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1. INTRODUCTION

We consider equations

Llul=k(yYu . +u, +a(x, y,u)u) +(b(x, y, u)u), (L)
+o(x, y,u)u=f(x, v, u) .

in a bounded simply connected region G, where k( y)Z0 for yZ0 and G is
bounded by the curves Iy, I"), I',. Hereby I is a piecewise smooth curve
lying in the half-plane y >0 which intersects the line y=0 in the points
A(—1,0) and B(0,0). I', is a piecewise smooth curve through 4 in y <0
which meets the characteristic of (1.1) issued from B at the point C and I,
consists of the portion CB of the characteristic through B. We assume that
I'| either lies in the characteristic triangle formed by the characteristics
through A and B (Frank! problem) or coincides with the characteristic
through 4 (Tricomi problem). We ask for sufficient conditions for the
existence of generalized solutions of the problem

LTul=f(x, v, u) in G, ulpoor, =0 (1.2)

In principle, the case that I', piecewise has characteristic direction brings
no difficulties, but it is not considered.

Remark 1.3. The question arises immediately why in Eq. (1.1) the term
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c(x, y, u) u is not combined with the non-linear term f(x, y, u). However,
as we shall see, different assumptions on c(x, y, u} and f(x, y,u) are
needed for the existence of generalized solutions; e.g., for the function
f(x, v, u) a growth condition is essential (Theorem 2.1(iii)) whereas for
c(x, », u) a sign condition is needed (Theorem 2.1(ii)).

To our knowledge there are very few papers in the literature which deal
with the question of uniqueness and existence for quasi-linear of mixed
type. For uniqueness theorems for the Tricomi problems we refer to the
survey paper of Gvazava [3], and the references contained therein, where
with use of a maximum principle and under certain growth conditions on
f(x, y, u) uniqueness theorems are given.

For existence theorems for generalized solutions for Eq. (2.11) we only
know of the paper of Podgaev [8]. In [8] only the special case is treated,
in which I, is not a characteristic and the domain for y <0 is bounded by
the curve I", and the portion CB of the y-axis, where C is the point of inter-
section of /", with the y-axis.

2. NOTATIONS
If we use Pfaffian forms ([4, 91]) and introduce the operator
du=k(y)u,dy—u,dx (2.1)
Eq. (1.1) becomes
Llul[dx,dv]}=[d, d,u]l + [d alx, y, u)udy—b(x, y, u) udx]

+(x, y, u)uldx, dy]=f(x, y, u)[dx, dy] 22
with
Ulrorn =0 (2.3)
The adjoint boundary conditions for (2.3) [9, p. 248] are
vlrporn=0 for the Tricomi problem, (24)
lrpororn=0 for the Frankl problem.
We introduce the function spaces
U= {ulu(x, 1) e C*(G)u|ro =0},
Ve={v|v(x,)eC*(G), v ir,.rn=0} (2.5)

G)’
Ve={r]o(x, y)e C*(G),

v Il'ouﬂu[‘z:O}‘
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If ue U and ve ¥V, or ve Vpthe formal application of Green’s theorem to
(2.2) gives

” vL{u][dx, dy]= J‘ (vd,u + v(au dy — bu dx))
~G oG

- ”G {k(y)uo +u,v +alx, y,u)uv,
+b(x, p, u) uv, —c(x, y, u) uv [ dx, dy]

= J L; f(x, y, u) o[dx, dv]. (2.6)

From (2.5) we conclude

j (v d,u + v(au dy — bu dx)) =0
oG

for ue U and ve V,or ve V. Thus we have formally for the problem (2.2)
and (2.3) the identity

Blu,v]=— ”G {k(y)ucv . +uv.+alx, p,u)uv,
+b(x, y, u) uv, — c(x, y, u) uv }[dx, dy]

- Jj f(x,y,u)v(dx, dy]  forallueU,ve Vyorve Ve  (27)
G

As is known, (2.7) gives the basis for the definition of generalized solutions.
To this end we introduce the spaces H,(bd, k) and H (bd*, k), which are
obtained by the completion of the function spaces (2.5) with respect to a
weighted norm involving the function k(y). More precisely we denote

1/2

I

H,(bd, k) : {u|ueU}||u||1.k=(ﬂc{|k|u3+u3.+u2}dxdy>

(2.8)

Hi(bd* k):= {v|veVyorveVi} v] 4.

