
Science of Computer Programming 20 (1993) 3-50

Elsevier

3

Goal-directed requirements
acquisition

Anne Dardenne
Institut d’lnformatique, Facult& Universitaires de Namur, B-5000 Namur, Belgium

Axe1 van Lamsweerde
Unit& d’lnformatique, Giversite’ Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Stephen Fickas
Department of Computer Science, University of Oregon, Eugene, OR 97403, USA

Abstract

Dardenne, A., A van Lamsweerde and S. Fickas, Goal-directed requirements acquisition, Science

of Computer Programming 20 (1993) 3-50.

Requirements analysis includes a preliminary acquisition step where a global model for the

specification of the system and its environment is elaborated. This model, called requirements

model, involves concepts that are currently not supported by existing formal specification

languages, such as goals to be achieved, agents to be assigned, alternatives to be negotiated, etc.

The paper presents an approach to requirements acquisition which is driven by such higher-level

concepts. Requirements models are acquired as instances of a conceptual meta-model. The latter

can be represented as a graph where each node captures an abstraction such as, e.g., goal, action,

agent, entity, or event, and where the edges capture semantic links between such abstractions.

Well-formedness properties on nodes and links constrain their instances-that is, elements of

requirements models. Requirements acquisition processes then correspond to particular ways of

traversing the meta-model graph to acquire appropriate instances of the various nodes and links

according to such constraints. Acquisition processes are governed by strategies telling which way

to follow systematically in that graph; at each node specific tactics can be used to acquire the

corresponding instances. The paper describes a significant portion of the meta-model related to

system goals, and one particular acquisition strategy where the meta-model is traversed backwards

from such goals. The meta-model and the strategy are illustrated by excerpts of a university library

system.

Keywords: Requirements engineering; specification acquisition; nonfunctional requirements; con-

ceptual modeling; domain analysis; meta-level inference; specification reuse.

Correspondence to: A. van Lamsweerde, Unite d’brformatique, UniversitC Catholique de Louvain,

Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium. Telephone: (+32-10) 472529. E-mail:
avl@info.ucl.ac.be.

0167-6423/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

4 A. Dardenne et al.

1. Introduction

Requirements analysis is a highly critical step in the software lifecycle. A great

variety of problems can arise during this step, e.g., inadequacies, incompleteness,

contradictions, ambiguities, noises, forward references, or overspecifications

[34,41,49]. Such errors and deficiencies can have disastrous effects on the sub-

sequent development steps and on the quality of the resulting software product.

Therefore, it is essential that requirements engineering be done with great care and

precision. Formal methods, supported by automated tools, enable engineers to

capture and specify the software requirements carefully and precisely.

Recently, researchers have devoted considerable effort to the design of formal

specification languages. The use of such languages allows the requirements

specification to be manipulated formally. The specification can be checked against

a set of desired properties, can be used to generate a prototype implementation,

and so forth. Specification languages differ mainly by the particular specifica-

tion paradigm used. For example, Z (Spivey [42]) and VDM (Jones [30]) support

state-bused specifications; INFOLOG (Fiadeiro and Sernadas [16]) and ERAE

(Dubois et al. [12]) support history-bused specifications; STATECHARTS (Hare1

[28]) supports transition-based specifications; languages like LARCH (Guttag and

Horning [25]), ASL (Astesiano and Wirsing [2]), and PLUSS (Gaudel[21]) support

algebraic specifications; PAISLEY (Zave [50]) and GIST (Balzer et al. [3]) support

operational specifications. In using such languages to formalize the requirements

for complex systems, requirements engineers face two difficulties-the limited scope

of the languages and the preliminary acquisition of relevant requirements.

The scope problem

Most existing specification languages focus on functional requirements-that is,

requirements about what the software system is expected to do. Nonfunctional

requirements are most often left outside of any kind of formal treatment [35]. Such

requirements form an important part of real requirements documents [32]; they

refer to operational costs, responsibilities, interaction with the external environment,

reliability, integrity, flexibility, and so forth. The limited scope of current formal

specification languages results from the restricted set of built-in abstractions in terms

of which the requirements must be captured. For example, in state-based languages

requirements must be expressed in terms of typed entities and operations on them;

in algebraic languages they must be expressed in terms of abstract data types. (Such

languages thus appear to be more appropriate in the design phase that follows

requirements analysis.) To overcome these limitations language designers have

proposed richer constructs, in particular for expressing temporal requirements (e.g.,

[12,22,24,27]) and for capturing requirements about agents and their behavior in

the composite system under consideration [14,201. (In the sequel, the term composite

system will be used to refer to the automated system together with the relevant part

of its environment [9, 141.)

Goal-directed requirements acquisition

The acquisition problem

To formalize the requirements, one must first know what these requirements are.

Requirements acquisition and elicitation is not an easy task. Often the clients are

unable to formulate all relevant requirements explicitly and precisely, the analysts

have limited knowledge about the environment in which the system will be used,

different automation alternatives arise so that a most suitable one must be selected,

and so forth. Surprisingly, very little attention has been paid so far to the requirements

acquisition process. The role of knowledge about the application domain and about

similar systems has been recognized [171. For example, requirements cliches avail-

able in domain-specific libraries can be instantiated and/or specialized [38]. Pre-

liminary models for acquisition dialogues to support multiple viewpoints, negoti-

ation, and cooperative elaboration of requirements have also been proposed [19,401.

In this context, we view requirements analysis as being made of two coordinated

tasks, requirements acquisition and formal specification.

l In requirements acquisition a preliminary model for the specification of the

entire composite system is elaborated and expressed in a “rich” language. This

language needs a variety of built-in concepts to structure requirements about

the composite system in terms of the kind of abstractions usually found in

requirements documents, such as objectives and constraints to be met by the

composite system, entities, relationships, events, and actions taking place in it,

agents controlling the actions, responsibilities assigned, possible scenarios of

system behavior, and so forth. The language should also provide facilities for

capturing multiple automation alternatives in a form amenable to evaluation

and negotiation between the analysts and the clients. (In the sequel, the term

requirements model will be used to refer to the preliminary model elaborated

during acquisition; the language used to express this model will be called

acquisition language.) The acquisition language should be formal enough to

provide some formal basis for elicitation of requirements; on the other hand

its use should not require too much hard coding by the analysts, and the

preliminary model being sketched must be made visible to the clients.

l In formal specijicution a specific automation alternative that emerged during

acquisition is considered, and the part to be automated in the corresponding

composite system is retained; the preliminary specification obtained for the

data and operations of that subsystem is refined and made more precise using

a formalism suitable for detailed formal proofs and prototype generation.

Requirements acquisition and formal specification are not necessarily sequential

tasks; from a process programming perspective, one could see them as coroutines.

We justify this decomposition into two tasks by making the following observations.

l Formal specification needs some input to start with.

l The acquisition of knowledge about the composite system involves concepts

such as objectives, agents, and responsibilities; such concepts are not found in

the final formal specification given to the designers.

6 A. Dardenne et al.

l Requirements acquisition relies more on knowledge about the application

domain (e.g., library management or aircraft control) whereas formal specifi-

cation relies more on knowledge about the sophisticated formalism being used

(e.g., modularization or import mechanisms).

l The basic processes involved in requirements acquisition and in formal

specification are rather different. Requirements acquisition involves learning

[44] and negotiation [40], whereas formal specification involves data/operation

refinement and structuring, assertion strengthening and weakening, and so

forth [ll, 151.

The focus of this paper is on the requirements acquisition task. Our aim is to

present elements of a general approach to requirements acquisition we have

developed in the context of the KAOS project. (KAOS stands for Knowledge

Acquisition in automated Specification [45].) The driving forces of this approach

are the reuse of domain knowledge and the application of machine learning tech-

nology [44]. Two learning strategies have been adapted to the context of require-

ments acquisition: learning-by-instruction, where the learner conducts the

acquisition process by using meta-knowledge about the kind of knowledge to be

acquired [4,8,43], and learning-by-analogy, where the learner retrieves knowledge

about some “similar” system to map it to the system being learned [26].

The overall approach taken in KAOS has three components.

(i) a conceptual model for acquiring and structuring requirements models, with

an associated acquisition language,

(ii) a set of strategies for elaborating requirements models in this framework, and

(iii) an automated assistant to provide guidance in the acquisition process accord-

ing to such strategies.

To introduce the context of this paper, we first outline these three components briefly.

The conceptual model

The conceptual model provides a number of abstractions in terms of which

requirements models have to be acquired; it is thus a meta-model. It is aimed at

being sufficiently rich to allow both functional and nonfunctional requirements for

any kind of composite system to be captured in a precise and natural way. Work

on knowledge representation [5] has already been shown to be highly relevant in

this context. For example, RML proposes abstractions such as the “entity”,

“activity”, and “assertion” concepts together with the “subclass specialization” link

type [24]. It was felt, however, that a richer set of abstractions is needed if one

wants to also capture objectives of the system under consideration, constraints that

make such objectives operational, agents like human beings or programs that control

the system’s behavior according to such constraints, events that cause the application

of actions on entities, and so forth. Also, other structuring link types are needed

beside subclass specialization, like (alternative) refinement links between objectives

Goal-directed requirements acquisition 7

or between constraints, (alternative) assignment links between agents and con-

straints, and so forth. The meta-model for requirements acquisition can be represen-

ted as a conceptual graph where nodes represent abstractions and edges represent

structuring links. (Figure 2 illustrates a portion of this graph.)

Acquisition strategies

An acquisition strategy in this framework defines a well-justified composition of

steps for acquiring components of the requirements model as instances of meta-

model components. In other words, a strategy corresponds to a specific way of

traversing the meta-model graph to acquire instances of its various nodes and links.

For example, the meta-model can be traversed backwards from the objectives to be

fulfilled by the composite system, or backwards from the agents available in the

system and their respective views, or backwards from client-supplied scenarios for

combining actions. Each step in a strategy is itself composed from finer steps like,

for example, question-answering, input validation against known properties of

meta-model components, application of tactics to select among alternatives, deduc-

tive inferencing based on property inheritance through specialization links, analogi-

cal inferencing based on knowledge about similar systems, or conflict resolution

between multiple views of human agents involved.

