k-1y e2k)) + W + e2k+l) 

= (6k + l)H + e, i- e3 + ..a + e2k_i i- eZk+l, 

and so 

!l,6k+4b”)- max{~2,4k+l(so)~f3,4k+l(so)> 

2 H $ (e2 + e4 •F “’ + e2k + e2k+2)-(el + e3 + “’ + e2k-I + etk+l) 

> 8E + (e2 + e4 + “’ + e2k + e2k+2) - (el + e3 + “’ + e2k-1 + e2k+l) 

> 0. 

As far as t;, &so) = f2, 4&s’), the relation (2,4k) a (3,4k + 1) iS true in the case of 
order (5) or relation (2,4k) =S (2,4k + 1) is true in the case of order (6). 

The inequality fi, 6k+4(s”) < 12, 4k+4(s”) is true since 

fl, 6k+4tSo) = fl, 6kb”) + @ 1,6k+l + tl,6k+2 + t1,6k+3 + tl,6k+4) 

< (6kH + max{el, e2} + max{e3, e4} + ... + max{ezk-i,ezk}) 

+ (2H + e2k+2 + dZk+l, 2k+2) 

= (6k + 2)H + (el + e3 + 0.. + eZk- 1 + eZk+ l)? 

t2,4k+4b”) = f2, 4kb”) + tt 2,4k+l + t2,4k+2 + t2,4k+3 + s”,, 

> (6kH + min(el, e2} + min{e3, e4} + *.s + min{e2k-l, e2k)) 

+ (5H + min{e2k+l, e2k+2)) 

= (6k + 5)H + (f?2 + e4 + ... + e2k + eZk+2) 
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i2,4k+4tso) - f~~~+ds’) > 3H + (e2 + e4 + .” + e2k + eZk+2) 

- (el + e3 + ... + e2k-1 + e2k+l) > O. 

Machine M2 processing. The precedence constraint (2,4k + 3) * (3,4k + 4) is 
given for both orders (5) and (6). 

The inequality t;, &so) < il, 6k+2(s”) is true since 

t;, &(s”) = t;, &O) d 6kH + max{e,, e2} + max{e3, e4} + a.. + max{e,k- i, e2k> 

= 6kH + e, + e3 + a.. + e2k-l 

and 

il. 6k+2(S”) = t;. 6ktSo) + cl, 6k+l 

2 (6kH + min{el, e2} + min{e,, e4} + ... + min{e2k_i, ezk}) 

+ @1,2 + 43.4 + *** +  A2k-1, 2k) 

= (6kH + e2 + e4 + ... + e2k) + (A,, 2 + 43.4 + ... + A2k-1, 2k) 

= 6kH + el + e3 + ... + e2k-l. 

If conditions (5) take place, then precedence constraint (1,6k + 2) + (3,4k + 2) is 
given and the inequality t;, &+ 2(s”) < t2, 4k+2(~o) is true since 

t;,4k+2(S”) = t;,6k+2(so) + t3,4k+2 

= fl,6k(So) + @1,6k+l + h,6k+2) + t3,4k+2 

G (6kH + max{el, e2} + max{e3, e4} + a.. + max{e,k_i, e2k)) 

+ @1,6k+l + h,6k+2) + t3,4k+2 

= 6kH + (el + e3 + ... + e2k_l) 

+ (H- Al.2 - 43.4 - *** - A2k-l,2k) +  e2k+2 

= (6k + 1)H + (e2 + e4 + ... + e2k) + e2k+2, 

!2,4k+2b”) = t;.4kb”) + @3,4k+l + t2,4k+l) 

> (6kH + min{e,, e2} + min{e3, e4} + es. + min{e2k_r, e,k}) 

+ @2k+l + W 

= (6k + 1)H + (e2 + e4 + ... + e2k) + ezk+l, 

!2,4k+2b”)- f3.4k+2b”) 3 e2k+l - e2k+2 > 0. 
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If conditions (6) take place, then the inequality t;, 6k+2(~o) < &, 4k+Z(~o) is true since 

f1, 6k+Z(s”) = t;, .s/JsO) + (tL6k+l + Cl, 6kf2) 

< (6kH + max{el,ez} + max{e,,e,} + 1.. + max{eZk_l,e,,}) 

+ (r1,6k+l + tl,6k+2) 

= 6kH + (el + e3 + *a. + e2kw1) 

+(H-d1,2-A3.4-...-A~k-1,2k) 

= (6k + l)H + (e2 + e4 + ... + e2,J 

and 

t2,4k+2(s0) = t;,4k(s”) + t2,4k+l 

2 (6kH + min{ei, e2} + min{e3,e4} + ... + min{ezk_1,e2k}) 

+ t2.4k+l 

= (6k + l)H + (e2 + e4 + ... + e2& 

the constraint (2,4k + 2) 3 (3,4k + 2) is given and the constraint 

(3,4k + 2) = (2,4k + 3) follows from (2,4k + 2) * (3,4k + 2), 

(2,4k + 2) -+ (2,4k + 3), (2,4k + 3) * (3,4k + 4), (3,4k + 2) -+ (3,4k + 4), and 
it is guaranteed by Sk, = t3, 4k+2 = e2k+2. 