We observe the fact that for the Tricomi problem H,(bd*, k) is the closure
of the space ¥, while for the Frankl problem it is the closure of V.
Nevertheless in the sequel we call the space H,(bd*, k) the space adjoint to
the space H,(bd, k).
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DerFiNITION 2.9. A function ue H,(bd, k)N L,(G) (v=2) is called a
generalized solution of (1.2) if

Blu, v]_U flx,yu)vdxdy  forall ve H,(bd* k)AL AG), (2.10)

where v and v’ are chosen in such a way that all integrals in (2.10) exist.

We now give an existence theorem for a special case of Eq. (1.1). The
proof of this theorem in the following sections indicates the method of
approach in dealing with the more general equation (1.1).

THEOREM 2.1. [f
(i) k(y)eCHG):, k(»)Z0 for yZ0; yk'(v)=k(y) for v=0;
k'/1k{"?€L,,,,_ . (G) withp=p+2and se(l,2),

(i) c;(x, 1) eCHG); (a+1 Yo (x, y)+xcp (x, v)+aye, (x, y) <0 for
y=0, ci(x, p)+xc, (x, ¥)<0 for y<0, ae (3, 1),

(iii) f(x,y,u)=1k|"*f(x,y.u) and continuous with respect to u;
A
”fl||lz1a)<K0+Kl ||u||Lp(G|’p p+2, Cllr:go,

(iv) k(»)ni+n31=0,n1p>0;xn +ayn, | <0, where (n,, n,) is
the inward normal vector,

then there exists a generalized solution of the boundary value problem

Llul=k(y ue+uy e yyu—ul”u=f(x, y u),
’ (2.11)
p>0’u |r0ur|=0;

Le., there exists a ue H,(bd, k)" L,(G), p=p + 2, such that

Blu,v]= —J.J.G {k(»)u, v +uv.—ci(x, y)uv+ |ul” ur} dx dy

= JL flx,y,u)vdxdy forallve H (bd*, k) L,(G).

It can be seen that under our assumptions the integrals on the left side of
(2.12) exist. The existence of the integral [ f(x, y, u) v dx dy follows from
(iil) and (4.15).

3. PRELIMINARY LEMMA

LemMa 3.1.  Suppose

(i) k(y)eCAGINCHG*); k(y)Z0 for yZ0, yk'(y)=k(y) for
y=0,
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(i) k(y)ni+ni|r=0,n]r>0;xn +ayn, |, <0, where (n, n,) is
the inward normal vector, a € (3, 1).

(i) {Y"}nen<VrmnnH\(bd* k)NL,(G), p=p+2, is a complete
system of functions,

then there exist solutions "€ H(bd, k)N L,(G), neN, for all v=2 of the
boundary value problems

lo")=a'pr+a’pl=y",

n —
@ |r0uf|_0’

(3.2)

where
a,=x,a’=ay for y=0

=0 Sfor y<0.

Proof. For fixed neN, (3.2) is a partial differential equation whose
characteristics by condition (ii) cannot intersect the curves I'yand I, more
than once. The solution ¢”" of this equation is a smooth function except,
perhaps, at the point B(0, 0). We therefore remove from G™* a circle with
center at B and radius &>0 sufficiently small and denote: 5.(0)=
{x,yx*+y*<e’}nG, and G} =G*\5,(0). Similarly we remove an
e-stripe near I, from G~ and denote the remaining part of G~ by G ;

o
/’—F\
///
o G
4 35 {0)
/ x
A(-1,0) \ // ;3(0.0)
W
\. Gg // /
\\\\ r27 /
v / / .
\ / / 2
\ \ﬂl / /
\ ry \\[ /
AN /
N C
~ )/
AN /
\\/
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In G}, omitting the index n, we have l(¢)=x¢ +ayp,=, where
Y € C*(G). A calculation shows for v>2

