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1. INTRODUCTION 

We consider equations 

in a bounded simply connected region G, where k( ~1) $0 for y $0 and G is 
bounded by the curves r,,, f-, , fz. Hereby r,, is a piecewise smooth curve 
lying in the half-plane y>O which intersects the line y=O in the points 
A( - 1,0) and B(0, 0). f, is a piecewise smooth curve through A in y < 0 
which meets the characteristic of (1.1) issued from B at the point C and Tz 
consists of the portion CB of the characteristic through B. We assume that 
r, either lies in the characteristic triangle formed by the characteristics 
through A and B (Frank1 problem) or coincides with the characteristic 
through A (Tricomi problem). We ask for sufficient conditions for the 
existence of generalized solutions of the problem 

LCUI =f(x, ?‘, u) in G, ulrour, =a (1.2) 

In principle, the case that f-r piecewise has characteristic direction brings 
no difficulties, but it is not considered. 

Remark 1.3. The question arises immediately why in Eq. (1.1) the term 
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c(,Y, y, u) u is not combined with the non-linear term ,f‘(.u, ~1, u). However, 
as we shall see, different assumptions on c(.Y, ~9, u) and f(.~, ~9, U) are 
needed for the existence of generalized solutions; e.g., for the function 
.f(s, ~9, U) a growth condition is essential (Theorem 2.l(iii)) whereas for 
c(.Y, ~1, U) a sign condition is needed (Theorem 2.l(ii)). 

To our knowledge there are very few papers in the literature which deal 
with the question of uniqueness and existence for quasi-linear of mixed 
type. For uniqueness theorems for the Tricomi problems we refer to the 
survey paper of Gvazava [3], and the references contained therein, where 
with use of a maximum principle and under certain growth conditions on 
.f(s, J’, U) uniqueness theorems are given. 

For existence theorems for generalized solutions for Eq. (2.11) we only 
know of the paper of Podgaev [S]. In [8] only the special case is treated, 
in which f, is not-a characteristic and the domain for J’< 0 is bounded by 
the curve f, and the portion CB of the I.-axis, where C is the point of inter- 
section of r, with the ),-axis. 

2. NOTATIONS 

If we use Pfaffian forms ([4,9]) and introduce the operator 

Eq. ( 1.1) becomes 

LCul[d,u, dv] = [d, d,u] + [d, 4.x, y, u) u dv- b(x, y, u) u d*x] 

+ c(x, ?‘, u) u[d-x, dY] =f(x, y, u)[dx, dY] 
(2.2) 

with 

The adjoint boundary conditions for (2.3) [9, p. 2481 are 

“I/-““,=0 for the Tricomi problem, 
(2.4) 

4ro,r,,r:=0 for the Frank1 problem. 

We introduce the function spaces 

(2.5) 
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If u E U and u E V, or u E V, the formal application of Green’s theorem to 
(2.2) gives 

From (2.5) we conclude 

for u E U and u E V, or t’ E V,. Thus we have formally for the problem (2.2) 
and (2.3) the identity 

= 
JS 
- G f(x, y, u) L$dX, &I for all 2.4 E U, u E V, or ~1 E V,. (2.7) 

As is known, (2.7) gives the basis for the definition of generalized solutions. 
To this end we introduce the spaces H,(bd, k) and H,(bd*, k), which are 
obtained by the completion of the function spaces (2.5) with respect to a 
weighted norm involving the function ko)). More precisely we denote 

H,(bd, k) := { 1 u UEU} llull,,k= 
(2.8) 

We observe the fact that for the Tricomi problem H,(bd*, k) is the closure 
of the space V, while for the Frank1 problem it is the closure of I’,. 
Nevertheless in the sequel we call the space H,(bd*, k) the space adjoint to 
the space H,(bd, k). 
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DEFINITION 2.9. A function UE H,(bd, k) n L,,(G) (V > 2) is called a 
generalized solution of ( 1.2 ) if 

B[u, v] = i-j- f(.u, y, u) u dx dy for all v~H,(bd*,k)nL,..(G), (2.10) 
- G 

where v and v’ are chosen in such a way that all integrals in (2.10) exist. 