At last, the consideration of machine M3 is the same as in the case k E (0, l}. 
Thus, we can construct the schedule so consisting of a (here a is not article it means 

number) fragments, each kth fragment, k E (0, . . . , a - l}, being associated with pro- 

cessing operations Nk on machine set M and satisfying equalities: 

t;, 6k+6 (so) = fl, ds’) + 6H + e2k+2, 

f2,4k+4(s”) = f2,4k(s”) + 6H + eZk+l? 

f3, 4k+4(s”) = t;, 4k+4(s”) if (2k -I- 1) E A1 and (2k -I- 2) E AZ, 

or equalities 

fL6k+dso)= fL6k(so) + 6H + e2k+17 

f2, 4k+4(S”) = f2, 4k(s”) + hH + e2k+2? 

4, 4k+4(s”) = f2, 4k+4(~o) if (2k + 2) E Ai and (2k + 1) E AZ. 

These recurrence equalities imply that 

fl (SO) = fl, ea(so) = 6aH + 1 et, f2(so) = fz,4a(~o) = 6aH + c ei 
ieA, isA, 

and 

t;(8) = f2(s0). 



Yu.N. Sotskov, N. V. Shakhlevich / Discrete Applied Mathematics 59 (1995) 237- 266 251 

Fig. 8. Overlook tree of schedules satisfying the conditions (2,4k + 3) -P (3,4k + 4) and 

(3,4k + 1) -P (2,4k + 1). 

Since CiE,41ei = Cie,J, ei = E we have obtained the schedule so with Cmax(so) 
= 6aH + E = y. 

Necessity. On the other hand suppose that there exists active schedule so with 
Cmax(so) < y. Denote the set of such schedules by S: 

s = @I Cm&) d Y>. 

Let us prove that there exists a schedule s* E S with the orders of operations Nk, 
k = 0, . . . . a - 1, corresponding to orders (5) or (6). To do this we show that a schedule 
s E S with any other possible orders of operations Nk, k = 0, . . . . a - 1, is not better 
(with respect to C,,,(s)) than the schedule s*. 

To look over all active schedules for Instance 1 we shall consider each machine M1, 
M2, and M3 processing different sequences of operations Nk, k = 0,. .., a - 1, which 
satisfy routes I’, P, and 13. Let a part of schedule, corresponding to operations Nk, be 
called a fragment. The way of considering possible sequences of operations Nk (in 
other words, considering possible fragments) for a fixed k = 0, . . . , a - 1 is represented 
by the overlook tree, shown in Figs. 8 and 9. This tree is constructed under 
assumption that (2,4k + 3) + (3,4k + 4), because otherwise (i.e., if 
(3,4k + 4) + (2,4k + 3)) either job Jz has a delay S”, = H or job J1 has a delay 
St > H and therefore Cmax(s) 2 a. 6H + H > y. 

One-half of the tree, represented in Fig. 8, enumerates all schedules satisfying 
condition (3,4k + 1) + (2,4k + l), and half of the tree, represented in Fig. 9, 
enumerates all schedules satisfying the inverse condition (2,4k + 1) --) (3,4k + 1). 
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& /Cd&kCb& 

<2,4kt2> -> <3,4k+2> 

1 1 I 1 
<2,4k+2>-><1.61+2>-><3,4k+2> <2,4kt2>=><2,4kt3>-> <2,4k+2>=><3,4k+2> 

-><3,4k+2> 
<2,4kt2>-><3,4k>-> 

I I I 
<3.4kt2>. lsksa-7 

, I I 

Fig. 9. Overlook tree of schedules satisfying the conditions (2,4k + 3) -+ (3,4k + 4) and 

(2,4k + 1) + (3,4k + 1). 

Rectangles drawn by bold lines contain letter A, B, C, D or F (with subscripts) indicating 
the type of a fragment of an active schedule s (&fragment, Bi-fragment, and so on), the 
letter E indicates non-active schedule. Integer I varies from 0 up to a - 1. 

We consider these fragment types in order to prove that either Allfragment or 
B,-fragment dominates a fragment ofany other type. In particular, we shall show that if 
a schedule contains some Ai-fragment, then it is not better (with respect to C,,,) than 
a schedule containing At-fragment; if a schedule contains some Bi-fragment, then it is 
not better than a schedule containing B1 -fragment; if a schedule contains Ci-3 Di- or & 
fragment, then it does not belong to class S (since for Cl-fragment there is either job J1 
or job Jz delay greater than H/2, since for Di-fragment there exists operation 
(3,4j + 4), 0 6 j < a - 1, such that !3,4j+d(s) > 6jH + 6H holds, and since for 
&fragment there exists either operation (1,6k) with t;, &) > 6kH + E, or operation 
(2,4k) with t;, &) > 6kH + E). 

Beforehand, let us note that for any given value k, 0 < k < a - 1, the corresponding 
fragment of schedule s starts with processing operations (1, 6k + 1) and (2,4k + 1). 
If k 2 1, then it is reasonable to suggest that the following inequalities are true 

6kH + (ez + e4 + ... + eZk) < fl, &s) Q 6kH + E, (7) 

6kH < t;, 4(s) < 6kH + E. (8) 

The lower bounds for these values had been estimated earlier (see Fig. 1). If at least 
one of the upper bounds is exceeded, we get a schedule s with Cmax(s) > 6aH + E. 
Such fragments, satisfying inequality fr, &s) > 6kH + E or inequality t;, 4k(~) > 
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6kH + E, are denoted in Figs. 8 and 9 by letter F with subscripts. So any schedule 
containing Fi-fragment does not belong to the set S. 

