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Abstract

The classical Eckmann–Hilton argument shows that two monoid structures on a set, such that one is a
homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument
immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this
argument in the language of higher categories is: suppose we have a one object, one arrow 2-category, then
its Hom-set is a commutative monoid. A similar argument due to A. Joyal and R. Street shows that a one
object, one arrow tricategory is ‘the same’ as a braided monoidal category.

In this paper we begin to investigate how one can extend this argument to arbitrary dimension. We provide
a simple categorical scheme which allows us to formalise the Eckmann–Hilton type argument in terms of
the calculation of left Kan extensions in an appropriate 2-category. Then we apply this scheme to the case of
n-operads in the author’s sense and classical symmetric operads. We demonstrate that there exists a functor
of symmetrisation Symn from a certain subcategory of n-operads to the category of symmetric operads such
that the category of one object, one arrow, . . . , one (n−1)-arrow algebras of A is isomorphic to the category
of algebras of Symn(A). Under some mild conditions, we present an explicit formula for Symn(A) which
involves taking the colimit over a remarkable categorical symmetric operad.

We will consider some applications of the methods developed to the theory of n-fold loop spaces in the
second paper of this series.
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1. How can symmetry emerge from nonsymmetry?

Hopf and Alexandrov pointed out to C̆ech that his higher homotopy groups were commutative.
The proof follows from the following statement which is known since [19] as the Eckmann–
Hilton argument: two monoid structures on a set such that one is a homomorphism for the other
coincide and, moreover, the resulting monoid is commutative. A reformulation of this argument
in the language of higher categories is: suppose we have a one object, one arrow 2-category, then
its Hom-set is a commutative monoid. A higher-dimensional generalization of this argument was
provided by Joyal and Street in [24]. Essentially they proved that a 1-object, 1-arrow tricate-
gory is a braided monoidal category and a one object, one arrow, one 2-arrow tetracategory is a
symmetric monoidal category.

Obviously we have here a pattern of some general higher categorical principle. Almost noth-
ing, however, is known precisely except for the above low-dimensional examples and some
higher-dimensional cases which can be reduced to the classical Eckmann–Hilton argument [15].
Yet, there are plenty of important conjectures which can be seen as different manifestations of
this principle. First of all there is a bunch of hypotheses from Baez and Dolan [1,2] about the so
called ‘k-tuply monoidal’ n-categories, which are (n + k)-categories with one object, one arrow,
etc., up to (k − 1). Basically these hypotheses state that these ‘k-tuply monoidal’ n-categories
are n-categorical analogues of k-fold loop spaces, i.e. n-categories equipped with an additional
monoidal structure together with some sort of higher symmetry structures similar to the structure
of a k-fold loop space. In particular, ‘k-tuply monoidal’ weak ω-groupoids should model k-fold
loop spaces. Many other hypotheses from [2] are based on this analogy.

Another problem, which involves the passage to k-tuply monoidal n-categories, is the de-
finition of higher centers [2,14,38]. Closely related to this problem is the Deligne conjecture
from deformation theory [26,27] which tells us that there is an action of an E2-operad on the
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Hochschild complex of an associative algebra. This conjecture is now proved by several people.
In higher dimensions the generalised Deligne conjecture was understood by Kontsevich [26] as
a problem of existence of some sort of homotopy centre of any d-algebra. This homotopy centre
must have a structure of (d + 1)-algebra. Here a d-algebra is an algebra of the little d-cubes
operad [32]. To the best of our knowledge this hypothesis is not proved yet in full generality, but
there is progress on it [39].

In this paper we consider a categorical basis for the Eckmann–Hilton argument in higher
dimensions using the apparatus of higher-dimensional nonsymmetric operads [5]. They were
introduced in [5] for the purpose of defining weak n-categories for higher n. A weak n-category
in our sense is an algebra of a contractible (in a suitable combinatorial sense) n-operad.

Now consider the algebras of an n-operad A which have only one object, one arrow, . . . , one
(k − 1)-arrow. The underlying n-globular object of such an algebra can be identified with an
(n − k)-globular object and we can ask ourselves what sort of algebraic structure the action of
A induces on this (n − k)-globular object. Here we restrict ourselves by considering only k = n.
This provides a great simplification of the theory, yet clearly shows how higher symmetries can
appear. We must say that we do not know the answer for arbitrary k. For this, perhaps, we need
to develop the theory of symmetric higher operads, and some steps in this direction have already
been taken in [40].

Returning to the case k = n we show that for an n-operad A one can construct a symmetric
operad Symn(A) (which in this case is just a classical symmetric operad in the sense of May
[32] in a symmetric monoidal category), called symmetrisation of A, such that the category
of one object, one arrow, . . . , one (n − 1)-arrow algebras of A is isomorphic to the category
of algebras of Symn(A). Moreover, under mild conditions we present an explicit formula for
Symn(A) involving the colimit over a remarkable categorical symmetric operad.

Fortunately, the restriction n = k not only simplifies our techniques, but also makes almost
unnecessary the use of variable category theory from [34,36] which our paper [5] used. We can
reformulate our theory of higher operads in a way that makes it very similar to the theory of
classical symmetric operads. So the reader who does not need to understand the full structure of
a higher operad may read the present paper without looking at [5,8,35,36]. In several places we
do refer to some constructions from [5,8] but these references are not essential for understanding
the main results.

We now provide a brief description of each section.
In Section 2 we introduce the notion of the symmetrisation of an n-operad. This is the only

section where we seriously refer to the notion of monoidal globular category from [5]. Neverthe-
less, we hope that the main notion of symmetrisation will be clear even without understanding all
the details of the definition of n-operad in a general monoidal globular category because Propo-
sition 2.1 shows that the problem of finding a symmetrisation of an n-operad A can be reduced
to the case where A is of a special form, which we call (n − 1)-terminal. The latter is roughly
speaking an operad which has strict (n − 1)-categories as the algebras for its (n − 1)-skeleton.
The reader, therefore, can start to read our paper from Section 3.

In Section 3 we fix our terminology concerning symmetric operads and obtain a useful com-
binatorial formula needed later.

In Section 4 we recall the definition of the ω-category of trees and of the category Ωn [5,8,
23] which is an n-dimensional analogue of the category Δalg of all finite ordinals and plays an
important role here. More generally, we believe that the categories Ωn must be one of the central
objects of study in higher-dimensional category theory, at least on the combinatorial side of the
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theory. It appears that Ωn contains all the information on the coherence laws available in weak
n-categories.

In Section 5 we give a definition of n-operad in a symmetric monoidal category V , which is
just an n-operad in the monoidal globular category ΣnV . This definition is much simpler than
the definition of general n-operad and is reminiscent of the classical definition of nonsymmetric
operad.

Section 6 is devoted to the construction of a desymmetrisation functor Desn from symmetric
operads to n-operads which incorporates the action of the symmetric groups. We also show that
the desymmetrisation functor does not alter the endomorphism operads. Here we again refer
to our paper [5] for a construction of the endomorphism n-operad. However, the reader can
accept our construction here as a definition of endomorphism n-operad, so again does not need
to understand the technical construction from [5]. Our main activity for the rest of the paper will
be an explicit construction of the symmetrisation functor Symn left adjoint to Desn.

In Section 7 we develop a general 2-categorical method, which in the next sections will al-
low us to express the Eckmann–Hilton style arguments in terms of left Kan extensions in an
appropriate 2-category. These techniques will be very useful in the sequel of this paper [6].

In Section 8 we reap the first fruits of the theory developed in Section 7 by applying it to n-
operads and symmetric operads. The results of this section show that the symmetrisation functor
Symn exists.

In Section 9 we consider internal n-operads inside categorical symmetric operads and categor-
ical n-operads and prove that these theories can be represented by some categorical operads hn

and Hn. We provide unpacked definitions of internal symmetric operads and internal n-operads
and give some examples.

We continue to study internal operads in Section 10 and describe the operad hn in terms
of generators and relations. We show that our Theorem 9.1 is equivalent to the classical tree
formalism for nonsymmetric and symmetric operads if n = 1 or n = ∞ respectively [30].

In Section 11 we consider an example of a categorical symmetric operad containing an in-
ternal operad, namely, the operad of n-fold monoidal categories of [3]. This example will be an
important ingredient in one of the proofs of a theorem which will relate our categorical construc-
tions to the theory of n-fold loop spaces [6].

Section 12 has a technical character. We establish a useful formula for the free n-operad
functor using the techniques developed in Section 7.

Finally, in Section 13 we provide our symmetrisation formula for the (n − 1)-terminal n-
operad A in a cocomplete symmetric monoidal category V . The formula is

Symn(A)k � colim
hn

k

Ãk

where Ã is an operadic functor on hn which appears from the universal property of hn.
We also show that in one important case the symmetrisation functor commutes with the nerve

functor, namely

N
(
hn

) � Symn

(
N

(
Hn

))
.

Results like this will play an important role in the homotopy theory of n-operads which we
develop in the second part of this paper [6]. We also will connect our symmetrisation formula
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with the geometry of the Fulton–Macpherson operad [26] and coherence laws for n-fold loop
spaces in [6].

2. General symmetrisation problem

We introduce here the general notion of symmetrisation of an n-operad in an augmented
monoidal n-globular category.

Let M be an augmented monoidal n-globular category [5]. Recall that part of the structure on
M are functors sk , tk , z which make M a reflexive graph in Cat.

Let I be the unit object of M0. Fix an integer k > 0. Then we can construct the following
augmented monoidal n-globular category M(k). The category M

(k)
l is the terminal category when

l < k. If l � k then M
(k)
l is the full subcategory of Ml consisting of objects x with

sk−1x = tk−1x = zk−1I.

There is an obvious inclusion

j :M(k) → M.

We also can form an augmented monoidal (n − k)-globular category Σ−kM(k) with

(
Σ−kM(k)

)
l
= M

(k)
(l+k)

and obvious augmented monoidal (n − k)-globular structure.
Recall [5] that a globular object of M is a globular functor from the terminal n-globular

category 1 to M . We will call a globular object

x : 1 → M

(k −1)-terminal if x can be factorised through j . Analogously, a morphism between two (k −1)-
terminal globular objects is a natural transformation which can be factorised through j .

Let us denote by gln(M) and gl(k)
n (M) the categories of globular objects in M and (k − 1)-

terminal globular objects in M respectively. Then we have isomorphisms of categories

gl(k)
n (M) � gln

(
M(k)

) � gln−k

(
Σ−kM(k)

)
.

In the same way we can define (k − 1)-terminal collections in M [5] and (k − 1)-terminal
n-operads in M . Again the category of (k − 1)-terminal n-operads in M is isomorphic to the
category of n-operads in M(k) but is different from the category of (n− k)-operads in Σ−kM(k).

Suppose now A is an n-operad in M and colimits in M commute with the augmented
monoidal structure [5]. Then A generates a monad A on the category of n-globular objects
gln(M). The algebras of A are, by definition, the algebras of the monad A.

More generally, let A be an arbitrary monad on gln(M). An algebra x of A is called (k − 1)-
terminal provided its underlying globular object is (k − 1)-terminal. A morphism of (k − 1)-
terminal algebras is a morphism of underlying (k −1)-terminal objects which is also a morphism
of A-algebras.



M.A. Batanin / Advances in Mathematics 217 (2008) 334–385 339
Now let Alg(k)

A be the category of (k − 1)-terminal algebras of A. We have a forgetful functor

U(k) : Alg(k)

A −→ gln
(
M(k)

) � gln−k

(
Σ−kM(k)

)
.

Definition 2.1. If U(k) is monadic then we call the corresponding monad on gln−k(Σ
−kM(k))

the k-fold suspension of A.