1 , 1
xQ. 0 |o|’ ‘=;[XI¢| ]_\»—;le,

(3.3)
=2 x v X v
e lol" ==[rlol"], —=lol"
and
-] to)lor o dray
1+« , 1 ,
I Hcﬂq’"dxd}’—;fw {xlol"dy—dy ol dx}
' F (3.4)

l+a

. l+a !
> ([ ol dxdy=—" ol
v Gr+ v r

because the boundary integral over Iy is zero and along 0s,(0) NG *, non-
negative,
In G, we have l(¢)=x¢, =y and conclude in the same way

_JL‘[((P)I(Pl"*ZQDdx dv;%ll(ﬂ”i‘.m;p v=2. (3.5)
Letting
LI in GrYuG,
’ ;=§ iz G {UG:LUQ v V.= lo.) (36)
from (3.4) and (3.6) we have
N0liio< ] Mool o dx dy (3.7)

Using the Holder inequality and the fact that  is a smooth function we get
(p=v,g=v/(v—1))

1 :
; “(Pg” ‘Llel s ”we” LAG) “(ps‘“ ‘LJGl)’

ol e < v .l L) SV ”Q//“L‘(G) <c(v),
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for all ¢>0. The limit as ¢ — 0 gives
pel (G), ie, @"eL,(G)forallv=2. (3.9)
Now we have to show that the functions ¢”€ L (G), v=2, belong to the

space H,(bd, k)N L,(G). For a function Y€ Vyn H (bd* k) L,(G)
(omitting the index n) we introduce the operator

Ty :=k(p) Yoty (3.10)

In G}, we get

2[ oTvlds dyl=2]| olddy]

2f {od Y —yd,e}
aGr

+2 H ('@, +a’ ) k(y) ¢+ @, ) dx, dy]
GF+

= It +17, (3.11)

where we know

@ lror =0 ¥ lrorn,=0,  for the Tricomi problem, (3.12)

and

Yirororn="0 for the Frankl problem, (3.13)
respectively.

Remark 3.14. We have introduced k() in (3.10) in order to show the
existence of the weighted norm |o|,, =0l ywar, = (ffo {1kl @2+
@+ ¢’} dedy)'?.

"From (3.12) and (3.13) we conclude

pE

Ii=2| (e, —o¥,)dx+2 (@ du¥ —¥ d,0). (3.15)

x=—1 as(0)~ G+

Using Green’s theorem [9, p. 256] we have

I=[ @—[[ {4¢2+2B0.0, +Col+Do?}[dx, dy] (3.16)
aG; G’
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where
Q=(a'kly) ol —o'@2+20%k(¥) 0. 0,) dv
+(@k(y) ol —a’p; —2a'p 0,) dx,
A=k(y) o, —al)—a’k'(y), (3.17)
B=k(y)oi+a;,
C=—(a!—a?), D=0

Now using the assumptions (i) and (ii) it follows that
~ || . 140t +280.0,+ Cot+ Do?} [dx. dy]

ZJJ , (kQQa=1) @2+ (1 —a) @2} [dx, dy] =0,

G,

[ 2=-] ko2t oiain, +ain,)ds>0,
o, '

M

jie Q=—2J'7'"' Vo, dx,
o (3.18)
| o= {(ko? + @)(a'n, + x*n.) ds + 20 d, 0}
30V~ Gt Yas0)nGT

C

>J
Ss0)NG T

2y d,p.

The sum of (3.15) and (3.16) gives (omitting the non-negative boundary
terms)

2[]_oTylax )z | (ka1 ol +(1-2) o}ldx, &)
' ' (3.19)

& ~

-2 o det2] o d,y.

x= s 0)N G

Remark 3.20. On I'ywe have ¢ |, =V |, =0, i.e., on the smooth parts
of Iy, o dx+¢,dx=0, Yy =x¢ +ayp,=0. Thus for [4 %]|#0 we have
ox=¢,=0.