We now give an existence theorem for a special case of Eq. ( 1.1). The 
proof of this theorem in the following sections indicates the method of 
approach in dealing with the more general equation (1.1). 

THEOREM 2.1. If 

(i) k(y)EC.‘(G); k(y)$O for J~$O; yk’(y)ak(y) for ~20; 
k’iikl’,*~L,:,,_.,,(G) roithp=p+2andsE(1,2), 

(ii) c,(x,.v)~C’(G); (a+ 1)c,(x,~)+?rc,,(.u,~)+r*?v~,(x,~?)~O for 

y20, c,(s,~)+xc,~(x,y)~O for yB0, a~(+, l), 
(iii) f(x, y, u) = I/r/ iv2 f,(.u, y. u) and continuous \zith respect to u; 

llfilI~2,c+&+K, llull~~,,, p=p+2, c,l,,60, 
(iv) k(~)nf+n~I.,BO,n, I.,>O;xn,+cr?n,I,,,<O,where(n,,n,)is 

the inward normal vector, 

then there exists a generalized solution of the boundary value problem 

L[u]=k(?‘)u,,+u,.,.+c,(X,y)U-llUI”U=f(.y,~,U), 

p > 0, J/d I /-0” r, = 0; 
(2.11) 

i.e., there exists a u E H,(bd, k) n L,(G), p = p + 2, such that 

B[u, v] = -jjG {k(- v u.v, + u,.~‘,. - c,(.Y, y) uv+ lulp UC} d.u dy ) 

= ‘Gf(--. 
JI 

I y,u)vd.xdyforallv~H,(bd*,k)nL,(G). 

It can be seen that under our assumptions the integrals on the left side of 
(2.12) exist. The existence of the integral jjG f(x, J-, u) u d-x dy follows from 
(iii) and (4.15). 

3. PRELIMINARY LEMMA 

LEMMA 3.1. Suppose 

(i) k(y)ECO(G)nC’(G+); k(y)50 for ~$0, yk’(y)>k(y) for 

1’ 2 0, 
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(ii) k(y)n:+n:I.,~O,n,I,,>O;xn,+a~n,I,,~O,~~lhere(n,,n,)is 
the inward normal vector, a E (t, 1). 

(iii) WL = hFj nH,(bd*,k)nL,(G), p=p+2, is a complete 
system qffunctions, 

then there exist solutions (P”E H,(bd, k)n L,,(G), n E N, for all v>2 of the 
boundary value problems 

(3.2) 

rrhere 

a,=x, a2=ay for y>O 

=o for ~60. 

Proof: For fixed n E N, (3.2) is a partial differential equation whose 
characteristics by condition (ii) cannot intersect the curves r,, and r, more 
than once. The solution cp” of this equation is a smooth function except, 
perhaps, at the point B(0, 0). We therefore remove from G+ a circle with 
center at B and radius E >O sufficiently small and denote: S,(O) = 
(x,~ I x~+J~~<E~)~G+ and GE+ = G + \S,(O). Similarly we remove an 
s-stripe near rz from G- and denote the remaining part of GP by G, ; 

r. 
s- 

A’ A’ 
//’ I 

/ 
.// ” x 

A(- 1.0) ‘\ A(-1.0) \ 
I , 

B(O.0) 
/ I 
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In G,+, omitting the index n, we have f(q) = scp, + ayp,, = t+b, where 
(I/ E P(G). A calculation shows for v > 2 

, a 

(3.4) 

because the boundary integral over f, is zero and along as,(O) n G+, non- 
negative. 

In G;, we have I(q) = xcp, = Ic/ and conclude in the same way 

Letting 

cp,.:= cp in G,’ u G, 
$c := 4cpA (3.6) 

.- .- 0 in G:,, (G+ uG, 1’ I. 

from (3.4) and (3.6) we have 

Using the Hiilder inequality and the fact that $ is a smooth function we get 
( p = v, q = v/( I’ - 1 ) ) 
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for all E > 0. The limit as E -+ 0 gives 

q E L,(G), i.e., q” E L,(G) for all v > 2. (3.9) 

Now we have to show that the functions (P”E L,,(G), vb2, belong to the 
space H,(bd, k) n L,(G). For a function tj E V,(,, n H,(bd*, k) n L,(G) 
(omitting the index n) we introduce the operator 

Tti : = k(y) L + $?:,.. (3.10) 

In G,+, we get 

where we know 

CPI r0ur, =o, ti Irour*=O, for the Tricomi problem, (3.12) 

and 

$1 rourlvrL= 0 for the Frank1 problem, (3.13) 

respectively. 