The acquisition assistant

The acquisition assistant is aimed at providing automated support in following

one acquisition strategy or another. It is built around two repositories: a requirements

database and a requirements knowledge base. Both are structured according to the

meta-model components. The requirements database maintains the requirements

model built gradually during acquisition; the latter can be analyzed using query

facilities similar to those provided by project database systems [47]. The requirements

knowledge base contains two kinds of knowledge. Domain-level knowledge concerns

concepts and requirements typically found in the application domain considered.

As in [4,38], this knowledge is organized into specialization hierarchies; require-

ments fragments for a particular class of systems known to the assistant (e.g., library

management, airline reservation, telephone network) are thereby inherited from

more general applications (e.g., resource management, transportation, communica-

tion) and from more general tasks (e.g., transaction processing, history tracking,

device control). Besides, meta-level knowledge concerns properties of the abstrac-

tions found in the meta-model (e.g., “a constraint that can be temporarily violated

needs to be restored by some appropriate action”) and ways of conducting specific

acquisition strategies. The latter aspect includes tactics that can be used within

strategies (e.g., “prefer those alternative refinements of objectives which split

responsibility among fewer agents”).

In this overall framework, the objective of this paper is to present a significant

portion of the KAOS meta-model together with one specific acquisition strategy

8 A. Dardenne et al.

associated with it. The part of the meta-model considered relates to the refinement

of system objectives, their operationalization through constraints, the specification

of objects and actions to satisfy such constraints, and the assignment of agents like

human beings, devices, or programs to constraints and actions. The acquisition

strategy considered in the paper is a learning-by-instruction one. The meta-model

graph is traversed backwards from the Goal node through adjacent links. Instances

of the Goal node that are acquired represent objectives to be achieved by the

composite system (like, e.g., satisfy as many book requests as possible, provide

bibliographical knowledge in relevant domains, or maintain privacy about user

interests). At each node on the path prescribed by the strategy the corresponding

meta-level knowledge is used for guiding instance acquisition.

A distinguished feature of the approach presented in the paper is the importance

given to high-level goals as opposed to their operationalization into constraints to

be ensured by agents through appropriate actions. Instead of starting directly from

lower-level process- or action-oriented descriptions as is usually done in current

requirements engineering methods, the approach starts from system-level and

organizational objectives from which such lower-level descriptions are progressively

derived.

Goals are important in several respects. They lead to the incorporation of require-

ments components which should support them. They justify and explain the presence

of requirements components which are not necessarily comprehensible to clients.

They may be used to assign the respective responsibilities of agents in the system;

more precisely, they may provide the basis for defining which agents should best

perform which actions to fit prescribed constraints (according to their capabilities,

reliability, cost, load, motivation, and so forth). Finally, they provide basic informa-

tion for detecting and resolving conflicts that arise from multiple viewpoints among

human agents [39].

The remainder of the paper is organized as follows. Section 2 describes the various

abstractions involved in the portion of the meta-model relevant to the goal-directed

acquisition strategy. Requirements fragments from a library system are also provided

there to illustrate the use of the acquisition language. The strategy itself and its

various associated tactics are then discussed in Section 3. Section 4 then concludes

by discussing achievements and open issues.

2. A conceptual meta-model for requirements acquisition

The three levels involved in our approach to requirements acquisition are first

clarified in Section 2.1. The central role played by the model at the meta level is

then discussed in greater detail in Section 2.2. Section 2.3 introduces some back-

ground material used in the sequel to define the meta-model components. The

remainder of Section 2 is devoted to a tour through the portion of the meta-model

relevant to this paper (Sections 2.4-2.9).

Goal-directed requirements acquisition 9

2.1. The meta, domain, and instance levels

As shown in Fig. 1, our approach to requirements acquisition involves three levels

of modeling. (In the sequel, the “meta” prefix will be used wherever felt necessary

to avoid confusions between levels.)

l The meta level refers to domain-independent abstractions. This level is made

of meta-concepts (e.g., “Agent”, “Action”, “Relationship”, etc.), meta-relation-

ships linking meta-concepts (e.g., “Performs”, “Input”, “Link”, “ISA” special-

ization, etc.), meta-attributes of meta-concepts or meta-relationships (e.g.,

“Load” of “Agent”, “PostCondition” of “Action”, “Cardinality” of “Link”,

etc.), and meta-constraints on meta-concepts and meta-relationships (e.g., “a

constraint that can be temporarily violated must have a restoration action

meta-linked to it”).

l The domain level refers to concepts specific to the application domain (e.g.,

resource management, telephone network, etc.) and to the type of task con-

sidered (e.g., transaction processing, history tracking, etc.). This level is made

of concepts that are instances of meta-level abstractions (e.g., for the library

management subdomain, the “Borrower” concept which is an instance of the

“Agent” meta-concept, the “Checkout” concept which is an instance of the

meta level

iomain level

nstance level

_______~r_ = InstanceOf link

Fig. 1. The meta, domain, and instance levels.

10 A. Dardenne et al.

“Action” meta-concept, the “Copy” concept which is an instance of the

“Relationship” meta-concept, etc.). Domain-level concepts are linked through

instances of the meta-relationships linking the corresponding meta-level con-

cepts they are an instance of (e.g., “Borrower” Performs “Checkout”, “Copy”

Links “Book” and “BookCopy”). Domain-level concepts must also satisfy

instantiations of the meta-constraints on the corresponding meta-level concepts

they are an instance of (e.g., the constraint of “limited borrow time” can be

violated and must thus have a restoration action associated with it-such as

sending a reminder). The requirements model to be acquired is thus structured

from such domain-level concepts according to instances of the corresponding

meta-relationships inherited from the meta level. The domain knowledge which

can be reused during acquisition is structured in a similar way.

l The instance level refers to specific instances of domain-level concepts (see

Fig. 1).

A similar distinction between object and meta levels has been used before for

requirements modeling, see [23]. The meta, domain, and instance levels are thus

made from meta-types, types, and type instances, respectively. The KAOS meta-

model is a conceptual model for the meta level, thus consisting of meta-level

concepts, relationships, attributes, and constraints.

2.2. Role of the conceptual meta-model

In the context of requirements acquisition, the KAOS meta-model fills several

roles.

(i) As seen before, the components of a requirements model are acquired as

domain-specific instances of meta-concepts, linked by instances of meta-

relationships, characterized by instances of meta-attributes, and constrained

by instances of meta-constraints.

(ii) As a consequence of (i), the meta-model determines the structure of the

acquisition language.

(iii) As another consequence of (i), the components of a requirements model

inherit all the features defined once for all for the corresponding meta-level

abstractions they are an instance of.

(iv) The meta-model drives the acquisition process as in learning-by-instruction

systems. For example, with the goal-directed strategy presented in Section

3, the Goal meta-concept is the first to be considered; instances of it are

acquired through Reduction and ISA specialization links (see Fig. 2); the

objects Concerned by the goals acquired are also preliminarily defined. Then

the Agent and Capability meta-level abstractions are considered to identify

relevant instances of them. Next the Constraint meta-concept is considered;

instances of it are acquired from goals through Operationalization links, and

so forth. It is important to recognize that the more domain-independent

knowledge is attached to these meta-concepts and meta-relationships under the

Goal-directed requirements acquisition 11

form of meta-attributes and meta-constraints, the more knowledge-based guid-

ance can be provided in the acquisition process,

(v) The various components of the meta-model yield criteria for measuring

conceptual similarity when a learning-by-analogy strategy is followed [lo].

Analog requirements fragments are retrieved in the domain knowledge base

and mapped to the target requirements from similarities that are evaluated

between goals, constraints, actions, agents, events, and the like.

(vi) The meta-model determines the structure of the requirements database where

the requirements model is gradually elaborated; similarly, it determines the

structure of the domain knowledge base where model fragments can be

retrieved during acquisition and reused. As shown in [47], meta-models

provide a basis for defining generic environment architectures where tools

know nothing about domain-level concepts; they know just about meta-level

concepts.

2.3. Characterizing model components

Models at the meta level and at the domain level were already seen to consist of

concepts, relationships linking concepts, and attributes attached to concepts or

relationships (see Section 2.1). This style of model definition is close to the one

used in semantic data models [6,29] or structured object representations [5]. What

is meant by attribute and relationship is now made more precise; next we will

see how meta-level and domain-level concepts, relationships, and attributes are

characterized.

23.1. Terminology

Attributes. An attribute Att of a concept or relationship T is defined as a function

Att:T+D

where D is called the domain of values for the attribute.

Relationships. An n-ary relationship R over concepts C, through C,, is defined by

R=TuPLE(C,,...,C,,)

where TUPLE denotes the tuple type constructor (that is, any instance of R is a tuple

of corresponding instances of C,). Sometimes the role played by C, in R is given

an explicit name. The cardinality of R is defined by a sequence of pairs

{mink : maxk)l=-kGn, where min, and maxk denote the minimum and maximum

number of instances of R, respectively, in which every instance of Ck must participate.

Cardinalities allow various kinds of constraints on relationships to be expressed.

For example, the cardinality of the Copy relationship that links the BookCopy and

Book concepts in Fig. 1 is { 1: 1, 1: N}. This expresses that a book copy must be a

copy of one and exactly one book whereas a book may have a number of copies

ranging from one to an arbitrary number N. Cardinality constraints for a number

of relationships in the KAOS meta-model are depicted in Fig. 2.

12 A. Dardenne et al.

AndOr relationships. AND/OR graph structures [37] need to be introduced if one

wants to support the tracking of alternative requirements options at the domain

level. For example, a goal can be refined into several alternative combinations of

subgoals, a goal can be made operational through several alternative combinations

of constraints, a constraint can be under responsibility of several alternative combina-

tions of agents, and so forth. AndOr relationships are introduced at the meta level

for that purpose. (Instances of such relationships will be declared in the acquisition

language using the corresponding logical connectives.) An AndOr relationship R

over concepts C, and C2 is a compound binary relationship defined as follows:

with

R = AndR 0 OrR (“0” denotes relation composition)

OrR = TUPLE (C,, AltR), AndR = TUPLE (AltR, C,),

that is, any instance of R is a pair of concept instances (c, , c2) such that there exists

an alternative alt for which (cr , ah) and (u/t, CJ are instances of OrR and AndR,

respectively. (AltR thus represents the set of possible alternatives to link C, and

&--in AND/OR graph terminology, instances of AftR correspond to AND-nodes

whereas instances of C, and C2 correspond to OR-nodes.)