In G, analogously we get
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2 | L— oTy[dx, dy]

i

2 {pdy—vdot+2(] alodkp.+o.)ldxdy]
G, G,

A\

fJ {(—K) o+ o7} Ldx, dy] (3.20)
G;

+2[ " oudxt2| {od¥—ido}

xX= - 25

Now adding (3.19) and (3.20) we have

k(e —1) @2+ (1 —a) 92} [dx. dv]
G

3

2] eTulax a1z ||

[tk ot otilaxay)

s

+2 0 d, ¥
YAs(0)N G
o 4

+2| lody—vdey=Y I (21)
T2y =1

Introducing once more the function @, (3.6) and using the fact that y is a
smooth function, we have with (3.9)

\2 ﬁG ___oTyldx dy]\ = }2 ﬂG 0, TV [dx, dy]’

<2 ol Li(G) | Tyl L:(G)szcl lell LaG)-

The line integral I5=2 [4,0)~c+ ¢. d,¥ . €xists almost everywhere for ¢>0
because ¢ L (G) (v=2) and ¢ is a smooth function. From the theorem
on the absolute continuity of the integral [5, p. 63] it follows that I5— 0 as
¢ —0. Since ¥ |, =0, we also have I; -0 as ¢ - 0.

Consequently we have

26, 19l er > mo [ K103+ (9,3} [dx, dy] + 15+ 1

from which, in view of (3.9), we conclude (@]l 4 (sax) < oo as &€ = 0. But this
together with (3.9) implies

©"e H,(bd, k) L,(G), v22. (3.22)

409 107 2-5



434 AZIZ AND SCHNEIDER
4. AN A PRIORI ESTIMATE

From Lemma 3.1 we know that for the complete system of func-
tions "€V nH\(bd*, k)nL,(G), neN, there exist functions
o"e H (bd, kyn L (G) (v=2) such that [{¢")=y". We now seek an
approximate generalized solution u"€ H (bd, k) L,(G), p=p + 2, of (2.7)
respectively (2.12) in the form

r

W=7y c,¢, (4.1)

=1

where the coefficignte ¢, are determined from the system of non-linear
equations

Blu' ']=— U {kOyyuy +uly/ +alx, v, u") uy,
Y G -
+blx, v u' Y, —clx, y,u ) uy Hdx, dv]  (4.2)

=H‘ Sl vy /ldx,dv],  j=1,2..n
G

From (4.1) we conclude

r

)=} c,llo) =3 c.y" (4.3)

=1 =1

Multiplying (4.2) by ¢,. and summing over j we have

Y ¢, Blu,y']= —jJ VR u (" Yy, 4+ wilu")), +alx, yvou) W (l(u')),

=1 G
+blx, v, w ) u(l(u")), —clx, v, u") w'l(u")} [dx, dy]

= JJ FOx. v, uw'y u')[dx, dv] = B[u'. I(u)]. (4.4)
.

Next we seek to obtain from (4.4) an a priori estimate of the form

Nl prycparier + 2"l L1 < Co for all reN. (4.5)

To this end we formulate the following lemma for the special case of
problem (2.11) and give hints in the proof of the lemma of how the general
case (2.7), i.e., (4.4), may be dealt with.
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Lemma 4.1, Suppose all the assumptions of Theorem 2.1 hold. Then there
exists a constant c, independent of r such that

1) btyqpaier + 14l ey <o Sforall reN, p=p+2.