In the special case M = Span(Set) this definition was given by M. Weber in his PhD thesis
[40]. He also proved that in this case the suspension exists for a large class of monads on globular
sets. Observe that gl∞(Span(Set)(k)) is equivalent to the category of globular sets again.

Suppose now that A is obtained from an n-operad A in M . Even if the k-fold suspension of A
exists it is often not true that the suspension comes from an operad in Σ−kM(k). To handle this
situation we need a more general notion of operad which is not available at this time. M. Weber
has a notion of symmetric globular operad in the special case M = Span(Set) which seems to be
a good candidate in this situation [40].

However, there is one case where such a notion already exists. Indeed, if k = n the globular
category M(n) has only one nontrivial category M

(n)
n = Σ−nM(n) = V . This category has to be

braided monoidal if n = 1 and symmetric monoidal if n > 1; but we assume that V is symmetric
monoidal even if n = 1.

The n-fold suspension of a monad A on gln(M) generates, therefore, a monad on V . It is now
natural to ask whether this monad comes from a symmetric operad in V .

Definition 2.2. Let A be an n-operad in M such that the n-fold suspension of A exists and
comes from a symmetric operad B on V . Then we call B the symmetrisation of A. The notation
is B = Symn(A).

Remark 2.1. If n = 1 and V is a braided monoidal category we can give a similar definition with
B being a nonsymmetric operad in V. If the braiding in V is actually a symmetry we can show
that Sym1(A) is a symmetrisation of the nonsymmetric operad B in the classical sense.

Now we will show that the problem of finding a symmetrisation of an n-operad in Mn can
often be subdivided into two steps.

Let

t : gln
(
M(n)

) → gln
(
M

)

be the natural inclusion functor. Let τ be the other obvious inclusion

τ :On

(
M(n)

) → On

(
Mn

)

where On(C) means the category of n-operads in C. Let x be a globular object of M(n). And
suppose there exist endooperads End(x) and End(t (x)) in M(n) and M respectively [5]. Then it
is not hard to check that τ(End(x)) � End(t (x)).

If now x is an algebra of some n-operad A in M then we have an operadic morphism

k :A → End
(
t (x)

) � τ
(
End(x)

)
.
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Suppose in addition that τ has a left adjoint λ. This is true in the most interesting cases. Then we
have that k is uniquely determined and determines an operadic map

k′ :λ(A) → End(x).

Thus we have

Proposition 2.1. The category of (n−1)-terminal algebras of an n-operad A in M is isomorphic
to the category of algebras of the n-operad λ(A) in M(n).

Therefore, to define a symmetrisation of an n-operad A we first find an (n − 1)-terminal
n-operad λ(A) and then calculate the symmetrisation of λ(A).

If V is a symmetric monoidal category, we can form the augmented monoidal n-globular
category L = ΣnV where L has V in dimension n and terminal categories in other dimensions.
The monoidal structure is given by ⊗i = ⊗ where ⊗ is tensor product in V . For example, M(n) =
Σn(M

(n)
n ). In the rest of the paper we will study the case M = ΣnV . We will show that many

interesting phenomena appear already in this situation. The passage from A to λ(A) will be
studied elsewhere by a method similar to the method developed in this paper.

3. Symmetric operads

For a natural number n we will denote by [n] the ordinal

1 < 2 < · · · < n.

In particular [0] will denote the empty ordinal. Notice, that our notation is not classical. We find
it, however, more convenient for this exposition.

A morphism from [n] → [k] is any function between underlying sets. It can be order preserv-
ing or not. It is clear that we then have a category. We denote this category by Ωs . Of course, Ωs

is equivalent to the category of finite sets. In particular, the symmetric group Σn is the group of
automorphisms of [n].

Let σ : [n] → [k] be a morphism in Ωs and let 1 � i � k. Then the preimage σ−1(i) has a
linear order induced from [n]. Hence, there exists a unique object [ni] ∈ Ωs and a unique order
preserving bijection [ni] → σ−1(i). We will call [ni] the fiber of σ over i and will denote it
σ−1(i) or [ni].

Analogously, given a composite of morphisms in Ωs :

[n] σ−→ [l] ω−→ [k] (3.1)

we will denote σi the ith fiber of σ ; i.e. the pullback

σ−1(ω−1(i))
σi

ω−1(i) [1]
ξi

[n] σ [l] ω [k].
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The following is a slightly more functorial version of a classical definition of a symmetric
operad [32].

Let P be the subcategory of bijections in Ωs. A right symmetric collection in a symmetric
monoidal category V is a functor A :P op → V. The value of A on an object [n] will be de-
noted An.

Definition 3.1. A right symmetric operad in V is a right symmetric collection A equipped with
the following additional structure:

– a morphism e : I → A1;
– for every order preserving map σ : [n] → [k] in Ωs a morphism:

μσ :Ak ⊗ (An1 ⊗ · · · ⊗ Ank
) −→ An,

where [ni] = σ−1(i).

They must satisfy the following identities:

– For any composite of order preserving morphisms in Ωs :

[n] σ−→ [l] ω−→ [k],

the following diagram commutes:

Ak ⊗ Al• ⊗ An•
1

⊗ · · · ⊗ An•
i

⊗ · · · ⊗ An•
k

�
Ak ⊗ Al1 ⊗ An•

1
⊗ · · · ⊗ Ali

⊗ An•
i

⊗ · · · ⊗ Alk
⊗ An•

k

Al ⊗ An•
1

⊗ · · · ⊗ An•
i

⊗ · · · ⊗ AT •
k

Ak ⊗ An•

An.

Here

Al• = Al1 ⊗ · · · ⊗ Alk ,

An•
i
= An1

i
⊗ · · · ⊗ A

n
mi
i

and

An• = An1 ⊗ · · · ⊗ Ank
;
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– For an identity σ = id : [n] → [n] the diagram

An ⊗ A1 ⊗ · · · ⊗ A1 An ⊗ I ⊗ · · · ⊗ I

id

An

commutes;
– For the unique morphism [n] → [1] the diagram

A1 ⊗ An I ⊗ AT

id

An

commutes.

In addition the following two equivariancy conditions must be satisfied:

1. For every commutative diagram in Ωs :

[n′]
π

σ ′
[k′]

ρ

[n] σ [k]

whose vertical maps are bijections and whose horizontal maps are order preserving, the
following diagram commutes:

Ak′ ⊗ (An′
ρ(1)

⊗ · · · ⊗ An′
ρ(k)

)
μσ ′

An′

Ak ⊗ (An1 ⊗ · · · ⊗ Ank
)

A(ρ)⊗τ(ρ)

μσ

An,

A(π)

where τ(ρ) is the symmetry in V which corresponds to permutation ρ.

2. For every commutative diagram in Ωs :

[n′′]
σ

σ ′
[η′]

η′

[n] η [k]
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where σ , σ ′ are bijections and η, η′ are order preserving maps, the following diagram com-
mutes:

Ak ⊗ (An′
1
⊗ · · · ⊗ An′′

k
)

1⊗A(σ ′
1)⊗···⊗A(σ ′

k)

μη′
An′

A(σ ′)

Ak ⊗ (An′′
1
⊗ · · · ⊗ An′′

k
) An′′

Ak ⊗ (An1 ⊗ · · · ⊗ Ank
)

1⊗A(σ1)⊗···⊗A(σk)

μη

An.

A(σ)

Let us denote the category of operads in this sense by SOr (V ). Analogously, we can construct
the category of left symmetric operads SOl (V ) by asking a left symmetric collection to be a
covariant functor on P and inverting the corresponding arrows in equivariancy diagrams. Clearly,
these two categories of operads are isomorphic.

We will define yet another category of symmetric operads Os(V ).

Definition 3.2. An S-operad is a collection of objects {An}, [n] ∈ Ωs, equipped with:

– a morphism e : I → A1;
– for every map σ : [n] → [k] in Ωs a morphism

μσ :Ak ⊗ (An1 ⊗ · · · ⊗ Ank
) −→ An,

where [ni] = σ−1(i).

This structure must satisfy the associativity axiom from Definition 3.1 with respect to all maps
in Ωs and two other axioms concerning identity and trivial maps in Ωs, but no equivariance
condition is imposed on A.

Proposition 3.1. The categories SOr (V ), SOl (V ) and Os(V ) are isomorphic.

Proof. We will construct a functor

S :Os(V ) → SOr (V )

first. Let A be an object of Os(V ). We construct a symmetric collection S(A)n = An. Now we
have to define the action of the symmetric groups on S(A). Let σ : [n] → [n] be a permutation.
Then the composite

S(A)n = An −→ An ⊗ I ⊗ · · · ⊗ I−→An ⊗ A1 ⊗ · · · ⊗ A1
μσ−−→ An = S(A)n

determines an endomorphism S(A)(σ ). The reader may check as an exercise that S(A) is a
contravariant functor on P.

The effect of an order preserving map on S(A) is determined by the effect of this map on A.

The equivariance conditions follows easily from these definitions.
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Let us construct an inverse functor

(−)s : SOr (V ) → Os(V ).

On the level of collections, (A)sn = An. To define (A)s on an arbitrary map from Ωs we recall
the following combinatorial fact. Every morphism σ : [n] → [k] in Ωs has a unique factorisation

[n] σ

π(σ )

[k]

[n′]
ν(σ )

where ν(σ ) is order preserving, while π(σ) is bijective and preserves order on the fibers of σn.
We use this factorisation to define the effect on σ of (A)s by requiring the commutativity of the
following diagram:

Ak ⊗ (An1 ⊗ · · · ⊗ Ank
)

As(σ )
An

Ak ⊗ (An′
1
⊗ · · · ⊗ An′

k
)

A(ν(σ ))
An′

A(π(σ ))

where actually [n′] = [n], [n′
i] = [ni] and the left vertical map is the identity since π(ω) is the

identity on the fibers of σ and ν(σ ).
Now consider the composite (3.1) of morphisms in Ωs. It induces the following factorisation

diagram:

[n′′′]

ν(σ ·ω)

[n] σ

π(σ ·ω)

π(ω)

[l] ω

π(σ)

[k]

[n′]

ν(σ )

π(ν(σ )·π(ω))

[l′]
ν(ω)

[n′′]
ν(ν(σ )·π(ω))

which in its turn generates the following huge diagram:
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AkAl•An•
1

. . .An•
k

AkAl1
An•

1
. . .Alk

An•
k

AkA
l′•An•

1
. . .An•

k
AkAl•An′•

1
. . .An′•

k
AkAl1

An′•
1

. . .Alk
An′•

k

equivariance 1

AkAl′•An′•
1

. . .An′•
k

Al′An•
1

. . .An•
k

AkAn′
1

. . .An′
k

AkAl′•An′′•
1

. . .An′′•
k

associativity

AkAl′1 An′′•
1

. . .Al′k An′′•
k

Al′An′•
1

. . .An′•
k

AlAn•
1

. . .An•
k

AkAn1 . . .Ank

Al′An′′•
1

. . .An′′•
k

AkAn′′
1

. . .An′′
k

AlAn′•
1

. . .An′•
k

equivariance 1 An′′ equivariance 2 AkAn′′′
1

. . .An′′′
k

An′ An′′′

An

In this diagram the central region commutes because of associativity of A with respect to order
preserving maps. Other regions commute by one of the equivariance conditions, by naturality
or functoriality. The commutativity of this diagram means associativity of As with respect to
arbitrary maps in Ωs.

It is also obvious that the functor (−)s is inverse to S(−). �
Recall that the symmetric groups form a symmetric operad Σ in Set sometimes called the

permutation operad in the literature. Let us describe this operad explicitly as a right symmetric
operad.

The collection Σn consists of the bijections from [n] to [n]. Let Γ be multiplication in Σ.