AndOr relationships have a Selected attribute with “yes” and “no” as possible

values to record which alternative is eventually selected during acquisition. These

values must be updated in case of backtracking to explore another alternative.

IsA relationship. Subclass specialization is captured through the binary IsA relation-

ship over concepts. This relationship is defined by

ISA (C, , C,) iff every instance of C, is also an instance of C,.

As a result, features of C2 are inherited by C, according to the inheritance mode

specified; a feature is uninheritable, instance-inheritable, type-inheritable, or fully

inheritable (for more details, see [46]). A concept may be linked to several others

through ISA relationship instances; thus multiple inheritance is supported. As first

shown by Greenspan [24], specialization hierarchies are of great benefit in the

development of conceptual requirements models.

2.3.2. De&zing concepts, relationships, and attributes

At the meta and domain levels, model components are characterized as follows.

A concept C is defined by a set of features; a concept feature is either an attribute

of C or a relationship involving C. For example, the “Agent” meta-level concept

in Fig. 1 could have a “Load” attribute and is involved in the “Performs” relation-

ship; the “Book” domain-level concept could have a“Title” attribute and is involved

in the “Copy” relationship.

A relationship R is also defined by a set of features; a relationship feature is either

an attribute of R or the ordered list of concepts linked by R together with their

respective role and cardinality. For example, the “Performs” meta-level relationship

In Fig. 1 could have a “Reliability” attribute and links the “Agent” and “Action”

Goal-directed requirements acquisition 13

meta-level concepts; the “Borrowing” domain-level relationship could have a

“DateOfCheckOut” attribute and links the “Borrower” and “BookCopy” domain-

level concepts.

An attribute Att is defined by a set of characteristics like its name, informal

definition, domain of values, and unit of values. A domain is either elementary or

compound. An elementary domain is a set of atomic values; this set can be simple,

linearly ordered, or ISA-structured (e.g., the “Keyword” domain is ZsA-structured).

A compound domain is built from other domains through the Union, Tuple, SetOf;

or SequenceOf domain constructors, or through abstract syntax domain constructors

[31]. The latter are used for those attributes attached to concepts or relationships

which have formal assertions as values.

Formal assertions as attribute values. At the domain level, formal assertions can thus

be attached to domain-specific concepts; they are values for attributes inherited

from the meta level, like the Invariant attribute that can be attached to objects, the

Precondition, PostCondition, Triggercondition, and StopCondition attributes that can

be attached to actions, or the FormalDef attribute attached to goals or constraints

(see Sections 2.4, 2.5, and 2.8). The assertion sublanguage used for writing such

attribute values is a typed temporal first-order logic equipped with real-time temporal

constructs [33]; it is inspired by ERAE [12]. The primary notations used in the

examples below are summarized as follows. For a well-formed formula P,

P means “property P holds in the current state”,

OP means “property P holds in the next state”,

OP means “property P holds in current or some future state”,

q iP means “property P holds in current and all future states”,

l P means “property P holds in the previous state”,

4P means “property P holds in current or some previous state”,

n P means “property P holds in current and all previous states”.

Inheritance mode. An additional characteristic that may be attached to a relationship

or an attribute is its inheritance mode through ISA specialization hierarchies (with

“uninheritable”, “instance-inheritable”, “type-inheritable”, or “fully inheritable”

as possible values, see above). All features of meta-concepts and meta-relationships

are fully inheritable by each corresponding instance at the domain level. Similarly,

constraints on model components at the meta level are correspondingly instantiated

at the domain level. For example, consider the following meta-constraint.

A constraint that may be temporarily violated must have a restoration

action meta-linked to it.

A possible instantiation of it at the domain level might be

The RectifyLibraryDatabase action must be introduced with appropriate

conditions to restore the constraint of consistency between the library

database and the library shelves.

14 A. Dardenne et al.

Figure 2 summarizes the portion of the meta-model of relevance to this paper; a

detailed description of the complete meta-model can be found in [46]. We proceed

now from the more-or-less classical concepts, which already appear in some form

in existing specification languages, to the new concepts which have been introduced

in KAOS. (The order of presentation thus does not correspond to the order in which

instances must be acquired at the domain level; the latter issue will be addressed

in Section 3.) In the sequel, where no ambiguity arises we will say “a C” instead

of “an instance of meta-concept C”.

2.4. Objects, entities, relationships, and events

An object is a thing of interest which can be referenced in requirements. Instances

of objects may evolve from state to state (because of applications of actions, see

Section 2.5). The state of an object instance Ob at some time is defined as a mapping

from Ob to the set of values at that time of all features of Ob.

In addition to Name and InformalDeJnition, the primary meta-attributes of the

OBJECT meta-concept include:

l Exists, with values true at the instance level if the corresponding object instance

exists in the current state, and false otherwise;

Reduction

Operatiorralization

_ : Binmy Relationship
: AndOr Relationship

- - : ISA Relationship
1:N Capability

Fig. 2. A portion of the KAOS conceptual meta-model.

Goal-directed requirements acquisition 15

l Invariant, whose values at the domain level are assertions that restrict the class

of possible states for the corresponding object. An invariant is implicitly

universally quantified over the object states.

As seen in Fig. 2, the OBJECT meta-concept is involved in a number of meta-

relationships. These will be defined later when the other meta-concepts involved in

them will be defined. In addition to those inherited from the meta level, new

domain-specific attributes can be attached to objects at the domain level (e.g., a

“Title” attribute for the “Book” concept).

The ENTITY, RELATIONSHIP, EVENT, and AGENT concepts are specializ-

ations of the OBJECT meta-concept and inherit all its features.

An entity is an autonomous object; its instances may exist independently from

other object instances. Examples of entities are “Borrower”, “Book”, “BookCopy”,

“Library”, and so forth. In the acquisition language, one might write

Entity Library

Has available, checkedout, lost: SetOf [BookCopy]

coverageArea: SetOf [Subject]

% declaration of domain-specific attributes %

Invariant (Glib: Library)

(lib = lib.available u lib.checkedOut u liblost) A

(lib.available n lib.checkedOut # 0 A

lib.available n liblost = 0 A

lib.checkedOut n lib.lost = 0)

. . .

end Library

The acquisition language can be seen to have a two-level structure: an outer level

for declaring domain-level concepts in terms of meta-model components, and an

inner level for expressing assertions as values for some meta-attributes. The outer

declaration level has an entity-relationship structure which yields the structure of

the requirements database; static semantics checking can thereby be performed

through entity-relationship queries [47]. The inner assertion level corresponds to

typed temporal first-order logic.

A relationship is a subordinate object; the existence of its instances depends upon

the existence of the corresponding object instances linked by the relationship. If

OB, through OB, denote the linked objects, its structure is

TUPLE (OB,, . . . , OB,).

The Exists meta-attribute inherited from the OBJECT meta-concept is renamed;

in the acquisition language, the expression

R(ob,,...,ob,)

is used rather than

[R(ob,, . . . , ob,)].Exists = true.

16 A. Dardenne et al.

Since a relationship links objects, the RELATIONSHIP meta-concept has a

specific meta-relationship with the OBJECT meta-concept (see Figs. 1 and 2): the

Link meta-relationship. In this meta-relationship, the meta-role “Links” is played

by RELATIONSHIP with meta-cardinality 1:N (that is, relationships are n-ary

with n 2 1); the meta-role “LinkedBy” is played by OBJECT with meta-cardinality

0:N (that is, an object does not necessarily participate in relationships). The Link

meta-relationship has two meta-attributes: Role and Cardinality. Values for these

meta-attributes yield roles and cardinalities for relationships at the domain level.

(The reader now may understand why the “meta” prefix is used: meta-roles and

meta-cardinalities of a meta-relationship should not be confused with the Role and

Cardinality meta-attributes of the Link meta-relationship.) For example, the Borrow-

ing relationship might be partially described in the acquisition language as follows.

Relationship Borrowing

Links Borrower {Role Borrows, Card 0: N}

BookCopy {Role BorrowedBy, Card O:l}
% Borrowers may have no copy borrowed, and may borrow several copies at same

time; copy may be not borrowed, and may be borrowed by at most one borrower %

Invariant (Vlib: Library, bor: Borrower, bc: BookCopy)

[Borrowing (bor, bc) A bc E lib +

bc E lib.checkedOut A 4Requesting (bar, bc)]

(Vlib: Library, bc: BookCopy)

[bc E lib.checkedOut 3

(3bor: Borrower) Borrowing (bar, bc)]

. . .

end Borrowing

An event is an instantaneous object; that is, its instances exist at the instance

level in one state only. Again, the Exists meta-attribute inherited from the OBJECT

meta-concept is renamed; in the acquisition language, the expression “Occurs (ev)”

is used instead of “ev.Exists = true”.

For example, the event of a reminder being sent for a borrower to return a book

copy might be expressed as follows.

Event ReminderIssued

Has ToWhom: Borrower, What: BookCopy, Message: TEXT

Invariant (Vrs: ReminderIssued)

(Occurs (rs) e

(3~: Staff) Performs (p, IssueReminder))

end ReminderIssued

(We will come back to this example later when the IssueReminder action and

Performs meta-relationship will be introduced.)

Goal-directed requirements acquisition 17

The EVENT meta-concept has specific meta-attributes in addition to those

inherited from OBJECT. Among them, the Frequency meta-attribute can be used

to express the time interval between repeating instances of the event. Specific

meta-relationships are introduced to model the fact that events may cause the

application of actions or are produced by such applications, as shown below.

2.5. Actions

An action is a mathematical relation over objects. (If the action is deterministic,

this relation reduces to a function.) Action applications define state transitions.

In addition to Name and InformalDefinition, the primary meta-attributes of the

ACTION meta-concept include

l Precondition, whose values at the domain level are the weakest necessary

conditions on initial states for application of the corresponding action;

l TriggerCondition, whose values at the domain level are the weakest suficient

conditions on initial states for application of the corresponding action;

l PostCondition, whose values at the domain level are the strongest conditions

on final states that describe the net effect of applying the corresponding action.

The pair (Precondition, PostCondition) captures the state transition produced by

application of the action. This pair often has a pattern (P A . . . , 1P A + + *) or

(lPA...,PA...).

Note the difference between a precondition and a trigger condition. An action

can only be applied if its precondition holds whereas it must be applied if its trigger

condition becomes true. A meta-constraint here is that the action’s precondition

must be logically implied by the trigger condition taken in conjunction with the

invariants on the objects referred to in the precondition.