Proof. We treat separately each integral of (4.4). For notational sim-
plicity the index r is omitted. Let

2= =2 [ k) dl))+ (1)), L, ]

then with we H,(bd, k)~ L,(G), we have lu)e H,(bd*, k) L,(G). As in
(3.18) and (3.16) we have

20, =2 HG ) k() s+ u,,)[dx, dv]

= J Q- ﬂ {Au?+2Bu u,+ Cu? + Du*}[dx, dy],
G G ’ ’

€

where 2, 4, B, C and D are given by (3.17). From the corresponding
estimates (3.18) we get, using

. o (20—1 1—2a 1
my=min 3 ,'—2-—,5 ,
1, >, JJG (k] 12+ u?}[dx, dv]. (4.6)

Since u |, -, =0, using Friedrich’s inequality, we obtain
= = J] U )+ ), YL, 9T > mg Ll (47)
Let (see (2.11)) e(x, y, u)=c,(x, v) + ¢c5(u) and

I, := JJ. c(x, y, u) ul(u)[ dx, dy]
G

- H(, cu(x, ) ullu)[dx, dy] + HG ex(u) ul(u)[dx, dy] =: I, + .
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The application of Green’s theorem to I, | gives (the boundary integrals are
Zero or non-negative)

e

1
I, 2 3 H [+ 1) cy(x y)+xe, (x, p)+ave, (x, y)] w’[dx. dy]
e

-5 fJ’v Leix, v) 4 xey (x W] wllde, ]2 2 fuld,e,  (48)

where

2p = min{ —[(a+ 1) ¢, +xc;, +ave, ], —[¢, +xc; 120.

For the second integral I, , we notice

a u 6 rU
— [ tes(t) dt =uc(uyu,. — ‘ tes(t) dt = ueo(u)u,,
cx 2o 5_1' Yr=0 ’

and using Green’s theorem once again, we obtain

L= —(1+a) J (" tex(r) difdx, dy]— [‘J’ 1" tealn) dilax, dv).
Jogr =0 YYGT Yr=0
(49)
If we assume that the function ¢, = ¢,(u) satisfies
<T
| te(n)di<O  forall Te(—x,+x), (4.10)
Yi=10

then we have

e[ cdorsatan 73 [ [

tey(t) di[dx, dy]120. (4.11)
0

GYr=

In case of Eq. (2.11) we have cy(u)= —|u|*, and from (4.11) it follows that
1 P
[ eatwy uttitax, dy1= || 1ul” wltw)dx, dy) =— Il £y (412)
G G 14
Thus for the problem (2.11) we have shown ((4.7). (4.8). (4.12))

1
mo 4l 3ngoan +~ Wal fur < [[ fO6y, ) )T, dyT. (4.13)
14 G
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By hypothesis we have

Sy, ) =1k'"2 filx, you), Wfillige S Ko+ Ky Ul D6y (4.14)

Thus using Holder’s inequality with ¢> 0, n>0 gives

T s s )| < |

Nuell bty paicr
LyG)

1
$£ Wrl iz(G‘; +2¢ llull%ilqba‘,k)
(4.15)

l 1

2 2 Ky |ullf LF(Gw'l' 2¢ ||ull %{nhd,k)

1 , (K2 .
<35 Ko+ 20 llbyan + 3, 35 ) +20 140

For ¢, u sufficient small, from (4.13) and (4.15) we have
llull%—mbd,k)'l' llulli,,(c)gcl (4.16)

and thus
W™l gy paie) + 171l 6y < Co forall reN. | (4.17)

In conclusion, with suitable constants in (4.17) and in (4.14) we get
1/, 3, M ey S 2 for all reN. (4.18)

Remark 4.19. From the proof of Lemma 4.1 we see that it is essential
to estimate the expression (4.11) from below by zero or for a better result
by a “L-norm” of u In the latter case we then need for the function
f(x, y, u) only a growth condition in the same “Lp-norm” to calculate
(4.15). Some functions c¢,(u) which fulﬁll the sign- condmon (4.10) are, for
example, — /(1 +u?), —sinh 2, —e*

Therefore in (1.1), ¢(x, y, u) may be of the form c(x, y, u)=c,(x, y)+
cy1(u) +cyp(u)=cy(x, ) — 4] — 1/(1 + 7). In this case for ¢, (u) = —|u|”
we use the estimate (4.12), while for the function c,,(u)= — /(1 +u*) w
estimate the integral (4.11) from below by zero. It does not appear useful to
bring ¢,,(u) to the right side of the equation because of the condition
(4.14).