One can give the following explicit formula for Γ :

Γ (σk;σn1, . . . , σnk
) = Γ (1[k];σn1, . . . , σnk

) · Γ (
σk;1[n1], . . . ,1[nk])

where 1n means the identity bijection of [n],

Γ (1k;σn1, . . . , σnk
) = σn1 ⊕ · · · ⊕ σnk

and
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Γ (σ ;1n1, . . . ,1nk
)(p) =

∑

σ(k)<σ(i+1)

nk + p −
∑

0�l�i

nl,

when n0 + · · · + ni < p � n0 + · · · + ni+1 and we assume that n0 = 0. In other words
Γ (σ ;1n1, . . . ,1nk

) permutes blocks [n1], . . . , [nk] in accord with the permutation σ.

We can illustrate the multiplication

Γ
(
(132); (21), (12), (1)

) = Γ
(
(132); (21),12,11

)

by the following picture to be read from top to bottom:

Lemma 3.1. For the composite (3.1) in Ωs the following formula holds:

π(σ · ω) · Γ (
1;π(σ1), . . . , π(σk)

) = π(σ) · Γ (
π(ω);1σ−1(1), . . . ,1σ−1(l)

)
.

The idea of the lemma is presented in the diagram

where the bottom diagram is just an appropriate deformation of the top one.
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Proof. For a proof it is sufficient to consider the commutative diagram for associativity gener-
ated by (3.1) for the S-operad Σs and then to calculate both sides of this diagram on identity
permutations. �

From now on we accept as agreed that the term symmetric operad will mean the left symmetric
operad unless a different understanding is not required explicitly. The reason for this agreement
is practical: many classical operads are described as left symmetric operads. Also the description
of multiplication in a left symmetric operad is often easier.

4. Trees and their morphisms

Definition 4.1. A tree of height n (or simply n-tree) is a chain of order preserving maps of
ordinals

T = [kn] ρn−1−−−→ [kn−1] ρn−2−−−→ · · · ρ0−→ [1].

If i ∈ [km] and there is no j ∈ [km+1] such that ρm(j) = i then we call i a leaf of T of height i.
We will call the leaves of T of height n the tips of T . If for an n-tree T all its leaves are tips we
call such a tree pruned.

We illustrate the definition in a picture

The tree on the right side of the picture has the empty ordinal at the highest level. We will call
such trees degenerate. There is actually an operation on trees which we denote by z(−) which
assigns to the n-tree [kn] → [kn−1] → · · · → [1] the (n + 1)-tree

[0] −→ [kn] −→ [kn−1] −→ · · · −→ [1].

Two other operations on trees are truncation

∂
([kn] → [kn−1] → · · · → [1]) = [kn−1] → · · · → [1]

and suspension

S
([kn] → [kn−1] → · · · → [1]) = [kn] → [kn−1] → · · · → [1] → [1].

Definition 4.2. A tree T is called a k-fold suspension if it can be obtained from another tree by
applying the operation of suspension k-times. The suspension index susp(T ) is the maximum
integer k such that T is a k-fold suspension.
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The only n-tree with suspension index equal to n is the linear tree

Un = [1] → · · · → [1].
We now define the source and target of a tree T to be equal to ∂(T ). So we have a globular

structure on the set of all trees. We actually have more. The trees form an ω-category Tr with the
set of n-cells being equal to the set of the trees of height n. If two n-trees S and T have the same
k-sources and k-targets (i.e. ∂n−kT = ∂n−kS ) then they can be composed, and the composite
will be denoted by S ⊗k T . Then z(T ) is the identity of the n-cell T . Here are examples of the
2-categorical operations on trees.

The ω-category T r is actually the free ω-category generated by the terminal globular set.
Every n-tree can be considered as a special sort of n-pasting diagram called globular. This con-
struction was called the �-construction in [5]. Here are a couple of examples.

For a globular set X one can then form the set D(X) of all globular pasting diagrams labelled
in X. This is the free ω-category generated by X. In this way we have a monad (D,μ, ε) on the
category of globular sets, which plays a central role in our work [5].

In particular, D(1) = Tr. We also can consider D(Tr) = D2(1). It was observed in [5, pp. 80–
81] that the n-cells of D(Tr) which were called in [5, p. 80] diagrams of n-stage trees, can be
identified with the morphisms of another category of n-planar trees (or the same as open maps of
n-disks) introduced by A. Joyal in [23]. This category was called Ωn in [8, p. 10]. It was found
that the collection of categories Ωn, n � 0, forms an ω-category in Cat and, moreover, it is freely
generated by an internal ω-category (called globular monoid in [8]). So it is a higher-dimensional
analogue of the category Δalg = Ω1 (which is of course the free monoidal category generated
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by a monoid [29]). A general theory of such universal objects is developed in Section 7 of our
paper. We also would like to mention that C. Berger also describes maps in Ωn in [11, 1.8–1.9]
as dual to his cover maps of trees.

The definition below is taken from [23] but also presented in [8, p. 11].

Definition 4.3. The category Ωn has as objects the trees of height n. The morphisms of Ωn are
commutative diagrams

[kn]
ρn−1

σn

[kn−1]
ρn−2

σn−1

· · · ρ0 [1]
σ0

[sn]
ξn−1 [sn−1]

ξn−2 · · · ξ0 [1]

of sets and functions such that for all i and all j ∈ [ki−1] the restriction of σi to ρ−1
i−1(j) preserves

the natural order on it.

Let T be an n-tree and let i be a leaf of height m of T . Then i determines a unique morphism
ξi : zn−mUm → T in Ωn such that ξi(1) = i. We will often identify the leaf with this morphism.

Let σ :T → S be a morphism in Ωn and let i be a leaf of T . Then the fiber of σ over i is the
following pullback in Ωn:

σ−1(i) zn−mUm

ξi

T
σ

S

which can be calculated as a levelwise pullback in Set.
Now, for a morphism σ :T → S one can construct a labelling of the pasting scheme S� in the

ω-category Tr by associating to a vertex i from S the fiber of σ over i. The result of the pasting
operation will be exactly T . We will use extensively this correspondence between morphisms in
Ωn and pasting schemes in Tr.

Some trees will play a special role in our paper. We will denote by M
j
l the tree

Un ⊗l · · · ⊗l Un︸ ︷︷ ︸
j -times

.

A picture for M
j
l is as follows.
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Now let T be a tree with susp(T ) = l. Then it is easy to see that we have a unique representa-
tion

T = T1 ⊗l · · · ⊗l Tj

where susp(Ti) > l. In [5] we called this representation the canonical decomposition of T . We
also will refer to the canonical decomposition when talking about the morphism

T −→ M
j
l

it generates.

5. n-Operads in symmetric monoidal categories

It is clear from the definitions of the previous section that the assignment to an n-tree

S = [kn] → [kn−1] → · · · → [1]

of its ordinal of tips [kn] gives us a functor

[−] :Ωn → Ωs. (5.1)

We also introduce the notation |S| for the number of tips of the n-tree S.

Here and in all subsequent sections a fiber of a morphism σ :T → S in Ωn will mean only a
fiber over a tip of S. So every σ : T → S with |S| = k determines a list of trees T1, . . . , Tk being
fibers over tips of S ordered according to the order in [S]. From now on we will always relate to
σ this list of trees in this order.

The definition below is a specialisation of a general definition of n-operad in an augmented
monoidal n-globular category M given in [5]. Let (V ,⊗, I ) be a (strict) symmetric monoidal
category. Put M = ΣnV , which means that M has terminal categories up to dimension n − 1
and V in dimension n. The augmented monoidal structure is given by ⊗i = ⊗ for all i. Then an
n-operad in V will mean an n-operad in ΣnV . Explicitly it means the following.

Definition 5.1. An n-operad in V is a collection AT , T ∈ Ωn, of objects of V equipped with the
following structure:

– a morphism e : I → AUn (the unit);
– for every morphism σ : T → S in Ωn, a morphism

mσ :AS ⊗ AT1 ⊗ · · · ⊗ ATk
→ AT (the multiplication).

They must satisfy the following identities:
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– For any composite T
σ−→ S

ω−→ R, the associativity diagram

AR ⊗ AS• ⊗ AT •
1

⊗ · · · ⊗ AT •
i

⊗ · · · ⊗ AT •
k

� AR ⊗ AS1 ⊗ AT •
1

⊗ · · · ⊗ ASi
⊗ AT •

i
⊗ · · · ⊗ ASk

⊗ AT •
k

AS ⊗ AT •
1

⊗ · · · ⊗ AT •
i

⊗ · · · ⊗ AT •
k

AR ⊗ AT•

AT

commutes, where

AS• = AS1 ⊗ · · · ⊗ ASk
,

AT •
i

= AT 1
i

⊗ · · · ⊗ A
T

mi
i

and

AT• = AT1 ⊗ · · · ⊗ ATk
;

– For an identity σ = id :T → T the diagram

AT ⊗ AUn ⊗ · · · ⊗ AUn AT ⊗ I ⊗ · · · ⊗ I

id

AT

commutes;
– For the unique morphism T → Un the diagram

AUn ⊗ AT I ⊗ AT

id

AT

commutes.

The definition of morphism of n-operads is the obvious one, so we have a category of n-
operads in V which we will denote by On(V ).

We give an example of a 2-operad to provide the reader with a feeling of how these operads
look. Other examples will appear later in the course of the paper.

Example 5.1. One can construct a 2-operad G in Cat such that the algebras of G in Cat are
braided strict monoidal categories. If we apply the functor τ to G (i.e. consider it as a 1-terminal
operad in Span(Cat)) then the algebras of τ(G) are Gray-categories [22]. The categories GT
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are chaotic groupoids with objects corresponding to so called T -shuffles. The nice geometrical
pictures below show these groupoids in some low dimensions.

In general, the groupoid GT is generated by the 1-faces of the so-called T -shuffle convex
polytopes PT [7] which themselves form a topological 2-operad. The polytope PT is a point if T

has only one tip. The polytope P
M

j
0

is the permutohedron Pj , and the polytope PM
p
1 ⊗0M

q
1

is the

resultohedron Npq [20,25]. We finish this example by presenting a picture for multiplication in
P (or G if you like). The reader might find this picture somewhat familiar.
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There are similar pictures for higher dimensions. In general the multiplication in P produces
some subdivisions of PT into products of shuffle polytopes of low dimensions. Some special
cases of these subdivisions were discovered in [25]. Two new examples are presented below.

6. Desymmetrisation of symmetric operads

We define the desymmetrisation of an S-operad A ∈ Os(V ) as a pullback along the func-
tor (5.1).

However, since we prefer to work with left symmetric operads the following explicit definition
of the desymmetrisation functor will be used in the rest of this paper.

Let A be a left symmetric operad in V with multiplication m and unit e. Then an n-operad
Desn(A) is defined by

Desn(A)T = A|T |,

with unit morphism

e : I −→ AUn = A1

and multiplication

mσ :A|S| ⊗ A|T1| ⊗ · · · ⊗ A|Tk |
m−→ A|T |

π(σ)−1−−−−→ A|T |

for σ :T → S. We, therefore, have a functor

Desn : SOl(V ) −→ On(V ).

Now we will consider how the desymmetrisation functor acts on endomorphism operads.
Let us recall a construction from [5]. If M is a monoidal globular category then a corollary of

the coherence theorem for monoidal globular categories [5] says that M is a pseudo algebra of
the monad D on the 2-category of globular categories. So we have an action k :D(M) → M and
an isomorphism in the square

D2(M)
D(k)

μ

D(M)

k⇐


D(M)
k

M
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If x : 1 → M is a globular object of M then the composite

t :D(1)
D(x)−−−→ D(M)

k−→ M

can be considered as a globular version of the tensor power functor. The value of this functor on
a tree T is denoted by xT . Moreover, the square above gives us an isomorphism χ :

D2(1)

μ

D(t)
D(M)

kχ

⇐


D(1)
t

M

This isomorphism χ gives a canonical isomorphism

χ :xT ⊗lS → xT ⊗l xS,

for example.
In the special case of M = Σn(V ), we identify globular objects of Σn(V ) with objects of

V and follow the constructions from [5] to get the following inductive description of the tensor
power functor and isomorphism χ .