Other attributes, such as StopCondition or Duration, can be attached to ACTIONS.

See [46] for more detail.

The ACTION meta-concept is linked to OBJECT through the Input/Output

meta-relationships and to EVENT through the Cause/Stop meta-relationships. They

are defined as follows. Let act, ob, and eu denote instances of the ACTION, OBJECT,

and EVENT meta-concepts, respectively.

Input (act, ob) iff ob is among the types making up the domain of act.

Ouput (act, ob)

iff ob is among the types making up the codomain of act.

Cause (ev, act)

iff ev instances are among those causing applications of act.

Stop (ev, act)

iff ev instances are among those causing abortions of act.

Two specializations of ACTION are distinguished in the meta-model, viz.

INSPECT and MODIFY actions. For a modification action act, Output (act, ob)

means that instances of object ob are created, are deleted, or have their features

18 A. Dardenne et al

updated. The Input and Output meta-relationships have optional Argument and

Result meta-attributes, respectively, to declare instance variables referenced in the

assertions attached to the corresponding action.

The examples below suggest how these meta-relationships and meta-attributes

are reflected in the acquisition language.

Action Checkout

Input BookCopy {Arg: bc},

Library {Arg: lib}, Borrower {Arg: bor}

Output Library {Res: lib}, Borrowing

Precondition bc E lib.available

PostCondition l(bc E lib.available) A bc E lib.checkedOut A

Borrowing (bor, bc)

Action IssueReminder

Input Borrower {Arg: bor}, BookCopy {Arg: bc}

Output Reminder

TriggerCondition

n D2w Borrowing (bor, bc) A

1 l s-lw (3r: ReminderIssued) [Occurs (r) A r= (bor, bc, -)]

PostCondition. . .

The trigger condition above states the condition and frequency under which

reminders must be produced. (The Reminder-Issued event was introduced before.)

This example also shows the use of real-time temporal constructs [12,33]; e.g.,

“U >2w ” means “in every past state from the current one up to more than 2 weeks”.

2.6. Agents

An agent is an object which is a processor for some actions; agents thus control

state transitions. As opposed to the other kinds of objects (i.e., entities, relationships,

and events), agents have choice on their behavior [14]. Examples of agents are

human beings, physical devices, or programs that exist or are to be developed in

the automated part of the composite system.

Agents have states like any other kind of object. They inherit all features that

may characterize objects. In particular, they can be structured from other agents

through the tuple type constructor; agent refinement into finer ones can thereby be

supported.

In addition to the features inherited from the OBJECT meta-concept, the AGENT

meta-concept has a Loud meta-attribute, whose values denote occupation rates of

the corresponding agents. The load of an agent will increase progressively during

requirements acquisition as responsibility assignments are made. Initially it might

be non-null if the agent already has assignments in another composite system. The

process according to which loads are evaluated is outside the current scope of our

approach. The Loud attribute acts as a placeholder where values resulting from

Goal-directed requirements acquisition 19

cost analysis can be integrated; such values are used in the tactics for responsibility

assignment, see Section 3.

As shown in Fig. 2, the AGENT meta-concept has two meta-relationships with

ACTION: Capability and Performs. They are defined as follows.

Capability (ag, act) iff agent ug is capable of performing action act.

Performs (ug, act) iff agent ug is a processor allocated to act.

An agent is thereby partly defined by two sets of actions: the set of actions it can

perform and the set of actions it must perform after assignment decisions have been

made (see Section 2.8 and Section 3). An obvious meta-constraint here is that

(Vug: AGENT, act: ACTION)

(Performs (ug, act) * Capability (ug, act)).

The Performs relationship is more precisely captured through the following

meta-level Performance Axiom:

(Vug: AGENT, act: ACTION)

(Performs (ug, act) = {?Pre,!Trig} [ug, act] {Post}).

The right-hand side of this equivalence has the following meaning:

if agent ug actually performs action act, it must guarantee to start if the

trigger condition of act becomes true and only if the precondition of

act is true, to yield a state satisfying the postcondition of act.

In terms of the FOREST notations [20], the Performance Axiom can be stated as

(Vug: AGENT, act: ACTION)

(Performs (ug, act) 3

(Pre + [ag, act] Post) & (Trig & Pre + obl (ug, act))).

A last meta-relationship which will be used below is the Knows meta-relationship

between the AGENT and OBJECT meta-concepts. This meta-relationship is defined

by

Knows (ug, ob)

iff the states of object ob are made observable to agent ug.

Note that Performs (ug, act) means that ug can actually control the state transitions

associated with act whereas Knows (ug, ob) means that ug can actually observe ob

states. Also note that ob can be an object of any kind. In particular, the state of an

agent can thereby be made observable to other agents.

Often the interface through which an agent can observe object states should be

made precise in the requirements [9]. An Interface meta-attribute attached to the

Knows meta-relationship is introduced for that purpose; its values are references

to other objects-and, in particular, to other agents.

20 A. Dardenne et al.

To illustrate these various notions, one could get the following description at

some stage during acquisition:

Agent Staff

Has CompetenceArea,. . .

% declaration of domain-specific attributes %

Invariant (Vst: Staff) (InstanceOf (st, ResearchStaff) v

InstanceOf (st, SecretaryStaff))

Load . . .

CapableOf AddCopy, RemoveCopy, BiblioQuery,

Checkout, Return, IssueReminder,. . .

Performs AddCopy, RemoveCopy,. . .

Knows Borrowing {Interface: BorrowingSheet}, . . .

2.7. Goals

A goal is a nonoperational objective to be achieved by the composite system.

Nonoperational means that the objective is not formulated in terms of objects and

actions available to some agent in the system; in other words, a goal as it is formulated

cannot be established through appropriate state transitions under control of one of

the agents.

For example, a standard objective for a library system would be to have any book

request eventually satisfied; requests should be made by registered borrowers and

refer to books relevant to the subject area covered by the library. This objective

might be captured by the following requirements fragment:

SystemGoal Achieve [BookRequestSatisfied]

InstanceOf SatisfactionGoal

% declaration of goal category %

Concerns Borrower, Book, Borrowing,. . .

FormalDef

(Vbor: Borrower, b: Book, lib: Library)

Requesting (bor, b) A b.subject E lib.coverageArea =3

O(3bc: BookCopy) (Copy(bc, b) A Borrowing (bor, bc))

This objective is nonoperational in that it cannot be achieved by application of

actions available to some agent. For example, a Borrower agent cannot establish

the objective by application of the MakeBookRequest, Checkout, and Return actions

it is capable of; the Checkout action can make the predicate Borrowing (bar, bc)

become true, but the precondition bc E lib.available for that action cannot be made

true by application of actions available to that agent. (As it will be seen in Section

2.8, such a goal needs to be “implemented” by operational constraints; the latter

can be established through state transitions under control of some agents.)

As seen in Fig. 2, the Concerns meta-relationship links the GOAL and OBJECT

meta-concepts. Explicit links can thereby be established at the domain level between

Goal-directed requirements acquisition 21

a goal and the objects the goal refers to; these links are used during acquisition to

get object descriptions from goal descriptions. (See Section 3.) For example, the

formulation of the BookRequestSatisJied goal above requires the introduction

and later description of the Borrower agent and the Borrowing and Requesting

relationships.

A goal taxonomy is defined at the meta level to support guidance during acquisi-

tion, reuse of goal descriptions, and formal checks. Goals are classified according

to their pattern and their category.

The pattern of a goal is based on the pattern of its formal definition. Five patterns

can be identified:

Achieve: pattern P * OQ,

Cease : pattern P =3 0 ~0,

Maintain: pattern P =3 q Q,

Avoid: pattern P * Cl iQ,

Optimize: pattern Maximize (objective function) or

Minimize (objective function).

These patterns have an impact on the set of possible behaviors of the system; Achieve

and Cease goals generate behaviors, Maintain and Avoid goals restrict behaviors,

and Optimize goals compare behaviors [l]. Goal patterns are declared by making

the pattern name precede the goal name, see the example above.

Goals found in requirements documents can be of different categories. At the

meta level, such categories are organized into a specialization hierarchy. (Only the

top level of this taxonomy is shown in Fig. 2.) A first distinction is made between

SystemGoals and PrivateGoals. SystemGoals are application-specific goals that must

be achieved by the composite system; e.g., the BookRequestSatisjied goal above is

declared as a SystemGoal. PrivateGoals are agent-specific goals that might be

achieved by the composite system; e.g., the goal of keeping borrowed copies as long

as needed would be private to the Borrower agent. (We will come back to private

goals below.) System goals are specialized into several categories. The categories

considered so far include:

l SatisfactionGoals concerned with satisfying agent requests;

l InformationGoals concerned with getting agents informed about object states;

l RobustnessGoals concerned with recovering from foibles of human agents or

from breakdowns of automated agents;

l ConsistencyGoals concerned with maintaining the consistency between the

automated and physical parts of the composite system;

l SafetyGoals and PrivacyGoals concerned with maintaining agents in states

which are safe and observable under restricted conditions, respectively.

The specific category of a domain-level goal is declared by an InstanceOf clause

which makes the goal inherit all features of the corresponding goal category.

22 A. Dardenne et al.

As another example, the objective of safe transportation in a lift system might be

captured by the following requirements fragment:

SystemGoal Maintain [SafeTransportation]

InstanceOf SafetyGoal

Concerns Passenger

InformalDef . . .

Note again that this objective is nonoperational because as formulated it cannot be

established by the MakeRequest, Getln, and GetOut actions available to the

Passenger agent nor by the OpenDoors, CloseDoors, Stop, and GoToFloor actions

available to the LiftController agents. One difference with the previous example is

that the SafeTransportation goal is even more abstract than the BookRequestSatisfied

goal; it cannot be directly formalized. Goals can thus be described formally or

informally. Abstract/informal goals need to be refined into concrete/formal ones;

the latter may also need to be further refined in order to obtain subgoals that can

be more easily made operational through constraints. (The notions of formality and

operationality should not be confused.)

The Reduction meta-relationship is thus introduced for goal refinement. Since a

goal can be reduced into several alternative combinations of subgoals, Reduction

is an AndOr meta-relationship; it corresponds to the classical problem reduction

operator in problem solving [37]. The precise definition is as follows.

Reduction (G, g)

iff achieving goal g possibly with other subgoals is

among the alternative ways of achieving goal G.