Remark 3.14. We have introduced k(y) in (3.10) in order to show the 
existence of the weighted norm llqll L,k = llc~ll~,,~~.~, = (fjG { Ikl cp’, + 
cpf. + cp”} d-x dy)‘? 

From (3.12) and (3.13) we conclude 

Using Green’s theorem [9, p. 2561 we have 

I&= j 
dGF7 

*- jjc; {A~~+2B~,cp,.+C~t+D~2}Cdx,dlil (3.16) 
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SZ=(r’k(~)cpt-a’cpf+2a2k(?,)cp,cp,)d?, 

+ (a’koq cp; - cc’p; - 2a’q.,cp, 1 dx, 

A =k(~)(at-aQf)-a2k’(?.), 

B=k(y)a?,+lxx;, 

c= +-a;); D = 0. 

(3.17) 

Now using the assumptions (i) and (ii) it follows that 

e 

2 
SJ G,- 

{k(2a-l)qf+(l-a)cp:J[dx,dy]>,O, 

j 
ru.r 

Q= -1 (k~~.+cp~)(a’n,+a’n,)ds30, 
. rll., 

The sum of (3.15) and (3.16) gives (omitting the non-negative boundary 
terms) 

2 TJ’ ~Tt,b[d,~,dy]~~~ {k(2a-1)(pz,+(l-a)cp~Cdx,~~11 
. G; CT,+ 

(3.19) 

Remark 3.20. On f, we have cp / r0 = II/ ( ,-0 = 0, i.e., on the smooth parts 
of I-,, cp, dx + qY dx = 0, $ = x(p., + ayql. = 0. Thus for ($ $1 # 0 we have 
cp, = cp-,, = 0. 

In GE-, analogously we get 
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2 jjG- cpTWx, 41 

Now adding (3.19) and (3.20) we have 

+2i cp d,lCI 
-?s,(O)nG+ 

Introducing once more the function q, (3.6) and using the fact that $ is a 
smooth function, we have with (3.9) 

i !.I 2 
G,.+ ” G; 

CpWCdx &Ii= /z jjG cpEW,Cd.x~ hl~ 

The line integral Z; = 2 JSs,,O,n G+ (Pi dntiE exists almost everywhere for E > 0 
because cp E L,(G) (v 3 2) and $ is a smooth function. From the theorem 
on the absolute continuity of the integral [S, p. 63) it follows that 1; + 0 as 
E+O. Since I) Irz=O, we also have Z;+O as E-+O. 

Consequently we have 

from which, in view of (3.9), we conclude llpll H,,hd,k, < cx as E + 0. But this 
together with (3.9) implies 

so” E H,(bd, k) n LAG), k’ >, 2. (3.22) 

109 IO’ 2-s 
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4. AN A PRIORI ESTIMATE 

From Lemma 3.1 we know that for the complete system of func- 
tions $“E V,,,n H,(bd*, k) n L,(G), !I E N, there exist functions 
cp” E H,(bd, k) n L,,(G) (I’>, 2) such that /(cp”) = rl/“. We now seek an 
approximate generalized solution u)’ E H, (hd, k) n L,(G), p = p + 2, of (2.7) 
respectively (2.12) in the form 

ur = .f c,,(pl, (4.1) 
,=I 

where the coefficiente (air are determined from the system of non-linear 
equations 

+ h(s, .l’, u’ ) u’$Pr - c(.u, J’, u’ ) f4r$b’ ). [lfx, &] (4.2 1 

= ii ,fk ?‘. d ) +-‘[~h, dj.], .j = 1, 2 . . . . . r. 
- “G 

From (4.1) we conclude 

I(14’)= i c,,I(cp’)= i C/d’. 
,=I ,=I 

(4.3) 