For the k-tree T , k � n, and an object x from V , let us define the object xT in the following
inductive way:

– If k < n, then xT = I ;
– If k = n and T = zT ′ then xT = I ;
– If k = n and T = Un, then xT = x;
– Now we use induction on susp(T ): suppose we already have defined xS for S such that

susp(S) � k + 1, and let T = T1 ⊗k · · · ⊗k Tj be a canonical decomposition of T . Then we
define

xT = xT1 ⊗ · · · ⊗ xTj .

Clearly, xT is isomorphic to

x ⊗ · · · ⊗ x︸ ︷︷ ︸
|T |-times

.

Now we want to provide an explicit description of χ .

Lemma 6.1. For σ :T → S, the isomorphism

χσ :xT1 ⊗ · · · ⊗ xTk → xT

is induced by the permutation inverse of the permutation π(σ).
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Proof. We will prove the lemma by induction.
If S = Un then χσ is the identity morphism. Suppose we already have proved our lemma for

all σ ’s with codomain being an (l + 1)-fold suspension. As a first step we study χσ in the special
case σ :T → Mk

l .
Now we start another induction on susp(T ). If susp(T ) > l then σ factorises through one of

the tips, so the fibers are either T or degenerate trees and we get

χσ = id : I ⊗ · · · ⊗ xT ⊗ · · · ⊗ I → xT .

If susp(T ) = l then we get

χσ = id :xT1 ⊗ · · · ⊗ xTk → xT .

Suppose we already have proved our lemma for all T with susp(T ) > m. Now suppose we have
a σ with susp(T ) = m < l. In this case we have the canonical decomposition

Ti = T 1
i ⊗m · · · ⊗m T

j
i ,

where j is the same for all 1 � i � k. Then χσ is equal to the composite

xT1 ⊗ · · · ⊗ xTk = (
xT 1

1 ⊗ · · · ⊗ xT
j
1
) ⊗ · · · ⊗ (

xT 1
k ⊗ · · · ⊗ xT

j
k
)

π−1−−→ (
xT 1

1 ⊗ · · · ⊗ xT 1
k
) ⊗ · · · ⊗ (

xT
j
1 ⊗ · · · ⊗ xT

j
k
)

χ1⊗···⊗χj−−−−−−→ xT 1
1 ⊗l ···⊗lT

1
k ⊗ · · · ⊗ xT

j
1 ⊗l ···⊗lT

j
k = xT

where π is the corresponding permutation and χi is already constructed by the inductive hypoth-
esis as susp(T i

1 ⊗l · · ·⊗l T
i
k ) > m. Again by induction χi is induced by the permutation π(φi)

−1,
where

φi :T i
1 ⊗l · · · ⊗l T i

k → Mk
l .

So χσ is induced by Γ (π(ω);π(φ1), . . . , π(φj ))
−1.

From the point of view of morphisms in Ωn what we have used here is a decomposition of σ

into

T
ξ−→ M

j
m ⊗l · · · ⊗l M

j
m

ω−→ Mk
l .

Then we have π = Γ (π(ω);1, . . . ,1). By construction we have π(ξi) = 1 and by the inductive
hypothesis, π(ξ) = Γ (1;π(φ1), . . . , π(φj )). By Lemma 3.1

π(σ) = π(ξ) · Γ (
π(ω);1, . . . ,1

) = Γ
(
1;π(φ1), . . . , π(φj )

) · Γ (
π(ω);1, . . . ,1

)

= Γ
(
π(ω);π(φ1), . . . , π(φj )

)
.

So we have completed our first induction.
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To complete the proof it remains to show the lemma when S is an arbitrary tree with
susp(S) = l. Then we have a canonical decomposition ω :S → M

j
l and we can form the com-

posite

T
σ−→ S

ω−→ M
j
l .

Since ω is an order preserving map, by Lemma 3.1 again,

π(ω) = π(σ · ω) · Γ (
1;π(σ1), . . . , π(σj )

)
.

By the inductive hypothesis again we can assume that we already have proved our lemma for the
σi ’s and, by the previous argument, for σ · ω as well. So the result follows. �

We now recall the construction of endomorphism operad from [5] in the special case of an
augmented monoidal globular category equal to ΣnV , where V is a closed symmetric monoidal
category.

Let x be an object of V . The endomorphism n-operad of a is the following n-operad Endn(x)

in V . For a tree T ,

Endn(x)T = V
(
xT , x

);
the unit of this operad is given by the identity

I → V
(
xUn, x

) = V (x, x)

of x. For a morphism σ : T → S, the multiplication is given by

V
(
xS, x

) ⊗ V
(
xT1 , x

) ⊗ · · · ⊗ V
(
xTk , x

) → V
(
xS, x

) ⊗ V
(
xT1 ⊗ · · · ⊗ xTk , xk

)

1⊗V (χ−1
σ ,xk)−−−−−−−−→ V

(
xS, x

) ⊗ V
(
xT , xk

) −→ V
(
xT , x

)
.

We also can form the usual symmetric endooperad of x in the symmetric closed monoidal
category V [32]. Let us denote this operad by End(x). Now we want to compare Endn(x) with
the n-operad Desn(End(x)). In End(x) the action of a bijection π : [n] → [n] is defined to be

V
(
xn, x

) V (π,x)−1−−−−−−→ V
(
xn, x

)
.

So, for σ :T → S, we have in Desn(End(x)) the multiplication

V
(
x|S|, x

) ⊗ V
(
x|T1|, x

) ⊗ · · · ⊗ V
(
x|Tk |, x

) → V
(
x|S|, x

) ⊗ V
(
x|T1|+···+|Tk |, xk

)

−→ V
(
x|T |, x

) V (π(σ ),x)−−−−−−→ V
(
x|T |, x

)
.

The following proposition follows now from Lemma 6.1 and associativity of composition in V.

Proposition 6.1. For any object x ∈ V , there is a natural isomorphism of n-operads

Endn(x) � Desn

(
End(x)

)
.
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7. Internal algebras of cartesian monads

Suppose C is a category with finite limits. Recall that a monad (T ,μ, ε) on C is called carte-
sian if T preserves pullbacks and μ and ε are cartesian natural transformations in the sense that
all naturality squares for these transformations are pullbacks.

If (T ,μ, ε) is a cartesian monad then it can be extended to a 2-monad T = (T,μ, ε) on the
2-category Cat(C) of internal categories in C. Slightly abusing notation we will speak about cat-
egorical T -algebras, having in mind T-algebras, if it does not lead to confusion. So we can speak
of pseudo-T -algebras, strict morphisms or simply morphisms between T -algebras as well as
strong or pseudo morphisms and lax-morphisms [12,28]. The last notion requires some clarifica-
tion because of the choice of direction of the structure cells. So we give the following definition:

Definition 7.1. Let A and B be two categorical T -algebras. Then a lax-morphism (f,φ) :A → B

is a functor f :A → B together with a natural transformation

T (A) T (B)

φ

⇐


A B

which must satisfy the usual coherence conditions [12,28].

Notice that our terminology is different from [12] but identical with [28]: we call pseudo
morphism what in [12] is called morphism between T -algebras. We introduce the following
notations: AlgT is the category of algebras of T , while CAlgT is the 2-category of categorical
T -algebras and strict categorical T -algebras morphisms. Notice also that CAlgT is isomorphic
to the 2-category of internal categories in the category of T -algebras.

We first make the following observation about algebras and pseudoalgebras in our settings.2

Theorem 7.1. Every pseudo-T -algebra is equivalent to a T -algebra in the 2-category of cate-
gorical pseudo-T -algebras and their pseudo morphisms.

Proof. We can easily adapt the proof of the general coherence result from [33] since our monad
T has the property of preserving functors which are isomorphisms on objects. That is, if f : A →
B is such that f is an isomorphism on the objects of objects then the same is true for Tf. �

In practice, the pseudo-T -algebras are as important for us as strict T -algebras but in virtue of
this theorem we should not worry about this difference.

Now observe, that the terminal category 1 is always a categorical T -algebra.

2 I would like to thank S. Lack for explaining to me that the proof of Power’s general coherence result works in this
situation.
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Definition 7.2. Let A be a categorical T -algebra. An internal T -algebra a in A is given by a
lax-morphism of T -algebras

a : 1 → A.

We have a notion of a natural transformation between internal T -algebras and so a category of
internal T -algebras IAlgT (A).

Obviously, IAlgT (A) can be extended to a 2-functor

IAlgT : CAlgT → Cat.

Theorem 7.2. The 2-functor IAlgT is representable. The representing categorical T -algebra
HT has a characteristic property that its simplicial nerve coincides with May’s two sided bar
construction B�(T ,T ,1) i.e. with the cotriple resolution of the terminal T -algebra.

Proof. Consider the following part of the cotriple resolution of the terminal T -algebra in AlgT :

T (1) T 2(1) T 3(1).

Since T is cartesian, the object above is a truncated nerve of a categorical object HT in AlgT .

The Segal’s conditions follow from the naturality square for the multiplication of T being a
pullback.

Let us prove that HT is a strict codescent object [28,37] of the terminal categorical T -algebra
that is an appropriate weighted colimit of the following diagram T�(1):

T(1) T2(1) T3(1).

Recall [28,37] that for a truncated cosimplicial category E�

E0

d0
s0

E1
d1 d2

d0
d1

E2

one can construct the descent category Desc(E�) whose objects are pairs (a, f ) where a is an
object of E0 and f :d0(a) → d1(a) is a morphism of E1 satisfying the conditions that s0(f )

is the identity morphism of a and d1(f ) is the composite of d2(a) and d0(f ). A morphism in
Desc(E�) from (a, f ) to (b, g) is a morphism u :a → b such that d0(u) · f = g · d1(u).

Let A be a categorical T -algebra and let

E� = CAlgT

(
T�(1),A

)
.

A direct verification demonstrates that Desc(E�) is isomorphic to the category CAlgT (HT ,A).3

Therefore, HT is a codescent object of T�(1).

3 As observed in [37] this is a general fact about the descent category of a truncated cosimplicial category obtained as
Hom(Ner(X),A) where Ner(X) is a nerve of a category considered as a discrete truncated simplicial category.
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On the other hand

CAlgT

(
Tk(1),A

) � Cat(C)
(
Tk−1(1),A

)

and the data for the objects and morphisms in Desc(E�) amount to the data for a lax-morphisms
and their transformations from 1 to A (see [28] for general and detailed consideration).

Finally, the simplicial nerve of HT coincides with the bar construction due to the fact that T

is cartesian and, hence, all Segal’s maps are isomorphisms. �
Corollary 7.2.1. The categorical T -algebra HT has a terminal object given by its canonical
internal T -algebra. In particular, it is contractible.

Proof. The terminality of the internal algebra of HT follows from the pullback of naturality for
the unit of the monad T . �
Example 7.1. Let C = Set and M be the free monoid monad. It is well known that M is finitary
and cartesian. The categorical pseudoalgebras of M are equivalent to monoidal categories. Then
an internal M-algebra in a monoidal category V is just a monoid in V. The category HM is the
category Δalg = Ω1 of all finite ordinals.