At the domain level, goals are thus structured as AND/OR graphs (a goal node

can have several parent nodes as it can occur in several reductions, see the corre-

sponding cardinality in Fig. 2).

Let us come back to the BookRequestSatisJied goal above. The predicate Borrow-

ing (bar, bc) will eventually become true from states where Requesting (bar, b) holds

provided the precondition bc E lib.available of the Checkout action becomes true

sooner or later. This could be achieved either by (i) having a reasonable amount

of relevant book copies in the library, (ii) guaranteeing the regular availability of

such book copies, and (iii) notifying borrowers in case of requested book copies

being returned, or by guaranteeing that a copy of any book is available for any

borrower at any time. (The latter alternative would probably be later rejected due

to the cost of ensuring the constraint operationalizing it, see below.) These possible

refinements would be captured during acquisition as follows.

SystemGoal Achieve [BookRequestSatisfied]

InstanceOf.. .
Concerns . . .

FormalDef . . .

ReducedTo EnoughCopies, RegularAvailability, AvailabilityNotified

or ReducedTo AsManyCopiesAsNeeded

Goal-directed requirements acquisifion 23

Systemgoal Maintain [RegularAvailability]

Concerns Library

FormalDef
(Vlib: Library, bc: BookCopy)

bcElib +

q l[l(bc E lib.available) =3 OsNw (bee lib.available)]

% N is a system parameter %

. . .

Systemgoal Achieve [AvailabilityNotified]

InstanceOf InformationGoal

Concerns Borrower, Library,. . .

FormalDef

(Vlib: Library, bor: Borrower, b: Book, bc: BookCopy)

Requesting (bor, b) A

l l(3bc: BookCopy) (Copy (bc, b) A bcE lib.available) A

(3bc: BookCopy) (Copy (bc, b) A bcE lib.available) =3

OKnows (bor, lib.available)

% The Knows predicate was introduced in Sec. 2.6 %

. . .

The Reduction meta-relationship allows one to capture goals that contribute

positively to other goals. Goals can also contribute negatively to other ones; this is

captured in the Conjlict relationship. The latter is defined as follows.

Conflict (gl, 8.2) iff goals g1, g2 cannot be achieved together.

Suppose, for example, that the following private goal has been acquired from

borrowers:

PrivateGoal Maintain [LongBorrowingPeriod]

InstanceOf SatisfactionGoal

Concerns Borrower, Borrowing

FormalDef

(Vbor: Borrower, b: Book, bc: BookCopy)

q [Borrowing (bor, bc) A Copy (bc, b) A ONeed (bor, b) +

OBorrowing (bor, bc)]

This goal can clearly be seen to conflict with the RegularAvailability goal above

(see the formal definitions of these goals and the invariants attached to the Library

entity and the Borrowing relationship). The description of LongBorrowingPeriod is

therefore complemented with

ConflictsWith RegularAvailability

Thus, conflicts between goals can be made explicit. Recording such conflicts is

required to support subsequent conflict resolution through evaluation and

24 A. Dardenne et al

negotiation. In that prospect, a Priority meta-attribute is also attached to the GOAL

meta-concept. Its values can be used for conflict resolution and for agent responsibil-

ity assignment. (Priorities takes values in the range 0 to 1; the latter value being the

highest priority.) A meta-constraint here is that SafetyGoals always are of highest

priority.

Finally, a Wish meta-relationship is introduced between the HumanAGENT

specialization of the AGENT meta-concept (not shown in Fig. 2) and the GOAL

meta-concept; it is defined by

Wish (ag, G) iff human agent ag wants goal G to be achieved.

For example, the LongBorrowingPeriod goal above is clearly Wished by Borrower

agents; the system goal Avoid [LostCopies] is Wished by StafS agents who do not

want copies to disappear improperly.

The introduction of private goals and Wish links provides useful information at

the domain level for making decisions among alternative responsibility assignments

and conflict resolutions. (See Section 3.) For example, private goals have low Priority

values and therefore will often be dropped in case of conflict; if an agent wishes

some system goal, the constraint operationalizing that goal will be assigned prefer-

ably to that agent-e.g., staff agents will be in charge of the constraint operationaliz-

ing Avoid [LostCopies]; an agent is not assigned a constraint operationalizing a

goal that conflicts with its private goals-e.g., the Borrower agent would not be in

charge of the LimitedBorrowingAmount constraint that operationalizes the Enough-

Copies goal above.

2.8. Constraints

A constraint is an operational objective to be achieved by the composite system.

As opposed to goals, a constraint is formulated in terms of objects and actions

available to some agent in the system; that is, it can be established through appropri-

ate state transitions under control of one of the agents.

For example, the LimitedBorrowingPeriod constraint might be captured by the

following requirements fragment.

SoftConstraint Maintain [LimitedBorrowingPeriod]

FormalDef

(Vbor: Borrower, bc: BookCopy)

q [Borrowing (bor, bc) A l lBorrowing (bor, bc) +

0 c-Nw iBorrowing (bor, bc)]

. .

This constraint is operational in that it can be achieved by application of actions

available to some agent in the system. The Borrower agent has the Return action

in its capabilities; the latter has Borrowing (bor, bc) in its precondition and iBorrow-

ing (bar, bc) in its postcondition. The constraint can thus be established through

Goal-directed requirements acquisition 25

appropriate state transitions under control of the Borrower agent.

Goals are made operational through constraints. The link between goals and

constraints is captured in the Operutionalization meta-relationship defined as follows:

Operationalization (C, G)

iff meeting constraint C is among the

operational ways to achieve goal G.

A constraint operationalizing a goal thus amounts to some abstract “implementa-

tion” of this goal. In general a goal can be operationalized through several alternative

combinations of constraints; like Reduction, Operationalization is an AndOr relation-

ship. A meta-constraint here is that a goal operationalized into constraints may not

be reduced further.

Coming back to the RegularAvailability goal, one can verify from its formal

definition and from the definitions of the Library entity and Borrowing relationship

that the LimitedBorrowingPeriod constraint above is among the operational ways to

achieve it. The NoLostCopies constraint is another way to make the goal operational.

The description above would thus be complemented as follows:

Systemgoal Maintain [RegularAvailability]

Concerns. . .

FormalDef . . .

OperationalizedBy LimitedBorrowingPeriod, NoLostCopies

The Operationahzation meta-relationship propagates all features of the GOAL

meta-concept to the CONSTRAINT meta-concept (see Fig. 2). Thus, constraints

can be AND/OR-reduced in the same way that goals are; they can be conflicting,

may have assigned priorities and may be wished; they concern objects and are

classified by pattern and by category. Moreover, conflicts and categories are propa-

gated through Operationalization links at the domain level as well; that is, constraints

that operationalize conflicting goals are conflicting as well, a SatisfactionGoal is

operationalized into a SatisfactionConstraint, and so forth.

A goal can be achieved provided the constraints operationalizing it can be met.

To meet these constraints, appropriate restrictions may be required in turn on the

actions and objects already identified; new actions and objects might also be required.

Also, the possible agents that are able to enforce the constraints through these

restricted and/or new actions need to be identified before most appropriate ones

can be selected. The Ensuring and Responsibility meta-relationships are introduced

for that purpose. (See Fig. 2.)

To introduce the definition of Ensuring, it is important to recognize that constraint

satisfaction may require:

l the strengthening of Preconditions, Triggerconditions, and PostConditions of

several actions, and of Invariants of several objects,

l the acquisition of new specific actions and objects,

l the acquisition of new specific features for actions and objects already acquired.

26 A. Dardenne et al.

To make that point more precise, consider the SafeTransportation goal intro-

duced in Section 2.7. For a lift system, this goal might be operationalized by the

DoorsClosedWhileMoving constraint formally defined by

(Vl: Lift, d: Doors, f, f’: Floor)

PartOf (d, 1) j 0 [LiftAt (1, f) A OLiftAt (I, f’) A f’# f j

d.State = ‘closed’ A O(d.State = ‘closed’)]

Assume the specifications of the GoToFloor and OpenDoor actions have already

been acquired under the following form.

Action GoToFloor

Input Lift {arg: 1}, Floor {arg: f, f’}, Passenger {arg: p};

Output LiftAt

Precondition LiftAt (1, f) A Requesting (p, f’) A f’ # f

PostCondition LiftAt (1, f’)

Action OpenDoors

Input Lift {arg: l}, Doors {arg: d};

Output Lift {res: 1}, Doors {res: d}

Precondition PartOf (d, 1) A d.State = ‘closed’

PostCondition d.State = ‘open’

To meet the DoorsClosedWhileMoving constraint above, one can make the following

derivations.

(i) From the formal expression of the constraint and the pre- and postconditions

of the GoToFloor action, one derives that the predicate d.State = ‘closed’

must hold both in the initial and final states where GoToFloor is applied; a

strengthening of the precondition and postcondition of GoToFloor with the

assertion

d.State = ‘closed’

is thus required.

(ii) From the formal expression of the constraint and the pre- and postconditions

of the OpenDoors action, one derives that the antecedent in the constraint

must be false in the initial states of OpenDoors (because the consequent is

then false), that is, the predicate LiftAt (1,f) must hold both in the initial

and final states where OpenDoors is applied; a strengthening of the precondi-

tion and postcondition of OpenDoors with the assertion

LiftAt (1, f)

is thus required.

(iii) From the formal expression of the constraint, one derives that another action

is required to yield transitions from states such that l(d.State = ‘closed’) to

states such that d.State = ‘closed’-the latter conditions define a precondition

and a postcondition for a new action that might be named CloseDoor.

Goal-directed requirements acquisition 27

The Ensuring meta-relationship thus has the following meta-attributes attached

to it: StrengthenedPre, StrengthenedTrig, StrengthenedPost, and Strengthenedlnv.
Their values at the domain level represent constraint-oriented preconditions, trigger

conditions, postconditions, and invariants, respectively. Since a constraint can in

general be met by several alternative combinations of strengthenings, Ensuring is

an AndOr relationship. It is defined between the ACTION or OBJECT meta-

concepts on one hand and the CONSTRAINT meta-concept on the other. The

precise definition is as follows.

Ensuring (act, C)

iff the application of action act under strengthened conditions

Pre A StrengthenedPred, Trig A StrengthenedTrig, Post A
StrengthenedPost guarantees that constraint C holds in the

initial and final state of act.