Consider A,-, B,-, Ci-, and Di-fragments assuming that inequalities (7) and (8) are 
fulfilled. Let parameter 4, Bi, Cc, or Di of a schedule s indicate a fragment type, being 
a part of this schedule. For instance, $4,) means a schedule containing at least one 
Al-fragment. 

A-fragments. It is easy to make sure that fragment Al (see Fig. 8) corresponds to the 
order (5) with no delay for job J1 @:(.$A,)) = 0) and with delay Sk,(s(A,)) = ezk+ 1 for 
job Jz. The fragments AZ (see Fig. 8) and & (see Fig. 9) are worse than fragment Al 

since S:(s(Aj)) >, b:(s(A,)), Gk,(s(Aj)) 2 @(s(A1)), j E {2,4}, and one of these inequali- 
ties is strict. 

The fragment A3 (see Fig. 8) is not better than fragment Al since h:(s(A,)) = 

max{t;,4k+z(s) - h,6k+l(s),0) 3 $(~(AI)) and %(s(Ad) = eZk+l = &MA)). 

&-fragments. The fragment B1 (see Fig. 9) corresponds to the order (6) with delay 

6:(s(&)) = dZk+l,Zk+2 for job J1 and with delay &(s(B,)) = ezk+2 for job J2. The 
fragment B2 (see Fig. 8) is worse than B1 since S: (s(B,)) 

= eZk+Z + A2k+1,2k+2 >8MB,)) and 8MB2)) = f?Zk+l >%Wd). 

Ci-fragments. For any Ci-fragment there is either job J1 or job J2 delay greater than 
H/2. In this case Cmax(s) 2 6aH + H/2 > y. So any schedule containing Ci-fragments 
does not belong to the set S. 

Di-fragments. For any Di-fragment there exists an operation (3,4j + 4), 
0 <j < a - 1, such that f3,4j+d(s(D)) > 6jH + 6H. 

If j = a - 1, then C,,,(s(D)) > t;, dj+b(S(D)) = t;, Aa( > 6jH + 6H + H = 
6aH + H > y. 

If 0 G j < a - 2 and relations (3,4j + 4) = (1,6j + 8) hold, then there is a job J1 
delay 

ai+‘(s(D)) = f3, bj+a(S(D)) - fl, 6j+T(s(D)) 

2 (6(j + 1)H + t,, 4j+4) 

- (6( j + 1)H + e, + e3 + *** + ezj+ 1 + tl, 6j+7) 

>H-~E-(AI,z + A3,4 + ... +Az~+I,z~+z) 

>H-2E-2E>H/2 

and so C,,,(s(D)) > y (see (Fig. 10(a)). 
If 0 < j < a - 2 and relations (1,6j + 8) ZE- (3,4j + 4) * (2,4j + 6) hold, then 

there is a job J2 delay 

s:+‘(s(D)) = t;,4j+41stD)) - t;,4j+5tstD)) 

= fl, 6j+8(S(D)‘J + H ’ t;,‘4j+5(S(D)) 

> (6(j + 1)H + e2 + e4 + ... + ezj+2 + H 

- A 1,2 - 43.4 - ... - Azj+l,2j+2) + H 

- (6(j + 1)H + e, + e3 + ..- + e2j+l + H) 

>H-2E-2E>,H/2 
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(2, +J+C> (2~ 4J+6> 

lzz 

<1.65+7> (1,6J+.@, <l.(LJ+b> 

m= -= 
CLCJ+l>H 

=> 

(LiJ+l) H 

c> 

<3.4J+4> 

m 
<2.45+6> <2.4J+6> 

m WTA 

<l. 6J+7> 

-= 
6cJ+l>H 

b) 

<2.45+4> 

lzzzI 

<2.45+6> <2.4J+6> <2.4J+7 > 

.,,,:,;= 6<J+l> H 

d) 
Fig. 10. Di-fragments of schedules. 

and so C,&(D)) > y (see (Fig. 10(b)). 
If 0 < j < a - 2 and relations (1,6j + 8) * (2,4j + 6) * (3,4j + 4) =E- (2,4j + 7) 

hold, then there is also a job J, delay S’,’ r (s(D)) = H within closed interval [6( j + l)H, 
6( j + 2)fl and so C,,,,&(D)) > y (see Fig. 10(c)). 

IfO~j~~-2andrelations(1,6j+8)~(2,4j+6)~(2,4j+7)-,(3,4j+4) 
hold, then t;, dj+h(s(D)) > f 2, aj+b(s(D)) > 6( j + 2)H (see Fig. 10(d)). So finish part of 
the schedule s(D) is defined by the set of operations Nj+z u Nj+ 3 u ... v N,_ 1 and by 
the additional operations (3,4j + 5), (3,4j + 6), (3,4j + 7), and (3,4j + S), which 
are to be processed after time 6( j + 2)H. It is easy to make sure that any sequence of 
these operations gives C&&(D)) > y. 