Remark 4.20. If we consider the general case of Eq. (1.1) we have to
consider in (4.4) the additional integral

= | {ate ywy utl(u)), + bl 3, w) u(itu)), } [, )
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To get a priori estimates of the form (4.17) we now need conditions on a
and b such that ;>0 in G. Moreover the question arises in connection
with limit r — 2 in (4.4). These questions are dealt with in Section 5 (see
Lemma 5.2). For example. the following functions a and b are admissible:
blx, u)=01in G, a(x, v,u)=01n y 20, a(x, y, u)= —|u|” in y <0.

5. GENERALIZED SOLUTIONS

For the problem (2.11) we know from Lemma 4.1

1| gy imaser + 14| LGy < €o forall reN, (5.1)
where

u'=Y c,p'eH(bd k)nLpG). p=p+2, (5.2)

i=1

and the coefficients ¢, are determined by the system of non-linear equations

Blu', ']

—“ {k(yyu !l +uipl — e (x, y) uy/ + (') wy'[dx, dv]
G
(5.3)

[ A widsd), j=1.2.r

Since the spaces L, (G), 1 <g < 0, are reflexive and the closed unit sphere
of a reflexive space is weakly sequentially compact from (5.1) it follows that
there exist a subsequence (which we denote again by ") and a function
ue H,(bd, k) L,(G) such that

W —u  weaklyin H,(bd, k),
Y (5.4)

r

u - u weakly in L,(G) as r —» .

From (5.4) it follows that we can pass to the limit r —» oo for the linear
terms of (5.3). Thus we know

| fG k() ul?,+ i — e, (x, y) i/} dx, dy]

— ”0 (k(p) u !+ u ] — ey (x, ) wg’ } [dx, dy]. (5.5)

Now let v":= |&'|” u", from (5.1) we have v"e L,(G) with p'=p/(p—1)
and

el 60 < Co for all reN. (5.6)
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Therefore there exist a subsequence (we denote again with v") and a
function w* e L,(G) such that

vT > w* weakly in L,(G) as r — o, (5.7)
LEMMA 5.1. We have o* = |u|* ue L,(G), p’=p/(p—1) and
v =u"|Pu" - |ul’ u almost everywhere in G as r - .

Proof. We consider the functions w” := |k|"2 ", re N, and calculate for
1 < s <2 (Holder inequality)

oWy, = J]. (@0 + @) + (01 dx dy

<o [[, 0 0+ g7+ ) dr )

3

Using

I ] e s (] L

we see that the function

psi(p—s) {(p—s)p s'p
dx dy) <J] [u’|? dx dy)
G

’

W ewl(G), se(1,2)  if —zeL,,_.(G). (5.8)

The Rellich-Kondrachov theorem [1, p. 144; 7, p. 99-101] says that w!(G),
se(1,2), is compact in L,(G). Therefore there exist a subsequence (which
we again denote by ") and an element w € w!(G) such that

o =kl"u ->w strongly in L,(G) and almost everywhere in G. (5.9)
From (5.4) and (5.9) it follows that w = |k|"? u almost everywhere in G,
but this means
u —u,
U= u > |ul? u=w*eL,(G) almost everywherein G (5.10)

asr-—»o0. |
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To pass to the limit in the non-linear term on the left side of (5.3) we
have to show

o' =u1Pu - ul’u  weakly in L,(G) (r— ). (5.11)

We use

LEmMA 5.2 [6,p.12]. If G is a bounded domain and g,, ge L (G),
l<g<x (neN), gl Ly6,<C, g.— g ae. in G, then g,~ g weakly in
L/(G) (n— x).