Example 7.2. Let C = Globn be the category of n-globular sets [5] and let Dn be the free
n-category monad on Globn [5]. Dn is cartesian and finitary [36]. The algebras of Dn are n-
categories, the categorical algebras are strict globular monoidal categories and pseudoalgebras
are equivalent to globular monoidal categories [5]. An internal Dn-algebra was called an n-
globular monoid in a monoidal globular category. The category HDn is the monoidal globular
category of trees (see Section 4):

1 = Ω0 Ω1
t

s
· · ·t

s
Ωn.

t

s

Now, suppose we have two finitary monads S and T on cocomplete categories C and E

respectively. Suppose also that there is a right adjoint w :C → E and a functor d : AlgS → AlgT

making the following square commutative:

AlgS

d

US

AlgT

UT

C
w

E.

Proposition 7.1. The square above induces a commutative square of left adjoints. All together
these adjunctions can be included in a square which we will refer to as a commutative square of
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adjunctions

AlgS

US

d

AlgT
p

UT

C

FS

w

E.

FT

c

(7.1)

Proof. This is the Adjoint Lifting Theorem 4.5.6 from [13] and it also follows from Dubuc’s
adjoint triangle theorem [18] but for the sake of completeness we provide a proof below.

The problem here is to construct a functor p left adjoint to d. Immediately from the require-
ment of commutativity of the left adjoint square we have pFT � FSc if p exists. We use this
relation as a definition of p on free algebras of the monad T . Notice also that from our assump-
tion of finitarity and cocompleteness we get cocompleteness of the category AlgT .

Let X be an arbitrary algebra of T . Then X is a canonical coequaliser in AlgT :

X ← T (X) ⇔ T 2(X).

The left adjoint p must preserve coequalisers so we define p on X as the following coequaliser
in AlgS :

p(X) ←FScUT (X) ⇔ FScUT FT UT (X).

The first morphism in this coequaliser is induced by the T -algebra structure on X. The second
morphism is a component of the natural transformation

FSc ←− FScUT FT (7.2)

which we construct as follows.
The existence of the functor d making the first square commutative implies the existence of a

natural transformation

Φ = wUSFSc ←− UT FT (7.3)

which actually can be completed to a map of monads Φ ← T . This gives us an adjoint nat-
ural transformation (or mate) USFSc ← cUT FS. One more adjoint transformation gives us the
transformation we required.

It is trivial to check that we have thus constructed a left adjoint to d. �
Corollary 7.1.1. There is a canonical map of monads

T → UT dFSc.

If, in addition, T and S are cartesian monads, the above results can be extended to the
categorical level. Abusing notation once again, we will denote the categorical versions of the
corresponding functors by the same letters if it does not lead to a confusion.
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Definition 7.3. Under the conditions of Proposition 7.1, an internal T -algebra inside a categorical
S-algebra A is an internal T -algebra in d(A).

Let A be a categorical S-algebra. The internal T -algebras in A form a category IAlgS
T (A).

Moreover, we have a 2-functor

IAlgS
T : CAlgS → Cat.

Let us denote by G the composite FSc. Then the transformation (7.2) equips G with the struc-
ture of a module over the monad T . We will require this natural transformation to be cartesian
which implies that the map of monads (7.3) is also cartesian.

Theorem 7.3. Let S and T be finitary cartesian monads and assume that the transformation (7.2)
is cartesian. Then the 2-functor IAlgS

T is representable. The representing categorical S-algebra
hT = p(HT ) has the characteristic property that its nerve coincides with May’s two-sided bar-
construction B�(G,T ,1) i.e. with the image under p of the cotriple resolution of the terminal
categorical T -algebra.

Proof. The proof is analogous to the proof of the Theorem 7.2 but we use the cartesianess of
T -action on G to check that the Segal maps in the simplicial object

G(1) GT (1) GT 2(1) · · ·

are isomorphisms. �
Example 7.3. A trivial case of the adjunction square 7.1 is a map of monads I → T . The functor
d in this case is just the forgetful functor and p = FT . So one can speak about an internal I -
algebra inside a categorical T -algebra. Such an internal algebra amounts just to a morphism of
internal categories

1 → A.

We will call them internal objects of A . The corresponding representing T -algebra hT will be
denoted by HT

d since this is a discretisation of the categorical T -algebra HT and is given by the
constant simplicial object T (1).

Observe, that we can extend the functor d from the square (7.1) to the lax-morphisms between
categorical S-algebras. For this we first observe that the map of monads (7.3) induces a functor
between corresponding categories of algebras and their lax-morphism. Then we can construct a
natural functor from S-algebras and their lax-morphisms to Φ-algebras and their lax-morphisms.
We leave the details to the reader.

Because d(1) = 1, we can construct a 2-natural transformation between 2-functors which we
denote by δ (but we think of it as an internal version of the functor d):

δ : IAlgS → IAlgS
T ,
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which induces a canonical map between representing objects:

ζ :hT → HS. (7.4)

Another way to construct this map is the following. The algebra HS has a canonical internal
S-algebra 1 → HS. If we apply d to this lax morphism we will get

1 = d(1) → d
(
HS

)
.

The last internal T -algebra can be represented by a map HT → d(HS) and by definition this
gives a map (7.4).

Summarizing we have the following

Theorem 7.4. The functor δ is naturally isomorphic to ζ �, the restriction functor along ζ . The
left adjoint to δ is isomorphic to the left Kan extension along ζ in the 2-category of categorical
S-algebras.

8. Symmetrisation of n-operads

Let Colln(V ) be the category of (n− 1)-terminal n-collections [5, section 6], i.e. the category
of n-globular functors Tr(n) → ΣnV. We can identify the objects of Colln(V ) with families of
objects of V indexed by trees of height n. The morphisms are levelwise morphisms. The category
of 1-collection Coll1(V ) is, of course, the same as the category of nonsymmetric collections in
the usual sense.

Theorem 8.1. If V is a cocomplete symmetric monoidal category then the forgetful functor
Rn :On(V ) → Colln(V ) is monadic with left adjoint Fn. The free n-operad monad Fn on the
category Colln(Set) of Set n-collections is finitary and cartesian.

Proof. We first give an inductive construction of the free (n − 1)-terminal n-operad on an n-
collection in a cocomplete symmetric monoidal category V.

Let us call an expression, given by an n-tree T , an admissible expression of arity T . We also
have an admissible expression e of arity Un. If σ :T → S is a morphism of trees and the admissi-
ble expressions xS, xT1, . . . , xTk

of arities S,T1, . . . , Tk respectively are already constructed then
the expression μσ (xS;xT1, . . . xTk

) is also an admissible expression of arity T . We also introduce
an obvious equivalence relation on the set of admissible expressions generated by pairs of com-
posable morphisms of trees and by two equivalences T ∼ μ(T ; e, . . . , e) ∼ μ(e;T ) generated
by the identity morphism of T and a unique morphism T → Un. Notice however, that there are
morphisms of trees all of whose fibers are equal to Un. We can form an admissible expression
μσ (S; e, . . . , e) corresponding to such a morphism but it is not equivalent to S, unless σ is equal
to the identity.

Now if C ∈ Colln(V ) then, with every admissible expression τ of arity T , we can associate
by induction an object C(τ). We start from C(T ) = CT , C(e) = I and put

C
(
μ(xS;xT1, . . . xTk

)
) = C(xS) ⊗ C(xT1) ⊗ · · · ⊗ C(xTk

).



M.A. Batanin / Advances in Mathematics 217 (2008) 334–385 363
By the Mac Lane coherence theorem, this object depends on the equivalence class of an ad-
missible expression only up to isomorphism. So, we choose a representative of C(τ) for every
equivalence class of admissible expressions.

Now, the coproduct
∐

τ C(τ) over all equivalence classes of admissible expressions of arity
T gives us an n-collection in V. We also have a copy of the unit object I of arity Un which
corresponds to the admissible expression e.

It is now a trivial exercise to check that in this way we indeed get a free (n − 1)-terminal
n-operad Fn(C) on C.

It is also very obvious that the monad Fn = RnFn is finitary and cartesian if V = Set . Indeed,
every admissible expression τ determines a non-planar tree decorated by n-trees (this tree actu-
ally has a canonical planar structure inherited from the planar structure of decorations). Such a
decorated tree gives a collection α(τ) which is empty in arities which are not equal to any tree
which is presented in the decoration of τ and equal to a p element set {1, . . . , p} in arity S if S

is presented in the decoration of τ exactly p times. Then

Fn(C) =
∐
τ

Colln
(
α(τ),C

)
,

so Fn is finitary and preserves pullbacks [36] .
It is an easy exercise to check that the multiplication and unit of Fn are cartesian natural

transformations. �
We have a functor

Wn : Coll1(V ) → Colln(V )

defined on a nonsymmetric collection A as follows:

Wn(A)T = A|T |.

If V has coproducts then Wn has a left adjoint Cn:

Cn(B)k =
∐

T ∈Trn, |T |=k

BT . (8.1)

Theorem 8.2. If V is a cocomplete symmetric monoidal category then the forgetful functor
R∞ : SOl(V ) → Coll1(V ) is monadic. The following square of right adjoints commutes:

SOl (V )

R∞

Desn
On(V )

Rn

Coll1(V )

F∞
Wn

Colln(V ).

Fn

Cn

Therefore, by Proposition 7.1 this square can be completed to the following commutative square
of adjoints:
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SOl (V )

R∞

Desn
On(V )

Symn

Rn

Coll1(V )

F∞
Wn

Colln(V ).

Fn

Cn

The free symmetric operad monad F∞ = R∞F∞ on the category of nonsymmetric Set-
collections is finitary and cartesian and the canonical right Fn-action on F∞Cn is cartesian.

Proof. The construction of the left adjoint F∞(C) is classical:

F∞(C)n =
∐
τ

C(τ)

where τ runs over the set of planar trees with n marked leaves labelled by the natural numbers
from 1 to n. The object C(τ) is the tensor product of the C|v|, where v runs over all unmarked
vertices of τ and |v| is the valency (number of input edges) of v. The symmetric groups act
by permutation of labels and the substitution operation is grafting. The properties of F∞ are
obvious.

Now, if V = Set, the composite F∞CnFn(C) is given by the set of labelled planar trees whose
unmarked vertices are decorated by admissible expressions. The number of tips of the arity of the
decoration should be equal to the valency of the vertex. As was observed before each admissible
expression determines a canonical planar tree. So an element of F∞CnFn(C) is given by the
following data:

• a labelled planar tree τ ;
• an assignment of a planar tree ρv decorated by n-trees to each internal vertices v ∈ τ such

that the number of leaves of ρv is equal to |v|;
• an assignment of an element c ∈ CT for each T from the decoration of ρv.

Then the action F∞CnFn(C) → F∞Cn consists of gluing together the planar trees ρv accord-
ing to the scheme provided by τ and forgetting the decorating n-trees. The labeling of leaves and
decorations by elements of C remain in their places. This is obviously a cartesian transforma-
tion. �

We finish this section by a theorem which will show that the functor Symn from the com-
mutative square from Theorem 8.1 is indeed a solution of the symmetrisation problem raised in
Section 2.

Theorem 8.3. For an n-operad A in a closed symmetric monoidal category V, its symmetrisation
Symn(A) from Theorem 8.1 is a solution of symmetrisation problem in the sense of Definition 2.2.

Proof. Indeed, for an object x ∈ V , an A-algebra structure is given by a morphism of operads

k :A → Endn(x).
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By Proposition 6.1,

Endn(x) � Desn

(
End(x)

)
,

and so k determines, and is uniquely determined by, a map of symmetric operads

Symn(A) → End(x). �
9. Internal operads

In virtue of Theorem 8.2 we can develop a theory of internal n-operads inside categorical n-
operads as well as consider internal n-operads and internal symmetric operads inside symmetric
categorical operads. We would like to unpack our definition of internal operads and see what they
really are on practice.