Thus, we have shown that if a schedule s contains at least one Ci-, Di-2 Ei- or 
&-fragment, it does not belong to S. Moreover, if a schedule s contains only Ai- and/or 
Bj-fragments, it is not better than a schedule s* containing only &-fragments (i.e., 
order (5)), and/or B,-fragments (i.e., order (6)), for all k = 0, . . ..a - 1. We conclude 
that there exists a schedule s* in the set S such that for any k = 0, . . ., a - 1 the 
operation set Nk is processed according to the order (5) or (6). 
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It is easy to prove that Cm&*) = y. In fact, if C,_(S*) < y, then t;(s*) < y, 
t;(s*) < y and fr(s*) + t;(s*) < 2y. However, by construction the schedule s* we see 
that fl(s*) + t;(s*) = 6aH + 6aH + 2E = 2y. Thus, s* is an optimal schedule for 
Instance 1. 

The schedule s* defines a solution of the PARTITION problem: If for 
kE {O,..., a - l} the set of operations Nk is processed according to the order (5) (the 
order (6), respectively), then (2k + 1) E A1 and (2k + 2) E AZ ((2k + 1) E A2 and 
(2k + 2) E A,). Either eZk+ 1 causes a job Jz delay and ezk+2 and Azk+ 1, *k+2 cause no 
job J1 delays, or ezk+2 causes a job Jz delay and Azk+ 1, 2k+Z causes a job Jr delay. 
Since Cm&*) = 6aH + E we conclude that El = Ez. 

To finish the proof of Theorem 1 we shall make the following remark. The above 
reduction of the PARTITION problem to Instance 1 was carried out under the 
assumption that successive operations of a job can be processed in the same machine 
(see routes I’ and I’). This assumption is not typical for job-shop problems, Let us 
modify Instance 1 into the next Instance 2 to prove the 3 13 1 J 1 C,,, problem NP- 
hardness in the case when any successive operations of a job are to be processed on 
d@erent machines. 

To obtain Instance 2 we introduce 3a new operations with sufficiently small 
durations &/3a > 0 in Instance 1, where E is the smallest integer among 

min{Azk+l.zk+z 1 k = 0, . . . . a - l} and min(ejl j = 1,...,2a}. Recall that both 
Azk+ 1, 2k+2 and ej are strictly positive. For k = 0, . . . , a - 2 we join the operations 
(1,6k + 6) and (1,6k + 7), and set 

y = 6aH + E + E, 

I’ = (C2,3, I, 3, I, 377, l2 =U2,L2,LWh I3 = (CL Z3, V’), 
k-l 

t’ 1,6ktl = tt,6kt2 = H - 2 1 A2u+1,20+2, 
V=-1 

k-l 

t;,6k+2 = tl,6k+3 = H + 1 A2”+1,2”+2 + eZki2, 

v=-1 

ti6kt3 = t1,6k+4 = A2k+l,2k+2, 

t;, 6k+4 = tl,6k+5 = 2H - A2k+l, 2k+2, 

ti. 6kt5 = E/h ti6ut6 = tt,6ut6 + tl,6ut7 = 2H + i A2v+1,20+2, 

V=-t 

t;, 6a = 2H, &.6k+l = t2,4k+l = H, t;, 6k+2 = t2,4k+2 = 2H, 

t;, 6k t 3 = @a, ti6kt4 = t2,4k+3 = 2H, &,6kt5 = t2,4kt4 = H, 

&,6kt6 = E/3ay %4k+l = t3.4ktl = eZk+t, 

&,4kt2 = t3.4kt2 = eZki2, 

&,4k+3 = t3.4k+3 = A2k+l,2kt2, %4kt4 = t3,4k+4 = H, 
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Fig. 11. Initial part of a schedule for Instance 2 similar to the schedule part, represented in Fig. 6. 

wherek=O ,..., a-l,u=O ,..., a - 2 and the values tiq are defined in Instance 1. 
Fig. 11 shows the initial part of schedule for Instance 2 with order like (5) for k = 0 

and with order like (6) for k = 1. This schedule part is similar to the Instance 
1 schedule part, represented in Fig. 6. The operations of Instance 2 are denoted by 

(i,q)‘,JiE{J1,J*,53},1< < , q , nl, and the corresponding operations of Instance 1 are 
denoted by (i, q). 

It is easy to see that if there is a job J1 delay between either operations (1,6) and 
(1,7) or operations (1,12) and (1,13), etc., or operations (1,6a - 6) and 
(1,6a - 5) in Instance 1, then such schedule is not active. So having joined these 
operations we do not restrict all variety of the active schedules. Moreover, new small 
operations do not restrict or extend the set of active schedules. Introduction of these 
operations can only increase C,,,, the value of this increase being not greater 
than E. 

Considering by analogy fragments of the active schedules for each Nk, 
k=O , . . . , a - 1, we can be sure that the fragments like (5) and (6) are the best for the 
Instance 2 and determine a solution of PARTITION problem. The above reduction of 
the PARTITION problem to 3 13 1 J 1 C,,, problem is a polynomial one, and thus 
Theorem 1 is proved. 0 

Corollary 1. The 3 ) 3 1 J 1 C Ci problem is NP-hard. 