In our case we take g, := |u"|” u"€ L,(G) and we know ||g,ll., < Cy
(5.6), g, = |u"|” u" = ||’ ue L,(G) ae. in G (5.10). Thus (5.11) follows and

“ Iu’|"u’¢"[dx,d).']—>“~ u|” wp'[dx,dy]  as r—oo. (5.12)
G G

For the right side of (5.3) we note that the function f(x, y, u) is continuous
with respect to u and thus by (5.10) it follows that

S, pu') > flx, vou) ae. in G (r— )

By (4.18) we know |f(x,y, u)l. 6 <c2n but then because of
p'=p/p—1)<2 we have [f(x.y,u)ll, G <c5. Using Lemma 52 it
follows that f(x, y. u") - f(x, y, u) weakly in L,(G) and

I, ey wldx dv) = || foepwwldedy] as roon

G

Taking the limit as r —» = in (5.3) and observing that -/ is a complete
system in H,(bd*, k) L,(Q), for ue H\(bd, k)N L,(G) we have

], Ry e e, — e ) we ot ? ) [, dv]

(5.13)
= JJG flx, ¥, u) v[dx, dy]

for all ve H,(bd*, k)N L,(G), but this implies that u is a generalized
solution. ||

Remark 5.14. Podgaev in [8] uses for his problem in the case of the
function space w!(G), se (1, 2), in Lemma 5.1 the space wl(G). But then we
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need the assumption k'/|k|"?€ L,,,,_2(G) (not L,,,_,(G) as written in
[8]). For the special case k(y)=sign y |y|™, m>1, then the case m=1 is
not allowed. In our theorem we assume

k

|k’ UZGLPMP,”(

G), se(l,2). (5.15)
For k(y)=sign y|y|”, m=1, we write s=1+¢, ¢>0, and (5.15) means
m>2e/(1+e)+2/p+2) (p=p+2) The case m=1 is included if
g=s5—1>0 is sufficient small. (m < 1 is not allowed because in assumption
(i) of Theorem 2.1 we have k(y)ec'(G).)

Remark 5.15. 1f we have a more general equation than (2.11) (see
Remark 4.19: ¢,(u) = —|ul” — 1/(1 + u?); Remark 4.20: a= —|u|” for y <0,
a=0 for y>0, =0 in G) and further the a priori estimate (4.5) holds,
then we still have to show that we can take the limit as r — o in (4.2). In
both this follows by Lemma 5.2.

6. THE NON-LINEAR SYSTEM OF EQUATIONS

To complete the proof of Theorem 2.1, we need to show the solvability
of the non-linear system of equations (5.3). To prove the solvability of this
non-linear system we assume that the functions ¢”, ne N, from Lemma 3.1
are normalized in such a way that

[ (K @\oi+ 010l + o' Ldx, dy] =3, (6.1)

We first prove for the convenience of the reader the following known result:

THEOREM 6.1 (Vicik [10, Lemma 3, p. 15]). If for the non-linear system
of equations

Afc, Corn i) =hyy =1,k (6.2)

(i) the A(C):= A/cy,.., ¢;): R* > R* are continuous functions, and
(ii) there exist constants ay,> 0, a, =0 such that for ¢ >0 we have

k
(A(C), C)=Y A[C)C,>a,|C|'**—a,, (6.3)

i=1

then there exists at least one solution of (6.2) for each h= (h,,..., h)".
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Proof. We first prove:

If P: R* - R" is a continuous mapping such that for
a real number p >0 we have (6.5)

Px-x20 for all xeR” |x|=p,

then there exists at least one - with |z| <p and P:z=0. Assuming that

Px #0 for all xeS,(0), we define by

p
| Px|

Tx:=—Px

the continuous mapping 7:5,(0)— S,(0). By Brouwer’s Fixed-Point
Theorem there exists at least one y € S,(0) such that

p

b= -—P ’ . 66
y= =Py ons (6.6)
From (6.6) it follows that |y| = p >0 and
0<r y=(yP=p= ——=(Py 1) <0,
| Pyl
which is a contradiction.
Next we show that:
If T: R"— R”" is a continuous mapping and there
exists a function ¢(1): (0, ¢) = R with ¢(t) » < as
t — oo, and such that (6.7)
Tx-x=|x|c(]x]) for all xeR” (6.8)

then Tx =w has a solution for each we R".
Assume that there exists a we R” such that Tx # w for all xeR”. Then
we have for the continuous mapping