Let A and B be two n-operads in Cat. A lax-morphism

f :A → B

consists of a collection of functors

fT :AT → BT

together with natural transformations

AS × AT1 × · · ·ATk
BS × BT1 × · · ·BTk

μ⇐


AT BT

for every σ :T → S and a morphism ε : eB → eA, where eA, eB are unit objects of A and B,

respectively. They must satisfy the usual coherence conditions. If, however, μ and ε are identities
the lax-morphism will be called an operadic morphism (operadic functor).

In the particular case B = 1, the terminal Cat-operad, a lax-morphism a : 1 → A is an internal
operad in A. Explicitly this gives the following

Definition 9.1. Let A be a categorical n-operad with multiplication m and unit object e ∈ AUn .
An internal n-operad in A consists of a collection of objects aT ∈ AT , T ∈ Trn, together with a
morphism

μσ :m(aS;aT1, . . . , aTk
) −→ aT

for every morphism of trees σ :T → S and a morphism

ε : e → aUn

which satisfy obvious conditions analogous to the conditions in the definition of n-operad.
A morphism f :a → b of internal n-operads is a collection of morphisms fT :aT → bT com-

patible with the operadic structures in the obvious sense.
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Definition 9.2. Let A be a left symmetric operad in Cat. Then an internal n-operad in A is an
internal n-operad in Desn(A).

So an internal n-operad in a symmetric categorical operad is given by a collection of objects
aT ∈ A|T |, T ∈ Trn, together with a morphism

μσ :m(aS;aT1, . . . , aTk
) −→ π(σ)aT

for every σ :T → S and

ε : e → aUn,

which satisfy associativity and unitary conditions.
For a notion of internal symmetric operad in a categorical symmetric operad we have a choice

of three different presentations of the category of symmetric operads. For technical reason it will
be more convenient for us to use left categorical symmetric operads yet the S-version for internal
symmetric operads. That is, we consider internal algebras for the following square of adjoints

SOl (Set)

R∞

Os(Set)

Rs

Coll1(Set)

F∞
W=id

Coll1(Set)

F s

C=id

where horizontal functors are the isomorphisms of categories described in Section 3 and the
functors F s and Rs are determined by commutativity of this square. The result of this mixture is
the following definition:

Definition 9.3. Let A be a symmetric categorical operad. An internal symmetric operad in A

consists of a collection of objects an ∈ An, n � 0, together with a morphism

μσ :m(ak;an1, . . . , ank
) → π(σ)an

for every σ : [n] → [k] in Ωs , and

ε : e → a1,

which satisfy associativity and unitary conditions.

Example 9.1. Let C be a category. We can consider the endomorphism operad End(C) of C in
Cat. An internal 1-operad a in C is what we call a multitensor in C [9]. This is a sequence of
functors

ak :Ck → C

satisfying the usual associativity and unitarity conditions. If ak , k � 1, are isomorphisms then a

is just a tensor product on C. Conversely, every tensor product on C determines, in an obvious
manner, a multitensor on C.
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It makes sense to consider categories enriched in a multitensor. In [9] we show that the cat-
egory of algebras of an arbitrary higher operad A in Span(C) is equivalent to the category of
categories enriched over an appropriate multitensor on the category of algebras of another op-
erad B(A) which is some sort of delooping of A.

Example 9.2. The internal symmetric operads in End(C) were considered by J. McClure and
J. Smith [31] under the name of functor operads. These operads generalise symmetric monoidal
structures on C in the same way as multitensors generalise monoidal structures.

Let COn be the 2-category whose objects are categorical n-operads, morphisms are their
operadic morphisms, and the 2-morphisms are operadic natural transformations. We have the
2-functor

IOn : COn → Cat

which assigns to an operad A the category of internal n-operads in A.
Analogously, let SCO be the 2-category of left symmetric categorical operads, their operadic

functors, and operadic natural transformations. There is the 2-functor

IOsym
n : SCO → Cat

which assigns to an operad A the category of internal n-operads in A. For n = ∞, the functor
IOsym∞ assigns the category of internal symmetric operads in A.

Theorem 9.1.

• For every 1 � n < ∞, there exists a categorical n-operad Hn representing the 2-functor
IOn : COn → Cat;

• There exists a categorical symmetric operad H∞ representing the 2-functor IOsym∞ : SCO →
Cat;

• For every 1 � n � ∞, there exists a symmetric Cat-operad hn representing the 2-functor
IOsym

n : SCO → Cat;
• For a categorical symmetric operad A if the left adjoint symn to the internal desymmetrisa-

tion functor

δn : IOsym∞ (A) → IOsym
n (A)

exists then on an internal n-operad a it is isomorphic to the left Kan extension of the repre-
senting operadic functor ã along the canonical morphism of categorical symmetric operads

ζ : hn → H∞.

Example 9.3. Let V be a symmetric strict monoidal category. Consider the following symmetric
categorical operad V •:

V •
n = V,



368 M.A. Batanin / Advances in Mathematics 217 (2008) 334–385
the multiplication is given by iterated tensor product, the unit of V • is the unit object of V and
the action of the symmetric groups is trivial.

Lemma 9.1. There are the following isomorphisms of categories:

IOsym∞
(
V •) → SOl(V ),

IOsym
n

(
V •) → On(V ).

The existence of one of the functors symn or Symn implies the existence of the other and moreover
the following diagram commutes:

IOsym∞ (V •)
δn

IOsym
n (V •)

symn

SOl (V )
Desn

SOn(V ).
Symn

Proof. The proof is an easy exercise in definitions. �
10. Combinatorial aspects of internal operads

We will now show how to construct the categorical operads hn and Hn combinatorially using
Theorems 7.2, 7.3. We concentrate first on the construction of hn.

Let Trn be the result of application of the functor Cn (see (8.1)) to the collection Fn(1). This
collection is the set of objects of Ωn with the grading according to the number of tips. Now we
can form a free symmetric operad F∞(Trn) on this collection. The elements of F∞(Trn) are the
objects of hn.

Now we want to define morphisms. We will do this by providing generators and relations.
Suppose we have a morphism σ :T → S in Ωn and T1, . . . , Tk is its list of fibers. Then we

will have a generator

γ (σ ) :μ(S;T1, . . . , Tk) → π(σ)T

where μ is the multiplication in F∞(Trn). By the equivariance requirement, we also have mor-
phisms

μ(πS; ξ1T1, . . . , ξkTk) = Γ (π; ξ1, . . . , ξk)μ(S;T1, . . . , Tk)

Γ (π;ξ1,...,ξk)γ (σ )−−−−−−−−−−−→ π · Γ (π; ξ1, . . . , ξk)(σ )T .

For every composite

T
σ−→ S

ω−→ R,

we will have a relation given by the commutative diagram:
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μ(μ(R;S•);T •
1 , . . . , T •

i , . . . , T •
k ) = μ(R;μ(S1;T •

1 ), . . . ,μ(Si;T •
i ), . . . ,μ(Sk;T •

k ))

μ(π(ω)S;T •
1 , . . . , T •

i , . . . , T •
k ) μ(R;π(σ1)T1, . . . , π(σk)Tk)

π(σ ) · Γ (π(ω);1, . . . ,1)T = π(σ · ω) · Γ (1k;π(σ1), . . . , π(σk))T .

We also have a generator

ε : e → Un

and two commutative diagrams

μ(T ;Un, . . . ,Un) μ(T ; e, . . . , e)

id

T

and

μ(Un;T ) μ(e;T )

id

T

as relations.
This operad contains an internal n-operad given by aT = T .
We can construct Hn for all n including n = ∞ in the same fashion.
To better understand the structure of hn, we can describe it in terms of decorated planar trees.
An object of hn is a labelled planar tree with vertices decorated by trees from Trn in the

following sense: to every vertex v of valency k we associate an n-tree with k-tips. The following
picture illustrates the concept for n = 2.
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So, the objects of hn are labelled planar trees with some extra internal structure. The mor-
phisms are contractions or growing of internal edges, yet not all contractions are possible. It
depends on the extra internal structure. We can simultaneously contract the input edges of a
vertex v only if the corresponding n-trees in the vertices above v can be pasted together in the
n-category Trn according to the globular pasting scheme determined by the tree at the vertex v.
In the above example we see that the trees on the highest level are fibers over a map of trees:

So in h2 we have a morphism corresponding to the σ from the object above to the object

The case n = 1 is well known.
Indeed, with n = 1 all the decorations are meaningless. Yet, the morphisms in h1 correspond

only to order-preserving maps between ordinals.
Therefore the operad h1 coincides with the symmetrisation of the nonsymmetric operad h

described in [4], which is, indeed, H1 in our present terminology. For a discussion on it the
reader may also look at [16]. The objects of H1

k are bracketings of the strings consisting of
several 0’s and symbols 1, . . . , k in fixed order without repetition. Multiple bracketing like (((. . .)))

and also empty bracketing ( ) are allowable. The morphisms are throwing off 0’s, removing
and introducing a pair of brackets, and also a morphism ( ) → (1). The symmetric groups act
by permuting the symbols 1, . . . , k. The operad multiplication is given by replacing one of the
symbols by a corresponding expression.

It is clear that π0(h1
k) = Σk and all higher homotopy groups vanish. In other words h1 is an

A∞-operad. The algebras of h1 in Cat are categories equipped with an n-fold tensor product
satisfying some obvious associativity and unitarity conditions. For example, instead of a single
associativity isomorphism we will have two, perhaps noninvertible, morphisms from two differ-
ent combinations of binary products to the triple tensor product; that is, a cospan

(a ⊗ b) ⊗ c −→ a ⊗ b ⊗ c ←− a ⊗ (b ⊗ c).

Instead of the pentagon, we will have a barycentric subdivision of it and so on. Such categories
were called lax-monoidal in [16].

The operad H∞ is also classical. All the decorations again collapse to a point. But morphisms
are more complicated and correspond to the maps of finite sets. So we can give the following
description of the operad H∞. A typical object of H∞

n is a planar tree equipped with an injective
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function (labelling) from [n] to the set of vertices of this tree. The symmetric group acts by per-
muting the labels. The morphisms are generated by contraction of an internal edge, growing of an
internal edge, and dropping unlabelled leaves, with usual relations of associativity and unitarity.
We also will have an isomorphism T → πT for every permutation π ∈ Sn. This isomorphism
should satisfy obvious equivariancy conditions. Again the H∞-algebras in Cat are symmetric
lax-monoidal categories in the terminology of [17].

The internal operad is given by the trees

and this is a terminal object in H∞. Hence, the nerve of H∞ is an E∞-operad.

Remark 10.1. The trees formalism from [21, Section 1.2] is actually a special case of our Theo-
rem 9.1 with n = ∞ and A = V • for a symmetric monoidal category V .

To clarify the structure of hn for 2 � n < ∞ we provide a part of the picture of h2
2:

The reader can find an analogy with a diagram from the construction of the braiding in Propo-
sition 5.3 from [24]. The reader may also look at a similar picture for the category m̃2

2 where
m̃2 is a Cat-operad constructed in [3]. We also recommend the reader look at the picture of m̃3

2
in [3], which looks like a two-dimensional sphere, and try to construct a similar picture in h3

2. Of
course, these are not accidental coincidences as we will show in the next paper [6].
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11. Example: Iterated monoidal category operad

First of all we briefly review the construction of the iterated monoidal category operad mn

introduced in [3].
The objects of mn

k are all finite expressions generated by the symbols 1, . . . , k and n asso-
ciative operations 
1, . . . ,
n in which each generating symbol occurs exactly once. There is a
natural left action of symmetric group on mn

k and an operation of substitution which provides an
operadic structure on the objects of mn.

Now we can describe the morphisms in mn. They are generated by the middle interchange
laws

ηij : (1 
i 2) 
j (3 
i 4) → (1 
j 3) 
i (2 
j 4), j < i, (11.1)

substitutions and permutations, and must satisfy the coherence conditions specified in the first
section of [3]. It was shown in [3] that the operad mn is a poset operad. The algebras of mn in
Cat are iterated n-monoidal categories, i.e. categories with n strict monoidal structures which are
related by interchange morphisms (not necessary isomorphisms) satisfying some natural coher-
ence conditions. They are also monoids in the category of iterated (n − 1)-monoidal categories
and they lax monoidal functors.