Multiplying (4.2) by c,, and summing over j we have 

Next we seek to obtain from (4.4) an a priori estimate of the form 

IIu)‘II H,(hdkj + IIU L,(GI G (‘0 for all rE N. (4.5) 

To this end we formulate the following lemma for the special case of 
problem (2.11) and give hints in the proof of the lemma of how the general 
case (2.7), i.e., (4.4), may be dealt with. 
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LEMMA 4.1. Suppose all the assumptions of Theorem 2.1 hold, Then there 
exists a constant cO independent of r such that 

II~rll H,(hd.k) + iiurll L,,(G) G ‘0 for all rEN,p=p +2. 

ProoJ We treat separately each integral of (4.4). For notational sim- 
plicity the index r is omitted. Let 

21,:=-2 - 
JS {Kr) ZC(~U))., + ~,.(44)~}[d,~ 41 

G 

then with uEH,(bd, k)nL,(G), we have I(u)~H,(bd*,li)nL,(G). As in 
(3.18) and (3.16) we have 

where Q, A, B, C and D are given by (3.17). From the corresponding 
estimates (3.18) we get, using 

niO = min 
2X-l 
- 

2 

.I 
I, 2 fro 

JJ { 
Ikl ~4;. + u;) [d.q dv]. 

G 
(4.6 1 

Since u I rOU ,-, = 0, using Friedrich’s inequality, we obtain 

I, = -jr {k(p) u.,([(u))., + u,(/iu)), )Cd..y, &I alno lblli,,h<l.k). (4.7) 
‘G 

Let (see (2.11)) C(X, JI, U) = c,(x, y) + C,(U) and 

I,:= - JS c(.Y, J’, u) ul(u)[d.u, dy] 
G 
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The application of Green’s theorem to I?,, gives (the boundary integrals are 
zero or non-negative) 

1 -- 
2 (4.8) 

where 

For the second integral I,,, we notice 

6 " 

i 

2 *u 

z-,=0 

rc,(t)dt=~c,(~)u,, 
3 ‘,=” 

tc,(t) dt = UC,(U) ~4!., 

and using Green’s theorem once again, we obtain 

/2,2 = -( 1 + c() i‘[ j,“=, [cl(t) dr[dlc, &] - (j- 1” w,(t) dt[d.q d,,]. 
.G‘+ - G- -,=o 

(4.9 

If we assume that the function c2 = C?(U) satisfies 

*T 

tc,(t)dt<O for all TE(-x, +#x), (4.10 
‘,=O 

then we have 

12,2 = j-j” c2(u) ul(u)[dx, &] > -/j. j” tc2(t) dt[d.u, 4171 30. (4.11) 
G G /=o 

In case of Eq. (2.11) we have c,(u)= -)zdIp, and from (4.11) it follows that 

jj c2(u) ul(u)[d.x, dyl= -jj” lulp uQu)Cdx, &I =; I14;p~~~. (4.12) 
G G 

Thus for the problem (2.11) we have shown ((4.7). (4.8). (4.12)) 

I?, u)4u)Cd-~, &I. (4.13) 
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By hypothesis we have 

j-(x, I’, u) = Ikl “*fi(x, I’, u), Iv-i II i?,G, <f&+K, Ilull&. (4.14) 

Thus using Holder’s inequality with E > 0, r] > 0 gives 

(4.15) 

For E, 9 sufficient small, from (4.13) and (4.15 ) we have 

ll4t/,,,d,,, + I14tp,G) G Cl (4.16) 

and thus 
IWII H,(bd.k) + IIUrliLp(G, 6 ‘0 for all TE N. 1 (4.17) 

In conclusion, with suitable constants in (4.17) and in (4.14) we get 

Ilf(-6 I’? u”)ll L(G) G c2 for all r E N. (4.18) 

Remark 4.19. From the proof of Lemma 4.1 we see that it is essential 
to estimate the expression (4.11) from below by zero or for a better result 
by a “L.-norm” of U. In the latter case we then need for the function 
f(s, y, u) only a growth condition in the same “L,-norm” to calculate 
(4.15 ). Some functions C?(U) which fulfill the sign-condition (4.10) are, for 
example, - l/( 1 + u’), -sinh u*, -&. 