Ensuring (obj, C)
iff the restriction of ob states to the strengthened condition

Inv A StrengthenedInv guarantees that constraint C holds

in the initial and final states of any action on ob.

The combination of Operationalization and Ensuring links at the domain level

provides explanations about the rationale of requirements on actions and objects

with regard to system-level or organizational goals; it can be seen as a refinement

of the notion of operationalization used in explanation-based learning [13,361.

Constraints operationalizing goals must be assigned to agents that will be in

charge of the strengthened actions. This is captured by the Responsibility meta-

relationship. Since a constraint can in general be assigned to several alternative

agents, Responsibility is an AndOr relationship. It is defined by

Responsibility (ag, C)
iff agent ag is among the candidates to enforce constraint C

through some restricted behavior prescribed by Ensuring links.

The Responsibility relationship is more precisely characterized through the follow-

ing Responsibility Axiom which is a strengthened version of the Performance Axiom

in Section 2.6.

(Vag: AGENT, c: CONSTRAINT)

Responsibility (ag, c) +
(Vact: ACTION)

Ensuring (act, c) A Performs (ag, act) +
{?Pre A StrPre, !Trig A StrTrig} [ag, act] {Post A StrPost}

Constraints may thus restrict the behavior of responsible agents, in a way similar

to [14] (note, however, that no distinction is made in [14] between nonoperational

goals and operational constraints).

28 A. Dardenne et al.

Beside the fact that a constraint is assigned to exactly one agent in each alternative

assignment considered (see the cardinality in Fig. 2), Responsibility is subject to

two other meta-constraints:

(Vag: AGENT, c: CONSTRAINT, act: ACTION)

Performs (ag, act) A Ensuring (act, c) =3 Responsibility (ag, c)

(Vag: AGENT, c: CONSTRAINT, act: ACTION)

Responsibility (ag, c) A Ensuring (act, c) 3 Capability (ag, act)

The Responsibility meta-relationship has optional meta-attributes like the Cost

for the agent to take responsibility over the constraint, the Reliability of the agent

with respect to the constraint, and the Motivation of the agent to control the system

behavior so as to meet the constraint. Values for such meta-attributes at the domain

level are used in tactics for selecting among several alternative responsibility

assignments.

For example, the EnoughCopies goal that appeared as a reduction of the Book-

RequestSatisjed goal in Section 2.7 might be operationalized through two con-

straints: HighCoverage and LimitedBorrowingAmount. The formal definition of the

latter is

(V lib: Library, bor: Borrower, bc: BookCopy)

0 [# {bc 1 Borrowing (bor, bc) A bee lib} c Max (bor)]

% Max (bor) defines an upper limit for the number of borrowed copies as a function on

borrowers %

Following a same line of reasoning as above, one may derive a strengthened

precondition to be attached to the Ensuring instance linking that constraint and the

Checkout action; after determination of responsibility links and acquisition of

values for the Cost, Reliability, and Motivation attributes, one might get the following

requirements fragment:

Constraint Maintain[LimitedBorrowingAmount]

Operationalizes EnoughCopies

FormalDef . . . (see above)

EnsuredBy

Checkout {StrengthenedPre:

#{bc 1 Borrowing (bor, bc)} < Max (bor)}

UnderResponsibilityOf

Borrower {Reliability: low, Motivation: low, Cost: low}

or UnderResponsibilityOf

Staff {Reliability: high, Motivation: high, Cost: low}

From this fragment one would most probably decide that the Performs link for the

Checkout action will be assigned to StafS rather than Borrower; the decision can

be based on negotiation or use of tactics, see Step 7 in Section 3.

Goal-directed requirements acquisition 29

The difference between the Responsibility and Performs meta-relationships is

important. Responsibility is defined between agents and constraints. It captures

alternative assignments of constraints to agents. On the other hand, performance is

defined between agents and actions. It captures the decisions of actual assignment

of actions to agents; as a consequence, additional restrictions are imposed upon

the agent’s behavior, that is, the strengthenings of the conditions.

The CONSTRAINT meta-concept has two specializations (not represented in

Fig. 2). HardConstraints may never be violated; SoftConstraints may be temporarily

violated. For example, “no planes on same portion of air corridor” is a Hurd-

Constraint. Another example of a meta-constraint built into the meta-model is that

“domain-level constraints in the SafetyConstraint category always are Hard-

Constraints”.

SoftConstraints need specific actions to restore them. This knowledge is captured

in the meta-model by introducing the Restoration meta-relationship, defined by

Restoration (act, C)

iff action act contributes to re-establishing soft constraint C.

Restoration has a meta-cardinality 1: N for the RestoredBy role; every soft constraint

must have at least one restoration action associated with it. This meta-constraint is

a source of acquisition of new requirements fragments; e.g., the IssueReminder

action introduced in Section 2.5 was acquired from the fact that the Limited-

BorrowingPeriod constraint shown at the beginning of this section is declared as a

SoftConstraint.

2.9. Other features of the KAOS meta-model

The KAOS meta-model incorporates other meta-concepts and meta-relationships

that are not directly related to the goal-directed strategy discussed in Section 3.

Here is a short list of them.

l The Structuring and Composition meta-relationships are used to structure

complex objects and complex actions into components according to various

structuring modes.

l The SCENARIO meta-concept is linked to the ACTION meta-concept through

a Combination meta-relationship to support sequential, parallel, alternative,

and repetitive compositions of scenarios; the latter can then be discussed with

clients to validate requirements.

l The View ternary meta-relationship links agents, concepts (playing the role of

muster concept), and concepts (playing the role of facet concept). This allows

domain-level concepts to be visible by agents under restricted facets only;

conflicting views can also be thereby recorded for later resolution. For example,

the ProceedingsCopy entity can be seen by the Borrower agent as a Borrowable-

Proceedings entity structured as a pair (title, set of papers) whereas it could be

30 A. Dardenne et al.

seen by the stafS agent as a LocatableProceedings entity structured as a triple

(title, date, location in shelves).

l The Mapping meta-relationship is a reflexive one on OBJECT or ACTION; it

is used to specify requirements about the links between the objects and actions

in the automated part of the composite system and the corresponding objects

and actions in the “manual” part of it. For example, the constraint of consistency

between the library database and the physical library is captured as follows.

Entity LibraryDatabase

ISA Library

% inherits features of Library, e.g., the available attribute, invariants, etc. %

. . .

% specific features %

SoftConstraint Maintain [SameLibraries]

InstanceOf ConsistencyConstraint

FormalDef

(Vlibdb: LibraryDatabase, lib: Library)

Mapping(libdb, lib) +

0 [libdb.available = lib.available A

libdb.checkedOut = lib.checkedOut A

libdb.lost = lib.lost]

For more details, see [46].

3. A goal-directed acquisition strategy

In a learning-by-instruction framework [4,8,43], requirements about the com-

posite system are acquired as domain-specific instances of elements of the conceptual

meta-model. Such instances must satisfy the meta-constraints specified once and

for all-like, e.g., the cardinality constraints on meta-relationships (see Fig. 2) or

the various meta-constraints made explicit all along Section 2. The requirements

gradually acquired are expressed in the acquisition language which closely reflects

the structure of the meta-model, as suggested in the examples introduced in

Section 2.

Acquisition processes are guided by strategies and domain models. Strategies define

specific ways of traversing the meta-model graph to acquire instances of its various

nodes and links. Each step in a strategy is itself composed from finer steps like

question-answering, input validation against meta-constraints, application of tactics

to select preferred alternatives for the various AndOr meta-relationship instances

that arise during acquisition, deductive inferencing based on property inheritance

through specialization links, or analogical reuse of domain models. Domain models

are described in the same acquisition language as requirements are. They are

Goal-directed requirements acquisition 31

organized as ISA inheritance hierarchies in the domain knowledge base; one finds

various levels of specialization of goals, constraints, objects, actions, and agents

involved in resource management systems, transportation systems, communication

systems, and so forth. Ultimately the acquisition assistant’s knowledge base should

include a rich variety of domain models, strategies, and tactics. During the acquisition

process, the critical decisions are made by the analyst based upon the knowledge

and guidance provided by the assistant.

The strategies considered so far differ by the meta-concept(s) around which they

are centered; goal-directed, view-directed, and scenario-directed strategies have

been identified. The strategy of interest in this paper is the goal-directed one. It is

made of the following steps. (Upper case letters are used to refer to meta-level

concepts.)

(1) Acquisition of Goal structure and identification of Concerned Objects.

(2) Preliminary identification of potential Agents and their Capabilities.

(3) Operationalization of Goals to Constraints.

(4) Refinement of Objects and Actions.

(5) Derivation of strengthened Actions and Objects to Ensure Constraints.

(6) Identification of alternative Responsibilities.

(7) Assignment of Actions to responsible Agents.

In this strategy, the steps are ordered but some of them may overlap (notably,

Steps 1 and 2). Moreover, backtracking is possible at every step. For example,

information acquired during the responsibility identification step (Step 6) may

induce changes to the results of the operationalization step (Step 3). The changes

made to the latter step must then be propagated through the succeeding steps.

To understand the proposed strategy, we must address three questions for each

step: What tasks are done during the step? Why are those tasks necessary? How are

the tasks carried out? We must also identify which components of the meta-model

are involved in the step. (In Fig. 2, we can trace the acquisition path from the GOAL

node back through the meta-model graph.)

Step 1. Acquire goal structure and identify concerned objects

What

The system goals given by the client are incrementally refined into an overall

goal/subgoal structure-an AND/OR graph. In other words, instances of the GOAL

meta-concept and Reduction meta-relationship are acquired under the constraints

specified at the meta-level. The leaf goals of this structure are primitive goals which

can be made operational through constraints in Step 3. A portion of a possible goal

structure related to borrower goals in a library system is visualized in Fig. 3.

The elaboration of the goal structure consists of three substeps:

(i) Identify SystemGoals, their category, and their pattern, and associate them

with the parent goal(s) they Reduce; formalize refined subgoals according

32 A. Dardenne et al.

Fig. 3. Portion of a Goal structure for borrower goals.

A = OR reduction links

A = AND reduction links

= conflict

. . .

0 = goal 0 = operofionalizable goal

(ii)

(iii)

to their specified pattern as soon as they become concrete enough. (In general

abstract goals near roots of trees cannot be formalized.)