Proof. Now let us consider the Instance 1 with CCi criterion, i.e., the problem is to 
find a schedule s* minimizing a value of mean flow time (l/n)1 Ci(s*). We introduce 
class .!? of schedules, satisfying the condition 

(2,4k+3)+(3,4k+4), O<k<a-I. (9) 
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Remark that for any active schedule s E 5 we have fs(s) 2 t;(s). But if we are not 
limited by this class 5, then it is possible to reduce t;(s). In fact, since job J3 duration is 
essentially less in comparison with durations of jobs J1 and Jz, (l/n)1 Ci(s’) value for 
s’ $5 can be less than (l/n)1 Ci(s) for s E g 

Taking into account this fact we construct a new instance (Instance 3), to prove the 
3 13 1 J 1 C Ci problem NP-hardness. Note that the machine M2 is the most “busy” one 
in Instance 1. For each k = 0, . . . , a - 1 we prolong operation (3,4k + 4) processing 
time: t3, 4k+4 + 1OaH = H + 10aH. To stay in the frameworks of the proof of 
Theorem 1 we prolong also the processing times of operations (1,6k + 6) and 
(2,4k + 4) by the same value: tl* 6k+6 + 1OaH = 2H + lOaH, tz, &f* + 1OaH 
= H + 10uH. The processing times of all other operations A$, k = 0, . . ., a - 1, in 

Instance 3 remain the same as in Instance 1. Let y = uH(6 + lOa) + E. 

For any schedule s*, constructed for Instance 3 according to orders (5) and/or (6), 
the sum of delays in job J3 processing is the same as for the corresponding schedule for 
Instance 1 and it is not greater than 0 = u5H. If for some value k, 0 < k < a - 1, 
conditions (9) are violated, then new delays in jobs Jr and Jz processing arise, the 
duration of the sum of such delays being not less than H + ulOH > 0. Thus, s $ s” 
implies that s is worse (with respect to 1 Ci) than schedule s* for Instance 3. So we can 
consider schedules s E 5, only. 

Since for any such active schedule s E g the following inequalities are true: 

fI(s) > ~(6 + 10u)H + 1 ei, t;(s) > ~(6 + 10~)H + 1 ei, 
iEA, isA, 

then 

CCi(s) 2 t;(s) + 2t;(~) = 3~(6 + 10~)H + C ei + 2 C ei 
isA, ieA, 

and value of $CC&) is not minimal if Cie A, ei = CiE A,ei. Therefore, we modify the 
Instance 3 fragment for k = a - 1 by introducing three new operations of job 5s 
processing. This final fragment is defined by the operation set N,- r = 
((1,6(u - 1) + a) Ia = 1, . . . . 6) u ((2,4(u - 1) + fi> 18 = 1, . . . . 4) u {(3,4(u - 1) 

+y>I y= I,..., 7). Define the route l3 = ([l, 2,3,2]“- ‘, 1,3,2,1,3,1,2) and the dura- 
tions of operations (3,4(u - 1) + l), . . . . (3,4(u - 1) + 7): 

t3,4k-l)+l = e2a-1, 

a-1 

t3,4ta-1)+2 = H - e20-1 - 2 c A2v+l,2v+2, t3. 4ta- 1)+3 = eza, 
v=o 

a-l 

t3,4(a-1)+4 = H - 1 Azv+1,2v+2, t3,4(.-l)+s = A20-1,2a, 
v=o 

t3,4(a-l)+6 = 3H - Azlr-~20, t3,4(o-1)+7 = H + 10uH. 
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% 
2.4cr-l;=2,4<r-l~ 

Fig. 12. Final fragment of the schedule for Instance 3. 

For k = a - 1 we define the following order (10) similar to order (5) for Instance 1: 

(3,4(a - 1) + 1) =S (2,4(a - 1) + l), 

(1,6(a - 1) + 2) =S (3,4(a - 1) + 3), 

(1,6(u - 1) + 3) = (3,4(u - 1) + 5), 

(2,4(u - 1) + 3) =a (3,4(u - 1) + 7), 

(3,4(u - 1) + 6) * (2,4u) 

(10) 

(see Fig. 12). It is easy to make sure that these new operations, being scheduled 
according with order (lo), may cause additional delay in job Jz processing (due to 
relations (1,6(u - 1) + 4) * (3,4(u - 1) + 6) * (2,4u)) and so t;(s) 2 t;(s). Note 
that s E s” and t;(s) 2 fz(s) also. More precisely, 

Cl(s) = ~(6 + IOU)H + C eiy 
i E A2 

t;(s)=u(6+ 10u)H+max{ik,ei,i~~ei}, 

f&)=u(6+ 10u)H+max{i~~ei,i~,ei}. 

Thus, 

C Ci(s) = 3~(6 + lOa)H + 
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Obviously, value of iCCi(s) is minimal iff Cie A1 ei = CiG Alei = E and it is 
equal to y. 

It can be proved that violating of conditions (10) in the schedule s gives $C Ci(S) > y. 
So order (10) fixes the order like (5) for finish fragment of a schedule for 
Instance 3. 

Note that if the PARTITION problem has a solution, it is possible to construct for 
Instance 1 with C,,, criterion both an optimal schedule sl, according to orders (5) 
and/or (6), and another optimal schedule s2 by interchanging the subsets Ai and AZ. 
An optimal schedule for Instance 3 with CCi criterion corresponds to that 
schedule si or s2 of Instance 1, which has the final fragment, satisfying the 
order (5). In this sense, the rules for constructing optimal schedule for Instance 
3 based on a solution of the PARTITION problem (and vice versa) is the 
same as for Instance 1. 