We also would like to introduce another categorical symmetric operad m̃n which is con-
structed in the same way as mn but we use operations 
0, . . . ,
n−1 and we reverse the direction
of the interchange law (11.1.

This is the picture of m̃2
2 .

1 
0 2

1 
1 2

η01

η01

2 
1 1

η01

η01

2 
0 1

There is an obvious isomorphism of operads mn and (m̃n)op. So the algebras of m̃n are
monoids in the category of iterated (n − 1)-monoidal categories and their oplax monoidal func-
tors. Of course, these two operads have the same homotopy type. We consider here the operad
m̃n simply because it is better adapted to our agreement about directions of middle interchange
cells and numeration of operations, which makes our proof easier to follow.

Theorem 11.1. The categorical symmetric operad mn contains both an internal n-operad and
internal n-cooperad. The same is true for the operad m̃n.

Remark 11.1. We did not discuss the notion of internal n-cooperad but it can be easily obtained
from the definition of internal n-operad by inverting the structure cells.

Proof. We will give a proof that m̃n contains an internal n-operad. The other statements of the
theorem follow. It is sufficient to change the numeration and reverse the direction of morphisms
in an appropriate way.
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We have to assign an object aT ∈ m̃n
k to every n-tree T with |T | = k. We will do it by induc-

tion. We put aT = 1 for all trees with |T | = 0,1. In particular, aUn = 1. Now, suppose we have
already constructed aT for all trees which are (n − k)-fold suspensions. Suppose a tree T is an
(n − k − 1)-fold suspension. Take a canonical decomposition

T = T1 ⊗n−k−1 T2 ⊗n−k−1 · · · ⊗n−k−1 Tr .

Then we put

aT = m(1 
n−k−1 2 
n−k−1 · · · 
n−k−1 r;aT1 , aT2, . . . , aTr ),

where m is the multiplication in m̃n.

Example 11.1. To give an idea how the operad multiplication in a looks we present the following
2-dimensional example.

In this picture the map of trees is given by

σ(1) = 1, σ (2) = 2, σ (3) = 1, σ (4) = 2,

π(σ ) = (1324).

Then

aT = (1 
1 2) 
0 (3 
1 4),

m(aS;aT1, aT2) = m(1 
1 2;1 
0 2,1 
0 2) = (1 
0 2) 
1 (3 
0 4),

and the operadic multiplication μσ is given by the middle interchange morphism

η1,2,3,4 : (1 
0 2) 
1 (3 
0 4) −→ (1 
1 3) 
0 (2 
1 4).

Before we construct the multiplication in general we have to formulate the following lemma
whose proof is obtained by an obvious induction.

Lemma 11.1. Let the n-tree T be

T = [kn] ρn−1−−−→ [kn−1] ρn−2−−−→ · · · ρ0−→ [1],
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then an element u 
i v is in aT in the sense of [3] if and only if u < v and

ρn−1 · · · · · ρi(u) = ρn−1 · · · · · ρi(v)

but

ρn−1 · · · · · ρi+1(u) �= ρn−1 · · · · · ρi+1(v).

Now we want to construct the multiplication mσ in the special case where

σ :T → M2
k .

So we have to construct a morphism

m(1 
k 2;aT1, aT2) −→ π(σ)aT .

According to [3] we have to check that u 
i v in m(1 
k 2;aT1, aT2) implies either u 
j v in
π(σ)aT for j � i or v 
j u in π(σ)aT for j < i.

Recall that m(1 
k 2;aT1, aT2) = aT1 
k ¯aT2 where ¯aT2 is the same expression as aT2 but all
numbers are shifted on |T1|. Let ξi :Ti → T , i = 1,2 be inclusions of Ti as ith fiber.

Now, suppose u 
i v is in aT1 . By our lemma it means that u < v and

ρn−1 · · · · · ρi(u) = ρn−1 · · · · · ρi(v)

but

ρn−1 · · · · · ρi+1(u) �= ρn−1 · · · · · ρi+1(v)

in T1. Hence, we have ξ1(u) < ξ1(v) and

ρn−1 · · · · · ρi

(
ξ1(u)

) = ρn−1 · · · · · ρi

(
ξ1(v)

)

but

ρn−1 · · · · · ρi+1
(
ξ1(u)

) �= ρn−1 · · · · · ρi+1
(
ξ(v)

)

in T . But π(σ)(ξ1(w)) = w by definition of π(σ). Therefore, π(σ)−1u < π(σ)−1v and

ρn−1 · · · · · ρi

(
π(σ)−1u

) = ρn−1 · · · · · ρi

(
π(σ)−1v

)

but

ρn−1 · · · · · ρi+1
(
π(σ)−1u

) �= ρn−1 · · · · · ρi+1
(
π(σ)−1v

)

in T . By our lemma it follows that u 
i v is in aT .
The same argument applies if u 
i v is in ¯aT2 but all numbers must be shifted on |T1|.
Now suppose u is in aT1 but v is in ¯aT2 . This means that u 
k v is in aT1 
k ¯aT2 .
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We have two possibilities. The first is

ρn−1 · · · · · ρk(u) = ρn−1 · · · · · ρk(v)

where the first composite is in T1 and the second is in T2. This means that

ρn−1 · · · · · ρk

(
ξ1(u)

) = ρn−1 · · · · · ρk

(
ξ2(v)

)

already in T . But σ is a morphism of trees, hence, preserves order on fibers of ρk and we have
ξ1(u) < ξ2(v), hence, again π(σ)−1u < π(σ)−1v and

ρn−1 · · · · · ρk

(
π(σ)−1u

) = ρn−1 · · · · · ρk

(
π(σ)−1v

)

and therefore u 
k v is in π(σ)aT .
The last possibility is

ρn−1 · · · · · ρl(u) = ρn−1 · · · · · ρl(v)

for some l < k but

ρn−1 · · · · · ρl+1(u) �= ρn−1 · · · · · ρl+1(v)

again in T1 and T2 respectively. Then

ρn−1 · · · · · ρl

(
ξ1(u)

) = ρn−1 · · · · · ρl

(
ξ2(v)

)

for some l < k; but

ρn−1 · · · · · ρl+1
(
ξ1(u)

) �= ρn−1 · · · · · ρl+1
(
ξ2(v)

)

already in T . By the usual argument it follows that either u 
l v or v 
l u is in π(σ)aT , and that
finishes the proof of the special case.

Now, suppose we have constructed mσ for all σ whose codomain is S = M
j
k and where j � m.

Then, for S = Mm+1
k ,

aS = m(1 
k 2;aS1, aS2)

and an easy inductive argument can be applied.
In general, let σ :T → S be a morphism of trees. If S = Un then we put μσ = id . Now suppose

we already have constructed μσ for all σ with codomain being an (n − k)-fold suspension. Let
S be an (n − k − 1)-fold suspension. Then the canonical decomposition of S gives us

ω :S → M
j

n−k−1

with (n − k)-fold suspensions Si , 1 � i � r , as fibers. We have
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m(aS;aT1, . . . , aTk
)

= m
(
m(1 
n−k−1 · · · 
n−k−1 r;aS1 , . . . , aSr ), aT1 , . . . , aTk

)

= m
(
1 
n−k−1 · · · 
n−k−1 r;m(aS1;aT 1

1
, . . . , a

T
m1
1

), . . . ,m(aSr ;aT 1
r
, . . . , aT

mr
r

)
)
.

By the inductive hypothesis we already have mσi
for the fibers of σ . So we have a morphism

m(1,mσ1 , . . . ,mσr ) :m
(
1 
n−k−1 · · · 
n−k−1 r;m(aS1;aT 1

1
, . . . , a

T
m1
1

), . . . ,

m(aSr ;aT 1
r
, . . . , aT

mr
r

)
) −→ m

(
1 
n−k−1 · · · 
n−k−1 r;π(σ1)aT ′

1
, . . . , π(σr)aT ′

r

)
,

where T ′
1, . . . , T

′
r are fibers of σ · ω. But

m
(
1 
n−k−1 · · · 
n−k−1 r;π(σ1)aT ′

1
, . . . , π(σr)aT ′

r

)

= Γ (1,πσ1, . . . , πσr)m(1 
n−k−1 · · · 
n−k−1 r;aT ′
1
, . . . , aT ′

r
).

Now we already have the morphism

mσ ·ω :m(1 
n−k−1 · · · 
n−k−1 r;aT ′
1
, . . . , aT ′

r
) → π(σ · ω)aT .

So we have

Γ (1,πσ1, . . . , πσr)mσ ·ω :Γ (1,πσ1, . . . , πσr)m(1 
n−k−1 · · · 
n−k−1 r;aT ′
1
, . . . , aT ′

r
)

−→ Γ (1,πσ1, . . . , πσr)π(σ · ω)aT .

By Lemma 3.1,

Γ (1,πσ1, . . . , πσr)π(σ · ω) = Γ
(
π(ω),1, . . . ,1

)
π(σ).

But ω is order preserving, hence, the last permutation is π(σ). So the composite

m(1,mσ1 , . . . ,mσr ) · Γ (1,πσ1, . . . , πσr)mσ ·ω

gives us the required morphism

μσ :m(aS;aT1, . . . , aTk
) −→ π(σ)aT .

Associativity and unitarity of this multiplication are trivial because m̃n is a poset operad. �
In [3], a morphism of categorical operads

mn −→ K(n)

is constructed. Here K(n) is the nth filtration of Berger’s complete graph operad [10], which plays
a central role in his theory of cellular operads. So we have

Corollary 11.1.1. K(n) contains an internal n-operad and an internal n-cooperad.
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12. Free internal operads

In this section we apply the techniques described in Theorem 9.1 to get some formulas which
will be of use in the final section as well as in [6].

Definition 12.1. We call a categorical n-operad cocomplete if each category AT is cocomplete
and multiplication in A preserves colimits in each variable. We give a similar definition of co-
completeness for symmetric operads.

An internal object in an n-operad A (see example on page 28) will be called an internal n-
collection in A. So we have a category of internal n-collections IColln(A) and the corresponding
categorical operad Hn

d which represents this 2-functor.

Example 12.1. Let A = Desn(V
•) for a symmetric monoidal category V . Then the category

IColln(A) is isomorphic to the category Colln(V ) of n-collections in V.

Given an internal n-collection x in A we will denote by x̃ : Hn
d → A the corresponding op-

eradic functor.

Theorem 12.1. Let A be a cocomplete categorical n-operad.
The free internal n-operad on an n-collection x is given by the formula

Fn(x)T =
∐

W∈Hn
T

x̃(W).

More generally, the kth iteration of F is given by the formula

Fk
n (x)T =

∐

W1
f1←−−W2

f2←−−··· fk−1←−−−−Wk

x̃(Wk),

where f1, . . . , fk−1 are morphisms in Hn
T .

Proof. The left Kan extension in the 2-category of categorical n-collections of x̃ along the in-
clusion i : Hn

d → Hn is given by the following formula

Lani (x̃)(W) =
∐

W←W ′
x̃(W ′). (12.1)

We are going to prove that it is also a left Kan extension in COn. We have thus to show that
the functor Lani is operadic.

Indeed, let σ :T → S be a morphism of trees and let WS ∈ Hn
S,W1 ∈ Hn

T1
, . . . ,Wk ∈ Hn

Tk
.