As the reduction proceeds, identify the objects concerned by the goals and

elaborate a preliminary definition of their features-e.g., basic domain-

specific attributes that appear in goal descriptions, preliminary invariants to

be attached to them.

Identify possible conflicts among system goals; that is, define instances of

the Conjlict meta-relationship. For each conflict being detected, assign

priorities to the conflicting goals. (Those priorities define a partial order on

goals.)

The three substeps above are not sequential; they are intertwined. When conflicts

are identified, it may be necessary to find an alternative reduction that has fewer

conflicts. As a result, new goals may be identified.

The reduction of system goals into primitive goals is necessary because global

goals usually cannot be directly translated into constraints; only simple, primitive

goals can be operationalized. Moreover, the system-wide goal structure records the

history of the acquisition process. This structure is important because:

l it ties specification components to their rationale (i.e., goal descriptions);

l it will be used in case negotiation is required to resolve goal conflicts [39];

l it can be used to replay some part of the acquisition process in other circum-

stances where similar portions of the goal structure are recognized.

Goal-directed requirements acquisition 33

The preliminary identification and characterization of objects from goals ensures

that only those objects which are relevant to goals are under consideration.

How

The identification and reduction of goals is a nontrivial, but critical, task. Analysts

and clients must interact a lot at this stage. The following tactics help the analyst

to refine the goal structure.

1. Reuse relevant generic goals and reductions by specializing/instantiating their

description

Generic goals are retrieved in the domain knowledge base; the indexing scheme

for retrieval is based on goal category, goal pattern, and ISA links between the

Concerned objects already identified and their generalizations in the domain models

available. The retrieved goals and their reductions are then considered for specializ-

ation and adaptation to the specific composite system being modeled.

For example, the BookRequestSatisjied introduced in Section 2.1 was handled in

that way. This goal was classified in the SatisfactionGoal category and was declared

to have an Achieve pattern; the Concerned Borrower and Book objects were declared

to be ISA specializations of the generic User and Resource objects in the resource

management domain model, respectively. The following requirements fragment is

then retrieved in the domain knowledge base on that basis:

SystemGoal Achieve [ResourceRequestSatisfied]

InstanceOf SatisfactionGoal

Concerns User, Resource, Using,. . .

FormalDef

(Vu: User, res: Resource, rep: Repository)

Requesting (u, res) A InScope (res, rep) +

O(3ru: ResourceUnit) (Unit (ru, res) A Using (u, ru))

ReducedTo EnoughUnits, UnitsAvailable, AvailabilityNotified

The generic concept names are then instantiated to their library-specific counter-

part, and the generic InScope predicate has to be specialized in an appropriate

fashion to the library-specific context. Note that a reduction into three generic

subgoals is also proposed. The UnitsAvailable subgoal and its formal expression

could even be more specific if the Book concept is declared as an ISA specialization

of a more specific concept than the Resource concept, namely, the Returnable-

Resource concept; the UnitsAvailable subgoal becomes RegularAvailability in this

case, and the formal expression of that goal in Section 2.7 is obtained as a straight-

forward instantiation of it. (The reader should be convinced that the same process

can be replayed for the BedRequestSatisJed goal in a hospital management system.)

The reuse process is under control of the analyst, of course. At any time it is

possible to adapt proposed goals, to reject them or to provide new specific ones.

The more abstract and general the reused concept description is, the more important

34 A. Dardenne et al

the required adaptation might be. For example, the AvaiZubihtyNotijied goal in

Section 2.7 could be seen as an adapted specialization of the following very abstract

goal.

Systemgoal Achieve [UserInformedOfStateChange]

InstanceOf InformationGoal

Concerns User, SystemComponent

FormalDef

(Vu: User, camp: SystemComponent)

[P(comp) A l lP(comp) + OKnows (u, camp)]

Other tactics can be used during acquisition of the goal structure such as the

following ones.

2. Stop reducing a goal when it can be operationalized

The sooner a goal description can be translated into an operational form, the

better; formal reasoning can then take place to ensure constraints through appropri-

ate actions and to assign responsibilities to agents. (Remember that operational

constraints can themselves be reduced.) For example, the BookRequestSatisfied goal

was seen in Section 2.7 to require further reduction as it could not be operationalized;

its RegularAvailability subgoal requires no further reduction because it can be

operationalized into the LimitedBorrowingPeriod constraint defined in Section 2.8.

3. Reduce goals into subgoals so that the latter require cooperation of fewer potential

agents to achieve them

This tactics is the basic one to ensure that the reduction process makes progress

towards a stage where all goals are operationalizable. Its use requires that some

progress has already been made in Step 2 since information about potential agents

and their capabilities need to be available. Thus, Step 1 and Step 2 are working like

coroutines.

4. Choose an alternative reduction that minimizes costs

Costs are taken in a broad sense here (e.g., cost of achieving a goal by means of

a human agent versus cost of achieving it by means of a program to be developed

or to be acquired for that purpose, cost of purchasing the resources concerned by

the goal, etc.). When it can be anticipated that a goal will be too costly to achieve,

it might be necessary to find cheaper alternative reductions. The problem with this

heuristic is that cost evaluation is a very complex task; moreover it is normally

handled later when Responsibilitycosts are evaluated, prior to assigning Performs

links to agents. Nevertheless, we don’t need complex evaluation functions to detect

goals which appear from the beginning to be very costly.

For example, the AsManyCopiesAsNeeded subgoal introduced in Section 2.7 as

one alternative reduction of the BookRequestSatis$ed goal would be rejected using

this tactics-at least in the case of large libraries with many potential borrowers.

Goal-directed requirements acquisition 35

5. Choose an alternative reduction with as few conflicts as possible

6. Resolve conflicts according to the relative priority among goals

The conflicts with the highest priority goals should be resolved first. Higher priority

goals should obviously be favored. For example, the LongBorrowingPeriod goal

described in Section 2.7 was seen to conflict with the RegularAvailability goal; the

latter is of much higher priority so that it is most likely the one to be retained. (A

fair value for the number N of weeks before return might emerge as a compromise

during negotiation [39].)

As mentioned before, the various objects Concerned by goal descriptions are

given partial characterizations. For example, the RegularAvailability goal concerns

the Library object (see Section 2.7); moreover an available attribute of this object

appears in the expression of the goal. At this stage one might recognize the Library

object as being an instance of the ENTITY meta-concept, introduce an additional

checkedout attribute and write a partial invariant “lib = lib.available u

lib.checkedOut”; the lost attribute might be introduced later in Step 3 when the

constraint Avoid [LostCopies] is acquired as one of the ways to operationalize the

RegularAvailability goal. Similarly, the Borrowing object is concerned by the BookRe-

questsatisfied goal; it meets the criterion for being a RELATIONSHIP instance

(see Section 2.4), and the objects it links appear from the expression of the BookRe-

questsatisfied goal-namely, Borrower and BookCopy. A partial invariant recognized

at this stage might be

Borrowing (bor, bc) + bc E lib.checkedOut.

In case generic goals have been reused according to the first tactics above, the

features of the generic objects Concerned by these goals are specialized/instantiated

correspondingly. For example, the generic Repository and Using objects are instanti-

ated to Library and Borrowing, respectively; the partial invariants of the Library

and Borrowing objects suggested above can then be obtained as instantiations of

the following generic invariants:

rep = rep.available u rep.used

Using (u, ru) 3 ru E rep.used

(In these assertions, rep.available and rep.used are generic attributes of the Repository

entity; their domain is known to be “SetOf [ResourceUnit]“.)

Step 2. Identify potential agents and their capabilities

What

A preliminary identification is made of the agents that could be available in the

composite system, together with their category (human agent, physical device,

program) and the actions they are capable of performing on the objects involved

in goal descriptions. In other words, goal-directed instances of the AGENT meta-

concept, Capability meta-relationship, and ACTION meta-concept are acquired

36 A. Dardenne et al.

under the constraints specified at the meta-level. For each action appearing in the

capability list of an agent, a pair of basic precondition and postcondition is specified;

this pair must capture the elementary state transitions produced by application of

the action on the objects identified in Step 1.

Such preliminary information about agents potentially available is needed to

determine when the reduction process can terminate (Step 1) and to guide the

operationalization process (Step 3).

How

The various objects appearing in the goal descriptions elaborated in Step 1 are

reviewed to determine those which can control state transitions of the others. For

each agent obtained thereby, the actions corresponding to these state transitions

are identified and the elementary pre- and postconditions describing these transitions

are written down. For example, the Borrower agent is identified from the description

of the BookRequestSatisJied goal introduced in Section 2.7. This object is an agent

because it can control state transitions of the Borrowing object appearing in the

forma1 expression of that goal; the two possible transitions are “Borrowing+

iBorrowing” and “iBorrowing + Borrowing”, from which Return and Checkout

actions are identified together with their elementary pre- and postcondition (e.g.,

Borrowing (bor, bc) and iBorrowing (bor, bc) for Return). Similarly, the Passenger

object referenced in the SafeTransportation goal is identified as an agent because

it can control transitions such as being in and then out of the lift or getting the

doors open and then closed.

Additional agents and capabilities are acquired by interaction between the clients

and the analysts. All the agents eventually required in the composite system are not

necessarily identified at this stage, however. For example, a Counter device agent

could be required to ensure that no book copy is improperly removed without being

checked out; the need for such an agent might arise later in Step 6 when Responsibility

links are identified for the Avoid [LostCopies] constraint operationalizing the

RegularAvailability goal.

Also remember that agents can be organized into specialization hierarchies like

any other domain-level concepts. A specialized agent then inherits all capabilities

of the more general agents it specializes; in addition it may have specific capabilities

(e.g., the ResearchStufS agent has all capabilities of the Stu# agent plus specific

ones such as ordering new book copies).

The following tactics may be helpful in identifying agents and capabilities.

1. Reuse relevant generic agents and capabilities by specializing/instantiating their

description

Generic agents are retrieved in the domain knowledge base; the agents considered

are those objects Concerned by the generic goals retrieved in Step 1 which are of

Goal-directed requiremenis acquisition 31

the AGENT meta-type. The retrieved agents and the generic actions they are capable

of are then considered for specialization and adaptation to the specific composite

system being modeled.

For example, in case the generic ResourceRequestSatisJied goal has been reused

in the more specific context of the ReturnableResource concept, the User agent is

retrieved with the GetResource and ReturnResource actions from its capability list.