Evidently, this modification may be applied to Instance 2 too, and Corollary 1 is 
proved. 0 

The validity of the next statement is based on the fact that the operation preemp- 
tions do not reduce the values C,,, and CCi for Instance 1 (and for Instances 2 and 
3 also) because of fixed routes for each job Ji E J. 

Corollary 2. The problems 3 13’15, Pr 1 C,,, and 3 13 I J, Pr I C Ci are NP-hard. 

3. Flow-shop 

Note that NP-hardness of the problems 3 (m I F I C,,, and 3 I m ( F 11 Ci has been 
proved in [14-161. Let us prove analogous results for 3 lml F, Prl C,,, and 
3 I m I F, Pr 11 Ci problems. 

Theorem 2. The problems 3 I 3 I F, Pr I C,,, and 3 ) 3 I F, Pr (1 Ci are NP-hard. 

Proof. We construct the following Instance 4: y = 6aH + E, m = 9a + 3, I’ = 

(,~,,,,,,,~l,~~,~~,,,,,,,~~l,...l,~~+~,~~+~,,,,,,,~~+~l,...l,~~-~,~~-~, 
, , , , , ,9a), ~*=(,,,4,,6,,,,,11,121,13,,15,,,,,20,21l,...l,9k+4,,9k+6,, 
,,,9k+ 11,9k+ 121,... 19a-5,,9a-3 ,,,,, 9a+2,9a+3) and 

I3 = (, , , 4, 5, 6,) 8,9, 10, 11 I,, 13, 14,,15,, 17, 18, 19, 20 I ,... I,, 9k + 4,9k + 5, 
9k+6,,9k+8,9k+9,9k+ 10,9k+ 111 ,... 1,,9a-5,9a-4,9a-3,,9a-1, 
9a, 9a + 1,9a + 2). 

The parts of the routes corresponding to fixed k E (0, . . . , a - l> (see proof of 
Theorem 1) are separated by symbol I. Let the operations of Instance 4 be denoted by 
(i,q)“, Ji E J = (51, J2, J,}, 1 < q f 9a + 3. As usual, machines listed in 1’ are separ- 
ated by commas. If duration t$ of operation (i, q)” is equal to zero, then machine M,; 
is omitted (but the comma remains). Let us define nonzero processing times tyb (recall 
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that the values ti, > 0 are defined in the Instance 1): 

k-l 

t;‘,9k+l = tl,6k+l = CA 2u+1, zlJ+z~ 
Cl=-1 

k-l 

t;‘. 9k+2 = t1,6k+2 + tl,6k+3 =2H- 1 Az,+l,zv+z + eZk+Z? 
u=-1 

t;‘, 9k+9 = tl,6&+4 + tl,6k+S + t1,6&+6 = 4H, t;‘, 9k+4 = t2, 4k+ 1 = H, 

t ,, 2,9&+6 = t2,4k+2 = 2H, $9k+ll = t2,4&+3 = 2H, 

t1;.9k+lz = t2,4k+4 = H, t(;,9k+4 = t3.4k+l = e2k+lT 

t!i9k+5 = H - e2k+l? ti,9kt6 = t3,4&+2 = eZk+Z, 

t 
,, 

- H - i Azv+1,2v+z, 3, 9k+8 - t1;.9&+9 = t3,4&+3 = Azk+l,zk+z, 
v=o 

$9k+lO = H - i Azv+1,2v+2, t;‘,gk+ll = t3,4&+4 = H, k = 0, . . . . a - 1 
v=o 

Since preemptions are allowed we add to relations + and =c- two new relations 4 
and 2. Let US write (il,ql) 4 (i2,q2) (provided that {Ji,,Ji2} c {Jl,J2,J3), 

1 6 41 6 nil, 1 < qz 6 niz)> if fil,ql(s) < ri2, 4z(~). If fil,q,(s) < riz,qz(s) and there is no 
operation (i3,q3), Ji, E {Jl,J2, J3}, 1 ,< q3 < nis, such that fi,, 41(~) < t;.3,43(s) 
< fi2,q2(S), then we shall write (il,ql) 4 (i2,q2). Note that if relation 

(il,ql) 3 (i2,q2) is given, operation (il,ql) is started at timetl, operation (i2,q2) 
is started at time t2, i2 < tl, and preemptions are allowed, then there is a job 
Ji, preemption, its duration being equal to &, = til,ql (see Fig. 13(a)). Otherwise (if 
preemptions are forbidden) there is a job Ji, delay, its duration being equal to 

6i2 = 21 + til,ql - t2 (see Fig. 13(b)). 
Let us construct the schedule so consisting of a (a means number again) fragments, 

each kth fragment, k E (0, . . . , a - l}, being associated with the processing operations 
N; = {<1,9k + l)“, (1,9k + 2)“, (1,9k + 9)“) u {(2,9k + 4)“, (2,9k + 6)“, 
(2,9k + ll)“, (2,9k f 12)“) u {(3,9k + 4)“, (3,9k + 5)“, (3,9k + 6)“, 
(3,9k + S)“, (3,9k + 9)“, (3,9k + lo)“, (3,9k + 11)“) on machines A4 according 
with order 

(3,9k + 4)” * (2,9k + 4)“, (3,9k + 6)” = (2,9k + 6)“, 

(3,9k + 9)” * (1,9k + 9)“, (2,9k + 11)“*(3,9k + ll)“, 

or according with order 

(2,9k + 4)” * (3,9k + 4)“, (3,9k + 6)” 4 <2,9k + 6)“, 

(3,9k + 9)” 4 (1,9k + 9)“, (2,9k + 11)“*(3,9k + 11)“. 