Then

μA

(
Lani (x̃)(WS);Lani (x̃)(W1), . . . ,Lani (x̃)(Wk)

)

�
∐

W ←W ′ ,W ←W ′ ,...,W ←W ′
x̃(W ′

S) × x̃(W ′
1) × · · · × x̃(W ′

k)
S S 1 1 k k



378 M.A. Batanin / Advances in Mathematics 217 (2008) 334–385
=
∐

μ(WS ;W1,...,Wk)←μ(W ′
S ;W ′

1,...,W
′
k)

x̃
(
μ(W ′

S;W ′
1, . . . ,W

′
k)

)

�
∐

μ(WS ;W1,...,Wk)←W ′
x̃(W ′) = Lani (x̃)

(
μ(WS;W1, . . . ,Wk)

)
,

since x̃ is an operadic functor and by the inductive construction of objects and morphisms in Hn.
Analogously one can prove that the counit of this adjunction is operadic. It is straightforward
now to show that this is really an operadic adjunction.

Let us denote by Lan the monad generated by the adjunction Lani � i�. Then from the formula
(12.1) we have the following formula for the iteration of this monad:

Lank(x̃)(W) =
∐

W
f0←−−W1

f1←−−W2
f2←−−··· fk−1←−−−−Wk

x̃(Wk), (12.2)

where f0, . . . , fk−1 are morphisms in Hn.
To obtain the formula for the free operad it is enough to evaluate the formula (12.1) at T .

Since T is the terminal object in Hn
T we get the formula as in the statement of the theorem.

Analogously one obtains the formula for the iterated free operad monad. �
Remark 12.1. We will encounter a similar situation with the calculation of a Kan extension in
Theorem 13.1.

The analogous result holds in the case of symmetric operads.

Theorem 12.2. Let A be a cocomplete symmetric categorical operad.
The free internal symmetric operad on a nonsymmetric internal collection x is given by the

formula

F∞(x)m =
∐

W∈H∞
m

x̃(W).

More generally, the kth iteration of F∞ is given by the formula

Fk∞(x)m =
∐

W1
f1←−−W2

f2←−−··· fk−1←−−−−Wk

x̃(Wk),

where f1, . . . , fk−1 are morphisms in H∞
m .

13. Colimit formula for symmetrisation

Now we return to the study of the canonical operadic functor

ζ : hn → H∞

Lemma 13.1. For n � 2 the functor ζ is final (in the sense of [29]).
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Proof. The functor ζ is surjective on objects by construction. Hence, it will be sufficient to
prove that, for any morphism f :a → b in H∞ and any objects a′, b′ ∈ hn such that ζ(a′) = a

and ζ(b′) = b, there exists a chain of morphisms in hn

b′ ← x1 → ·· · ← xi+1
f ′−→ xi ← ·· · ← xm → a′

with the following properties:

– there exists an 0 � i � m such that ζ(f ′) = f ;
– the image under ζ of any other arrow is either a retraction or its right inverse;
– the image under ζ of a composite of the appropriate morphisms or their inverses gives an

identity ζxi → a;
– the image under ζ of a composite of the appropriate morphisms or their inverses gives an

identity ζxi+1 → b.

If these all are the case then the following commutative diagram provides a path between any
two objects in the comma-category of ζ under the object a from H∞.

ζ(b) a
f

f

id
id id

g

g

ζ(c)

ζ(xi)

id

ζ(yj )

id

ζ(xi+1)

f

ζ(a′)id id
ζ(yj+1)

g

It is clear that it will be enough to show that the above property holds for a generating mor-
phism

f :μ
([k]; [n1], . . . , [nk]

) −→ π(σ)[m]
which corresponds to the morphism of ordinals σ : [m] → [k].

Let the trees T , S and T1, . . . , Tk be such that

ζ(T ) = [m],
ζ(S) = [k],

ζ(Ti) = [mi], 1 � i � k.

Then

ζ
(
μ(S,T1, . . . , Tk)

) = μ
([k], [m1], . . . , [mk]

)
.

Let

T ′ = Mm
0 , S′ = Mk

n−1 and T ′
i = M

mi .
0
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Then σ determines a unique morphism σ ′ :T ′ → S′ in Ωn with σ ′
n = σ . This morphism gives

the following morphism in hn:

f ′ :μ(S′;T ′
1, . . . , T

′
k) → π(σ)T ′

with ζ(f ′) = f .
There is also a unique morphisms S → S′ with ξn = id, which gives a morphism

ξ :μ(S′;S′
1, . . . , S

′
k) → S

in hn. Every S′
i has a unique tip. Hence, we have a morphism

ψ :μ(S′;S′
1, . . . , S

′
k) → μ(S′;Un, . . . ,Un) → S′

in hn. Now

ζ(ξ) = ζ(ψ) :μ
([k]; [1], . . . , [1]) → [k]

is a retraction in H∞. So we get a chain of morphisms

μ(S′;T ′
1, . . . , T

′
k) ← μ

(
μ(S′;S′

1, . . . , S
′
k);T ′

1, . . . , T
′
k

) → μ(S;T ′
1, . . . , T

′
k)

in hn.

We continue by choosing a unique morphism φ :T ′ → T with φn = id and construct the
other side of the chain analogously. Finally observe, that we have morphisms σ ′

i :T ′
i → Ti with

(σ ′
i )n = id which allow us to complete the construction. �
Recall that

ζ ∗ : IOsym∞ (A) → IOsym
n (A)

means the restriction functor along ζ. By Theorem 9.1, ζ ∗ is isomorphic to the functor of internal
desymmetrisation δn.

Theorem 13.1. Let A be a cocomplete categorical symmetric operad, then a left adjoint symn to
ζ ∗ exists, and on an internal n-operad a ∈ IOsym

n (A), is given by the formula

(
symn(a)

)
k
� colim

hn
k

ãk

where ãk : hn
k → Ak is the operadic functor representing the operad a.

Proof. The case n = 1 is well known. For an internal symmetric operad x the internal 1-operad
ζ �(x) has the same underlying collection as x and the same multiplication for the order preserv-
ing maps of ordinals. So the left adjoint to ζ � on object a is given by

(
sym1(a)

)
n

=
∐

an
Σn
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which is the same as the colimit of ã over h1 (see the description of h1 in Section 10).
Let x : hn → A be an operadic functor, n � 2. If we forget about the operadic structures on

hn,H∞ and A, we can take a left Kan extension

hn
x

ζ

A

φ⇐


H∞

L=Lanζ (x)

of x along ζ in the 2-category of symmetric Cat-collections. Since multiplication m in A pre-
serves colimits in each variable, the following diagram is a left Kan extension:

hn
k × hn

n1
× . . . × hn

nk

φk×φn1×···×φnk

Ak × An1 × · · · × Ank

m−→ An1+···+nk

⇐


H∞
k × H∞

n1
× · · · × H∞

nk
.

Lk×Ln1 ×···×Lnk

On the other hand, since ζ and x are strict operadic functors we have a natural transformation

hn
k × hn

n1
× · · · × hn

nk

μ

Ak × An1 × · · · × Ank

m−→ An1+···+nk

hn
n1+···+nk

φ⇐


H∞
k × H∞

n1
× · · · × H∞

nk

μ
H∞

n1+···+nk

L

and by the universal property of Kan extension we have a natural transformation

ρ :m(Lk;Ln1, . . . ,Lnk
) → Ln(μ)

which determines a structure of lax-operadic functor on L. Moreover, φ becomes an operadic
natural transformation.

Now the sequence of objects L(p) = L([p]), p � 0, has a structure of an internal symmetric
operad in A. For a map of ordinals σ : [p] → [k], let us define an internal multiplication λσ by
the composite

m
(
L(k);L(p1), . . . ,L(pk)

) ρ−→ L
(
μ

([k], [p1], . . . , [pk]
)) −→ L

(
π(σ)[p]) = π(σ)L(p).



382 M.A. Batanin / Advances in Mathematics 217 (2008) 334–385
Let us denote this operad by L(x).
The calculation of L(p) can be performed by the classical formula for pointwise left Kan

extension [29]. It is therefore colimf ∈ζ/[p] δ, where δ(f ) = x(S) for an object f : ζ(S) → [p]
of the comma category ζ/[p]. But according to the remark after Theorem 9.1, [p] is a terminal
object of H∞

p and therefore

colim
f ∈ζ/[p] δ � colim

hn
p

xp.

It remains to prove that the internal operad L(ã) is symn(a). Indeed, for a given operadic
morphism L(ã) → b the composite

ã
φ−→ ζ ∗L(ã) → ζ ∗b̃

is operadic since φ is operadic. But ζ is final and, therefore, the counit of the adjunction ζ ∗ �
Lanζ is an isomorphism. So for a given operadic morphism ã → ζ ∗b̃ of internal n-operads the
morphism

L(ã) → L
(
ζ ∗b̃

) � b̃

is operadic, as well. So the proof of the theorem is completed. �
Corollary 13.1.1. Let A be an n-operad in a cocomplete symmetric monoidal category and V,

then

(
Symn(A)

)
k
� colim

hn
k

Ãk

where Ãk : hn
k → V • is the operadic functor representing the operad A.

Theorem 13.2. The isomorphism

hn −→ Symn

(
Hn

)

induces a canonical isomorphism

N
(
hn

) −→ Symn

(
N

(
Hn

))
.

Proof. We have to calculate the result of the application of Symn to the simplicial Set n-operad
F�

n(1) = B(Fn,Fn,1).
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We have the following commutative diagram:

COn(Hn
d,Desn(Set•)) COn(Hn,Desn(Set•))i�

ev

On(Set)

SCO(hn
d,Set•) SCO(hn,Set•)

j�
sev

where the vertical morphisms are canonical isomorphisms and the horizontal morphisms are the
corresponding restriction functors. In this diagram

sev : SCO
(
hn,Set

) −→ On(Set)

is the isomorphism which gives an n-operad by evaluating an operadic functor on the generating
objects of hn and ev the corresponding evaluation functor for n-operads.

Observe that the simplicial operad F�
n(1) is the result of application of the functor ev to the

simplicial operadic functor Lan�(1̃) = B(Lan,Lan, 1̃) from Theorem 12.1.
This diagram above shows that

ev
(
Lan�(1̃)

) = sev
(
lan�(1̃)

)
,

where the monad lan is the monad generated by the adjunction j� � Lanj , which is an operadic
adjunction by an argument analogous to the proof of the Theorem 12.1. We can also prove the
following analogue for the formula (12.2):

lank(x̃)(W) =
∐

W
f0←−−W1

f1←−−W2
f2←−−··· fk−1←−−−−Wk

x̃(Wk), (13.1)

where f0, . . . , fk−1 are morphisms in hn.
Applying the functor Lanζ to the operadic functor lank(x̃) we have

Lanζ

(
lank(x̃)

) = Lanζ

(
Lanj

(
j�lank−1(x̃)

)) � Lanζ ·j
(
j�lank−1(x̃)

)
. (13.2)

The left Kan extension Lanζ ·j (x̃) is given by the formula

Lanζ ·j (x̃)(V ) =
∐

V
f←− ζ(W)

x̃(W), (13.3)

where f runs over the morphisms of H∞. So, combining formulas (13.1)–(13.3) we get

Lanζ

(
lank(x̃)

)
(V ) �

∐

V
f←− ζ(W)

∐

W
f0←−−W

f1←−−W
f2←−−··· fk−2←−−−−W

x̃(Wk−1). (13.4)
1 2 k−1
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Now to calculate the pth space of Symn(N(Hn)) = Symn(sev(lan�(1̃))) we have to put x = 1 and
evaluate (13.4) at V = [p]. Since [p] is a terminal object we have

Symn

(
N

(
Hn

)
p

)k �
∐

W0
f0←−−W1

f1←−−W2
f2←−−··· fk−2←−−−−Wk−1

1 = N
(
hn

p

)k
.

It is not hard to see that these isomorphisms agree with face and degeneracy operators. �
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