Therefore in (l.l), C(X,J, U) may be of the form c(x,y, u)=cl(x, J)+ 
c*,,(u) + c*,*(u) = c,(x, y) - 1~1~ - I/( 1 + u’). In this case for c2,,(z4) = -luI” 
we use the estimate (4.12), while for the function c*.*(u) = - l/( 1 + u’) we 
estimate the integral (4.11) from below by zero. It does not appear useful to 
bring c~,~(u) to the right side of the equation because of the condition 
(4.14). 

Remark 4.20. If we consider the general case of Eq. (1.1) we have to 
consider in (4.4) the additional integral 

I, = -J” {4x, I’, u) u(f(u)), + b(s, J, 2.4) u(f(u)), )[d.K, dy]. 
G 
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To get a priori estimates of the form (4.17) we now need conditions on a 
and b such that I, 2 0 in G. Moreover the question arises in connection 
with limit r + CC in (4.4). These questions are dealt with in Section 5 (see 
Lemma 5.2). For example. the following functions a and b are admissible: 
b(.u, 1'. 10 = 0 in G, u(s, .r, u ) = 0 in ~9 2 0. a( .Y, ~9, II ) = - 1~1” in J < 0. 

5. GENERALIZED SOLUTIONS 

For the problem (2.11 j we know from Lemma 4.1 

IIL4’ll H,IM,kI + II4 LP(Gj G co for all TE N, 
where 

(5.1 

u’= 1 c,~(P’E H,(bd, k) n L,(G), p=p+2, (5.2) 
i=l 

and the coefftcients c, are determined by the system of non-linear equations 

= - p, I’, u’) l+b’[dx, dv], JS j= 1, 2 (...) r. 

Since the spaces L,(G), 1 <q < zo, are reflexive and the closed unit sphere 
of a reflexive space is weakly sequentially compact from (5.1) it follows that 
there exist a subsequence (which we denote again by u’) and a function 
u~H,(bd,k)nL,(G) such that 

u’ -+ u weakly in H,(bd, k), 
(5.4) 

U’ + 2.4 weakly in LP( G) as Y + x.‘. 

From (5.4) it follows that we can pass to the limit r + CC for the linear 
terms of (5.3). Thus we know 

Now let V’ := lu’lP u’, from (5.1) we have u’ELJG) with p’=p/(p- 1) 
and 

II C’ll L,.(C) d co for all rE N. (5.6) 
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Therefore there exist a subsequence (we denote again with 0’) and a 
function o* EL,(G) such that 

L”+o* weakly in L,.(G) as r -+ cc. (5.7) 

LEMMA 5.1. We have w* = luip ME L,(G), p’=‘p/(p - 1) and 

Proof: We consider the functions CIY : = Ikl l” ur, r E N, and calculate for 
1 < s < 2 (Holder inequality) 

Il4l:~~(G) = If G {(co;)‘+ (o;.)‘+ (cJ)~} dx dy 

< co { Jkl (ul;)‘+ (u;,)‘+ (d,‘} dx dy s,2 
1’ 

Using 

we see that the function 

OYE w:(G), SE (1,2) if 
k’ 

-•Epsi,p-sW Ikl l” 

The Rellich-Kondrachov theorem [ 1, p. 144; 7, p. 99-1011 says that w:(G), 
SE (1, 2), is compact in L,(G). Therefore there exist a subsequence (which 
we again denote by wr) and an element w E \vf(G) such that 

of = Ikl’!2 ur + w strongly in L,(G) and almost everywhere in G. (5.9) 

From (5.4) and (5.9) it follows that o = Ikl”* u almost everywhere in G, 
but this means 

d + z4, 

v~=Iu~I~u~~IuIPu=w*EL~.(G) almost everywhere in G (5.10) 

asr-+co. 1 
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To pass to the limit in the non-linear term on the left side of (5.3) we 
have to show 

We use 

LEMMA 5.2 [6, p. 121. If G is a bounded domain and g,, gE L,(G), 
l<q<$x (nEN), ljg,,l~Ly,G,<C, g,+g a.e. in G, then g,-+g weakly in 
L,(G) (n --+ ‘cc). 