(11) 

(12) 
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Fig. 13. Part of the schedule for Instance 4. 
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Fig. 14. Initial part of schedule so for Instance 4 with order (11) for k = 0 and order (12) for k = 1. 
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Fig. 14 shows the initial part of schedule so (for Instance 4) with order (11) 
for k = 0 and order (12) for k = 1. This schedule is similar to the schedule for 
Instance 1, represented in Fig. 6, and schedule for Instance 2, represented in Fig. 11. 
The operations of Instance 4 are denoted by (i,q)“, Ji E J = (J1, J2, J3}, 
1 < q < 9a + 3, and the corresponding operations of Instance 1 are denoted by (i, q) 
in Fig. 14. 

It is easy to see that order (11) causes the same delays in jobs J1 and JZ 
processing as order (5) in Instance 1, and all the operations are processed without 
preemptions. Order (I2) causes the same delays in jobs J1 and JZ processing as order 
(6) in Instance 1, the operations (2,9k + 6)” and (1,9k + 9)” are processed with 
preemptions. 

So for 0 d k < a - 1 and conditions (11) the following equalities hold: 

f;‘, wc+9(S”) = f;‘, gk(S”) + 6H + eZk+2r 

Similarly, for conditions (12) we have 

f:,9k+9(s”) = f;‘, 9k(s") + 6H + eZk+l, 

fit9k+12(S”)= c,9k+3(s”) +  6H + eZk+2, ~,9k+ll(s") = t;',9k+12(s"). 

So Cmax(so) = 6aH + E = y if CieA, ei = CiEA1ei = E. It is not difficult to show that 
conditions (11) (and conditions (12) also) really specify a part of active schedule so for 
any 0 d k < a - 1. See proof of Theorem 1. 

Using arguments similar to those for operation sets Nk and orders (5) and (6) in 
Section 2, it is possible to prove that any sequence of operations NL, differing from 
orders (11) and (12), gives schedule s, which is not better than schedule so. Thus, we can 
construct polynomial reduction of a PARTITION problem to the decision problem 
corresponding to Instance 4 for both criteria C,,, and ,CCi. Hence, Theorem 2 is 
correct. 0 

Let us show that the problems 3 1 m 1 F, Pr 1 C,,, and 3 1 m ) F, Pr I C Ci are NP-hard 
also in the case of strictly positive operation durations. In fact, for each operation 
(i, q)” with zero processing time (see Instance 2) we substitute for its duration tih = 0 
by positive sufficiently small value s/14a > 0, where E is defined like in Section 2. We 
set y = 6aH + E + E. It is clear that value E has no effect on the construction of 
polynomial reduction of the PARTITION problem to the corresponding decision 
one, and thus the following corollary is true. 

Corollary 3. The problems 3 I m) F, Pr, ti, > 0 I C,,, and 3 I m I F, Pr, ti, > 0 (C Ci are 
NP-hard. 
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4. Open-shop 

Recall that Gonzalez and Sahni [7] proved NP-hardness of the n 13 101 C,,, 
problem and developed an O(n) algorithm for n 12 (0 JC,,, problem and an O(nzm2) 
algorithm for n 1 m IO, Pr I C,,, problem. Due to the possibility of interchanging the set 
of machines and the set of jobs in n I m I 0 I C,,, and n I m I 0, Pr I C,,, problems, we can 

conclude that the problem 3 (m ( 0 ( C,,, is NP-hard and the problem 2 (m ( 0 ( C,,, is 
solvable by O(m) steps. 

There is no such symmetry between sets of machines and jobs for an open-shop 
problem with ICI criterion. Nevertheless, let us show that scheduling instance, used 
by Strusevich [18] for NP-hardness proof of n ) 3 ) 0 ) 1 Ci problem, can be developed 
to prove NP-hardness of 3 ( m IO 11 Ci problem too. 

Since the routes (machine orders) ofjobs may be arbitrary in open-shop, let us agree 
that notation (i, k) means an operation ofjob Ji E J on machine Mk E M (in the case of 
an open-shop problem). 

Theorem 3. The 3 I m I 0 I C Ci problem is NP-hard. 

Proof. Let us reduce polynomially a PARTITION problem from Section 2 to a deci- 
sion variant of a problem 3 ( m ( 0 I C Ci. We set y = 3E, m = 2a + 1 and processing 
times tik = ek, k E { 1, . . . ,2~}, and ti, zo+ 1 = E, i E {1,2,3}, where i denotes the job 
index and k denotes the machine index. 