Px:= Tx—w:R" > R",
Px-x=Tx -x—w-x=|x| c(ix])—|w| |x]|
=|x| (¢ x| —|x]).
Since c(7) — oo as t — oo there exist p > 0 such that

Px-x=20 for all |x]|=p.
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The mapping P now fulfills the assumptions in (6.5). Therefore there exists
at least one z € R” with |z| € p such that P-=0, i.e., Tz = w, which is a con-
tradiction.

To prove Theorem 6.1 we only need to choose in (6.7) the function c(¢)
of the form c(t)=ayt* ' —a,(1/t) with p>1, a,>0, a;=0. Then (6.8)
becomes

Tx-xz|x| c(|x])=ay x| —a, forall xeR”
withp=1+¢=1.

By (6.3) this condition is true for the non-linear system (6.2). Therefore
there exists at least one solution of (6.2) for each heR". |

Now we return to our non-linear system (5.3). By (5.2) we have
w=3"_,c,9'€eH (bd k)nL,G) and the non-linear system (5.3) takes

i=1

the form

A(C):= — Z Cir HG {k(y) R

i=1

- (c,(x, M4er ( 5 cq,)) wfwf} [dx, dy] (69)

=1

L7 (5 T cor )Wl 10 j=tear

i=1

A,(C) are continuous functions of ¢,...., ¢,,. To use Theorem 6.1 we have to
show

(A(C),C)= Y A(C)C,=za,|C|*—a,. (6.10)

i=1

If we use l(u')=3"_, ¢, ' we get

S ALC) e, = = [ (k) gt + i),
i=1 ¢
— (e1(x 1) + () W)} [, dy

= JJ Sy ) 00, dy )

From (4.7) and (4.8) we get (using (6.1))
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—HG (k) u()) + w i), — e, p) w'lu”) [dx, dy ]

24y ||”r|1;1,'bd,k)

r

=ay Y e, [| (K 010\ +0l0! + 99} [dx. dy]

=1

,
=4y Z Cir C/ré;' =y IC' :'

ny=1

Equation (412) giVCS
J‘l‘ C:(u') url(ur)[dx’ d}‘] 20
J

and from (4.15), (4.17) and (4.18) we have

. t .
”(, Sy ) YL, dy] <5 Uy + 26 1 U s S 1

Thus we know (6.10) and the non-linear system (6.9) admits at least one
solution C=(c¢y,, C,).

Remark 6.11. It can be seen that there always exists a solution of the
non-linear system (6.9) if the a priori estimate (4.17) holds. It remains an
open question if the generalized solution of (2.11) is unique.

The assumption k'/|k|'?eL,,,, ,(G), p=p+2, se(l,2), is made to
prove Lemma 5.1. If we therefore have a linear problem, this condition can
be eliminated and we have

THEOREM 6.12. [If

(i) k(1) eCUAG)NCHG): k(»)Z0 for vZ0; yk'(¥)Zk(y) for
y=0,

(i) ¢)(x,3)eCHG); (a+ 1) ci(x, y)+xe (x, y) +aye, (x, y) <O for
¥=0, ¢(x, y)+xe, (x,¥)<0 for y<0,ae(3, 1), ¢/l <0,

(iil) flx, p)= kI filx, 3), filx, v) € Ly(G),

(iv) k(y)ni+n3|p20,n|,>0;xn +ayn, | <0 where (ny, ny) is
the inward normal vector, then there exists a generalized solution u of the
boundary value problem

Llul=k(y)u, +u, +eilx, ylu=f(x,y) inG, ulr,rn="0;
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ie., there exists a ue H,(bd, k) such that

fo

1
2

3

—Jj {k(p)uv +uv,—c(x,y)uv} dxdy= ” f(x,y)vdxdy
G G

r all ve H,(bd*, k).

The uniqueness of this solution follows from [2].
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