In our case we take g, : = 1~” p U’ E L,.(G) and we know ljgnll Lp ,Gj d C, 
(5.6) g,, = Itr”lp un -+ 1~1” u E L,,(G) a.e. in G (5.10). Thus (5.11) follows and 

jjG IdIp u’$‘[dsy, dy] + J‘J^, IzlIp u+‘[dx, dy] as r+ ‘Y-,. (5.12) 

For the right side of (5.3) we note that the function f’(.u, ~3, U) is continuous 
with respect to u and thus by (5.10) it follows that 

f‘(.Y,.r, u’) +f(s, .I', u) a.e. in G (r+ ‘Y-). 

By (4.18) we know Ijf(x,y, u)II,~,~)<c~, but then because of 
p’=p/(p- 1)<2 we have lIf(.u.y, u)~I,~,,~~~c~. Using Lemma 5.2 it 
follows that f(x, ~3. u’) -+ f(s, .r, u) weakly in L,.(G) and 

Taking the limit as r + c in (5.3) and observing that $’ is a complete 
system in H,(bd*, k)n L,(O), for 14 E H,(bd, k) n L,(G) we have 

4 
~k()‘)u,~~.,+u,.r!~-c,(.~,~‘)u~~+IuI~~~!J[d.u,~~~] 

- G 
(5.13) 

= * 
jI 

G f(x, y, u) v[d.u, dy] 

for all UE H,(bd*, k) n L,(G), but this implies that u is a generalized 
solution. 1 

Remark 5.14. Podgaev in [S] uses for his problem in the case of the 
function space ,v,‘( G), s E ( 1, 2) in Lemma 5.1 the space w:(G). But then we 
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need the assumption k’/ Ikl L/z E L 2p,,P-2,(G) (not Lp,,p-,j(G) as written in 
[S]). For the special case k(y) = sign y Iy]“‘, m > 1, then the case m = 1 is 
not allowed. In our theorem we assume 

k 
~1:2&D~‘P-S,w SE(1, 2). (5.15) 

For k(y) = sign y (yl”, m> 1, we write s= 1 +E, E>O, and (5.15) means 
m>2&/(1+&)+2/(p+2) (p=p+2). The case m=l is included if 
E = s - 1 > 0 is sufficient small. (m < 1 is not allowed because in assumption 
(i) of Theorem 2.1 we have k(y)Ec’(G).) 

Remark 5.15. If we have a more general equation than (2.11) (see 
Remark 4.19: c,(u)= -luIP-- l/(1 +u’); Remark 4.20: a= -lulPfor ~9x0, 
a=0 for y>O, b=O in G) and further the a priori estimate (4.5) holds, 
then we still have to show that we can take the limit as r + ‘x; in (4.2). In 
both this follows by Lemma 5.2. 

6. THE NON-LINEAR SYSTEM OF EQUATIONS 

To complete the proof of Theorem 2.1, we need to show the solvability 
of the non-linear system of equations (5.3). To prove the solvability of this 
non-linear system we assume that the functions cp”, n E N, from Lemma 3.1 
are normalized in such a way that 

(6.1) 

We first prove for the convenience of the reader the following known result: 

THEOREM 6.1 (Vicik [lo, Lemma 3, p. 153). Iffor the non-linear system 
of equations 

Z4j(C, 2 C~T...T Ck) = hj, j= l,..., k, (6.2) 

(i) the Ai := A,(c, ,..., ck): IWk -+ IWk are continuous functions, and 

(ii) there exist constants a,, > 0, a, > 0 such that for E > 0 we have 

(A(C), C)= $ Ai cj2a, ICI’+E-.,, (6.3) 
j=l 

then there exists at least one solution of (6.2) for each h = (h, ,.,,, Iz~)~. 
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Proqf We first prove: 

If P: R” + IR” is a continuous mapping such that for 
a real number p > 0 we have 