Suficiency. If a solution A = A1 u AZ, El = E2, of the PARTITION problem 
exists, we can construct a no-wait schedule so with fcCi = y (see Fig. 15). This 
schedule consists of three parts each of duration E: operation (1,2a + l), operations 
(2,k’) for all machines Mkf with k’ E Al, and operations (3, k”) for all machines 
Mk- with k” E A2 are completely processed within segment [O,E]; operations 
(2,2u + l), (1, k”), and (3, k’) for all k’ E Al and all k” E A2 are completely processed 
within segment [E, 2E]; at last, operations (3,2u + l), (1, k' ), and (2, k”) for all 
k’ E Al and all k” E A2 are completely processed within segment [2E, 3EJ. 

Necessity. Since equality C,“f:’ ti, = 3E holds for each job Ji E J, we conclude that 
any schedule with $C Ci < y = 3E has to be a schedule without waits in processing all 
three jobs within segment [0,3E]. 

Let a schedule so with SC Ci < y exist. Without loss of generality, we can suppose 
that machme M2,+ 1 E M processes job set J in the order (J1, J2, J3). Obviously, to 
exclude waits in processing job J2 within segment [0,3E] is only possible if the total 
durations of operations (2, k) that have been processed within segment [0, E] is equal 
to the total durations of operations (2, I) that have been processed within segment 
[2E, 3E] (see Fig. 15). Thus, the PARTITION problem has a solution A = Al u AZ, 

El = El, where subset Al is the set of all indexes k of machines Mk E M processing 
operations (2, k) ofjob J2 within segment [0, E], and subset A2 is the set of all indexes 
1 of machines Ml EM processing operations (2,Q of job J2 within segment 
[2E,3E]. 0 
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Fig. 15. No-wait schedule so with CC,(?) = y for 3 1 ml OjCCi problem 

5. Conclusion 

The results obtained in Sections 2-4 as well as known results on the complexity of 
shop-scheduling problems with IZ < m are listed in Table 1. The last column of the 
table contains reference numbers in square brackets or numbers cx of Theorems (Ttx) or 
Corollaries (CM) from this paper. 

As follows from Table 1 the 2 1 m [.I I@ and 2 ( m 1 J, Pr I @ problems can be solved by 
polynomial-time algorithms [13,16], the complexity depending on r = max{n,, n2}. 
Here the parameter Cp denotes an arbitrary regular criterion [ 10,111, i.e., a scheduling 
problem is to minimize a given monotone function @(fr(s), . . . . f,,(s)) such that, if 
fi(s) < fi(s’) for all Ji E J, then @(rr(~), . . . . &n(s)) < @(fl(s’), . . . . fn(s’)). 

The algorithms [13,16] are based on the well-known fact that a shop-scheduling 
problem with n = 2 can be formulated as a shortest path problem in the plane with 
rectangular objects as obstacles. Such graphical algorithms for more simple 
2 1 m 1 J ( C,,, problem (for the case when operation preemptions are forbidden) have 
been constructed in [2-4,201. The shop-scheduling problems with three jobs are 
NP-hard even in the case of rather simple criteria C,,, and CCi. Thus, the NP- 
hardness of scheduling three jobs take place for all criteria that are usually considered 
in the scheduling theory [S, 8,10,11,19] ( see the reduction of scheduling criteria in [8, 
pp. g-101). The only exclusion is an open-shop scheduling problem with allowed 
operation preemptions and C,,, optimality criterion [7]. 

Achugbue and Chin [l] have proved NP-hardness of n 12 IO I C Ci problem. NP- 
hardness of n 13 IO, C ( C,,, problem is obtained in [ 14,161. Here parameter C indicates 
that set J = {J1, . . . . J.} is ordered: if i >j, then tig(s) > fjq,(s) for each schedule s and 
machine Ml; = Ml;, . The linear-time algorithms for 2 ) ml 0) @ problem and 
2 1 m ) 0, Pr I@ problem (with any given regular criterion @) were developed in [ 121. 
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Table 1 

System 

type 

Job 

number 

Machine 

number 

Additional 

conditions 

Criterion Complexity References 

m 

m 

m 

m 

m 

m 

3 

3 

3 

3 

r<m 

Pr 

r<tn 

Pr,r < m 

Pr 

Pr 

Pr 

Pr 

Pr 

Pr, tiq > 0 

Pr, fir > 0 

Pr 

Pr 

C 

m2 c4,201 
r2 log, r c31 
r2 log, r C13,161 
r3 C13,1’51 
m log, m Cl39 161 
m2 C13,161 
NP TL 1171 
NP CL Cl71 
NP Cl, Cl71 
NP Q Cl71 

m log, m Cl39 161 
m* Cl39 161 
NP [14-161 

NP T2, Cl71 
NP [14-161 

NP T2, Cl71 
NP c3, Cl71 
NP c3, Cl71 

O(m) 171 
O(n'm*) 171 
O(m) Cl21 
O(m) 1121 
NP 171 
NP T3, [17,18] 

NP Ill 
NP [14-161 

We recall that the first results on the NP-hardness of shop-scheduling problems with 
it < m and fixed routes have been obtained in [14-161. It has been proved there that the 
problems 3 15 l J 1 C,,,, 315lJICCi, 315lJ,PrIC,,,, 31ml~ICm,, and 3lmlFICCi are 
NP-hard. The results of Sections 24 of this paper were briefly described in [17] in 
Russian with schematic proofs. 

In conclusion, it should be remarked that shop-scheduling problems with fixed 
number of jobs n are not NP-hard in the strong sense because for each fixed n a shop- 
scheduling problem may be solved pseudopolynomially. 
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