Ps . s > 0 for all .Y E R”. IsI = p, 

(6.5) 

then there exists at least one r with 121 <p and Ps =O. Assuming that 
Ps # 0 for all s E S,(O), we define by 

Ts := -P-Y& 

- - 
the continuous mapping T: S,(O) + S,(O). By Brouwer’s Fixed-Point 
Theorem there exists at least one J E S,(O) such that 

>‘= -P$-$ (6.6) 

From (6.6) it follows that 1.~1 =p >O and 

which is a contradiction. 
Next we show that: 

If T: R” -+ R” is a continuous mapping and there 
exists a function c(t): (0, co) + R with c(t) + #CC as 
t + CD, and such that 

TX. x 3 1.~1 c( 1x1) for all .Y E I%” 

(6.7) 

(6.8) 

then TX = II’ has a solution for each )V E R”. 
Assume that there exists a IVE R” such that TX # u’ for all x E R”. Then 

we have for the continuous mapping 

Since c(t) --t Cc as t + ‘x8 there exist p > 0 such that 

Px . x > 0 for all 1x1 2 p. 
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The mapping P now fulfills the assumptions in (6.5). Therefore there exists 
at least one z E R” with 121 6 p such that Pz = 0, i.e., Tz = W, which is a con- 
tradiction. 

To prove Theorem 6.1 we only need to choose in (6.7) the function c(t) 
of the form c(r)=a,,~“~’ -a,(l/r) with p> 1, a,>O, a, >O. Then (6.8) 
becomes 

Tx.x> 1.~1 c(lxl)=a, ixlP-a, for all .Y E R” 

with p = 1 + E 2 1. 

By (6.3) this condition is true for the non-linear system (6.2). Therefore 
there exists at least one solution of (6.2) for each h E KY’. i 

Now we return to our non-linear system (5.3). By (5.2) we have 
ur = XI=, ci,‘pi E H,(bd, k) n LP( G) and the non-linear system (5.3) takes 
the form 

(6.9) 

A,(C) are continuous functions of c,~,..., c,,. To use Theorem 6.1 we have to 
show 

(A(C), C)= i A,(C) CJ,>alJ IC12-a,. (6.10) 
i= I 

If we use f(u’) = I::=, cirt+P we get 

- (c,b, Y) + cz(u’)) u’4u’)JCdx, 41 

- 

From (4.7) and (4.8) we get (using (6.1)) 
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Equation (4.12) gives 

,. 

il C,(d) U’l(U’)[dY, &] 30 
“ti 

and from (4.15), (4.17) and (4.18) we have 

Thus we know (6.10) and the non-linear system (6.9) admits at least one 
solution C = ( clr ,..., c,,.). 

Remark 6.11. It can be seen that there always exists a solution of the 
non-linear system (6.9) if the a priori estimate (4.17) holds. It remains an 
open question if the generalized solution of (2.11) is unique. 

The assumption k’/Ikl”‘E L.,P,,PPs, (G), p=p+2, s~(1,2), is made to 
prove Lemma 5.1. If we therefore have a linear problem, this condition can 
be eliminated and we have 

THEOREM 6.12. If 

(i) k(~)EC”(G)nC’(Gf); k(),)$O &for J-$O; yk’(y)>k(j,) ,for 
!’ 3 0, 

(ii) c,(x,~)~c’(G); (a+l) c,(zc,~)+xc,~~(x,~)+~~c,~(x,y)QOJor 
y>O, c,(x,~)+?rc,~(s,~)60for y<O, aE(+, l), c,l,2<0, 

(iii) .f(s,y)= Ikl”.f,(?c,~.), f,(s,.~)~ L?(G), 

(iv) k(y)nf+n; Ir,>O, n, Ir,>O; sn,+cqw2 I,-“<0 lchere (n,,n,) is 
the inward normal vector, then there exists a generalized solution u of’ the 
boundary value problem 

L[u]=k(~,)u,,+u,.,.+c,(s,?,)u=f(-~,,’) in G, u I,-ouI.,=O; 
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i.e., there exists a UE H,(bd, k) such that 

for all ~1 E H,(bd*, k). 

The uniqueness of this solution follows from [2]. 
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