The following partial description of, e.g., the GetResource action is then proposed

for instantiation and specialization:

Action GetResource

Input ResourceUnit {Arg: ru},

Repository {Arg: rep}, User {Arg: u};

Output Repository {Res: rep}, Using

Precondition ru E rep.available

PostCondition

l(ru E rep.available) A ru E rep.used A Using (u, ru)

The process of instantiating, specializing, and adapting generic descriptions follows

the same line as suggested for Step 1. The outcome in this simple case is the

description of the Checkout action given in Section 2.5.

2. For each action in the capability list of a human agent, consider the relevance of

an automated agent with a corresponding action in its capability list

This tactics is the basic one for introducing new devices and programs as candi-

dates in the space of alternative agent assignments (see Step 6). If the introduction

of an automated action appears to be relevant, this action and the objects involved

in it can be defined as ISA specializations of the action and objects already defined;

in particular, pre- and postconditions on the corresponding image objects are thereby

inherited as features of the automated action. Instances of the Mapping

meta-relationship must then be introduced to link concepts and their automated

counterpart. (See Section 2.9.) Most often new goals have then to be introduced;

such goals are in the ConsistencyGoal category. For example, a CheckOutTransaction

action might be identified as a possible capability of an automated LibraryDatabase-

Manager agent; it is defined as an ISA specialization of the Checkout action.

Corresponding image objects are then identified and defined in a similar way (e.g.,

the LibraryDatabase entity introduced in Section 2.9). An object and its correspond-

ing image must both be instances of the OBJECT meta-type; however, they need

not necessarily be instances of the same specialized meta-type (e.g., the automated

counterpart of the Borrower agent will be a BorrowerRecord entity which will record

relevant information about borrowers). One of the ConsistencyGoals required in

this example should concern the Library and LibraryDatabase entities; this goal is

operationalized in the Maintain [SameLibraries] soft constraint given in Section

2.9. The use of this tactics allows one to avoid confusions between the physical and

38 A. Dardenne et al.

automated parts of the composite system; such confusions are frequently made in

specifications [49].

Step 3. Operationalize goals into constraints

What

The leaf goals in the goal structure elaborated in Step 1 are transformed into

system objectives formulated in terms of objects and actions available to some agent

identified in Step 2. In other words, instances of the CONSTRAINT meta-concept

and Operationalization meta-relationship are elaborated under the constraints

specified at the meta level. A constraint definition can lead to the identification of

new objects and actions involved in the constraint.

The system objectives need to be made operational in order to (i) derive new or

strengthened actions and objects which will support them (Steps 4 and 5) and (ii)

assign responsibilities (Steps 6 and 7).

How

Like the elaboration of goals, the transformation of goals into constraints is a

nontrivial task. Several alternative operationalizations can implement the same goal,

just like several alternative programs can implement the same specification. In such

situations, a best operationalization should be retained. The following tactics may

be used to guide the analyst in carrying out the transformation.

1. Reuse relevant generic operationalizations by specializing/instantiating their

description

Generic constraints are retrieved in the domain knowledge base; the constraints

considered are those which operationalize the generic goals retrieved in Step 1. The

retrieved constraints and their reduction (if any) are then considered for specializ-

ation and adaptation to the specific composite system being modeled. The process

is similar to the one suggested in Steps 1 and 2.

For example, the Maintain [LimitedBorrowingPeriod] constraint was seen in Sec-

tion 2.8 to operationalize the RegularAvailability goal. This constraint could have

been obtained by instantiation of the following constraint found in the domain

knowledge base to operationalize the UnitsAvailable generic goal-at the specializ-

ation level where the ReturnableResource concept is defined.

SoftConstraint Maintain [LimitedPeriodOfUse]

FormalDef

(Vu: User, ru: ResourceUnit)

q [Using (u, ru) A l iUsing (u, ru) *

0 s N,iUsing (u, ru)]

Goal-directed requirements acquisition 39

As another example, consider the AvailabilityNotiJied goal introduced in Section

2.7. This goal is an instantiation of the following generic goal:

Systemgoal Achieve [AvailabilityNotified]

InstanceOf InformationGoal

Concerns User, Repository

FormalDef

(Vrep: Repository, u: User,

res: ReturnableResource, ru: ResourceUnit)

Requesting (u, res) A

l l(3ru: ResourceUnit) (Unit (ru, res) A ru E rep.available) A

(3ru: ResourceUnit) (Unit (ru, res) A ru E rep.available) +

O&rows (u, rep.available)

This goal is known in the domain theory to be operationalizable into the following

constraint:

SoftConstraint Achieve [UserNotified]

InstanceOf InformationGoal

Concerns User, Repository

FormalDef

@rep: Repository, u: User,

res: ReturnableResource, ru: ResourceUnit)

Requesting (u, res) A

l i(gru: ResourceUnit) (Unit (ru, res) A ru E rep.available) A

(3ru: ResourceUnit) (Unit (ru, res) A ru E rep.available) e

O(3ntu: NoticeSentToUser)

[Occurs (ntu) A ntu = (res, u, ‘message’)]

In this constraint, NoticeSentToUser is an event with appropriate attributes that

captures the required user notification. (This constraint exhibits a standard pattern

of operationalizing Knows predicates.) The instantiation of the generic User, Reposi-

tory, ReturnableResource, and ResourceUnit concepts to Borrower, Library, Book,

and BookCopy, respectively, yields an instantiated constraint proposed to the analyst

for possible adaptation.

A more general form of reuse could be supported at the process level. The

knowledge base might contain a set of domain-specific operationalization rules that

could be applied for a variety of similar goals [36]. The operationalization process

would then be replayed as done in some derivational analogy systems [44]. This

promising approach has not been explored yet.

2. Use goal reduction tactics transposed to constraints

As seen in Section 2.8, constraints are operational system objectives; the Operation-

alization meta-relationship propagates all features of the GOAL meta-concept to

40 A. Dardenne et al.

the CONSTRAINT meta-concept-i.e., Reduction, Conflict, Category, etc. Some

commonsense tactics used in Step 1 can thus be used for goal operationalization

and constraint reduction, e.g., choose an alternative operationalization or reduction

that minimizes Ensuring costs, choose an alternative operationalization or reduction

with as few conflicts as possible, and so forth.

3. Choose an alternative operationalization that minimizes the need for restoration

actions

If the soft constraints chosen to operationalize a given leaf goal need complex

restoration actions, then an alternative way of operationalizing the leaf goal should

be considered-an alternative where the constraints are violated in fewer situations

or where less or simpler restoration actions are required.

Step 4. Refine objects and actions

What

The constraints obtained in Step 3 can involve new objects and new actions;

entities, relationships, events, agents, and state transitions not identified in Steps 1

and 2 can emerge from the operational formulations. Also, new features of concepts

already identified can be referred to (e.g., new domain-specific attributes of objects).

In this step the analyst defines the objects and actions newly identified and completes

the description of objects and actions already identified; new domain-specific

attributes and new elements of invariants and pre- and postconditions are thereby

introduced.

The refined descriptions of objects and actions form the basis for the subsequent

acquisition steps. Invariants and pre- and postconditions will be strengthened to

ensure the constraints. They are also needed to identify the Responsibility links.

How

The process of acquiring additional requirements fragments about objects and

actions from constraints is similar to the process of acquiring initial ones from goals,

see Steps 1 and 2.

For example, the Achieve [UserNoti$ed] constraint above once instantiated to

Achieve [BorrowerNotified] yields an implication whose consequent is

(3ntb: NoticeSentToBorrower)

[Occurs (ntb) A ntb = (b, bor, ‘message’)]

A new object of EVENT meta-type is thus involved. A preliminary description of

this event might include an invariant capturing its condition of occurrence. According

to a meta-constraint on the EVENT meta-type, a new action must be acquired

Goal-directed requirements acquisition 41

therefrom-that is, the SendAvailabilityNotice action having NoticeSentToBorrower

as output; a pair of elementary pre- and postconditions for that action should thus

be acquired. The acquisition process can be based on reuse of generic descriptions,

as shown before.

Step 5. Derive strengthened actions and objects to ensure constraints

What

The descriptions of actions and objects completed in Step 4 do not necessarily

guarantee that the constraints obtained in Step 3 will be met. In this step, strengthened

actions and objects are derived to ensure that all required constraints are satisfied.

The strengthenings are put on preconditions, postconditions, and invariants; trigger

conditions are introduced for some actions; new actions can still be introduced to

yield state transitions involved in the formulation of constraints; restoration actions

are defined for soft constraints. In other words, instances of the Ensuring meta-

relationship are elaborated under the meta-constraints specified in the meta-model;

they link actions and objects to the constraints they Ensure. Note that Ensuring is

an AndOr relationship (see Fig. 2 and Section 2.8); as a frequent case, a constraint

can be Ensured by a combination of actions and objects in the physical subsystem

or alternatively by some counterpart of this combination in the automated sub-

system.

Ensuring links are necessary to identify which actions and objects are going to

contribute to the satisfaction of which constraint and to show how those actions

and objects are contributing to constraint satisfaction. Action strengthening has an

impact on the possible behavior of the agent allocated to the action; the information

acquired in this step is therefore taken into account in the next steps when

responsibilities are identified and assigned.

How

Trigger conditions and strengthenings on pre-, postconditions, and invariants are

derived from the formal expression of constraints. Each action is matched against

each constraint to check whether the state transitions defined by the action meet

the constraint. The match may reveal subsidiary conditions for the action to meet

the constraint; if this is the case, these conditions are taken as strengthenings on

the action. The principle is similar for objects and their invariants. To make this

process more precise, we illustrate it by giving some inference rules for three general

patterns of constraints. (A full calculus for deriving strengthenings is out of the

scope of this paper.)

Let Cons denote the pattern of the constraint, Pre and Post the patterns of the

action’s pre- and postcondition, StrPre and StrPost the required strengthenings on

42 A. Dardenne et al.

Pre and Post, respectively, and Trig the required trigger condition (if any). The

rules of inference are the following.

Cons: q [C A (P, A OP, * Q, A 0 Qz)], Pre: P,, Post: P2

StrPre: Q, , StrPost: Q2

Cons: q [C A (P, A OP, 3 Q1 A OQJ],

Pre: P with P +l Q, or Post: Q with Q +lQ,

StrPre: 7 P, or StrPost: 7Pz

Cons: OP, Pre: P,, Post: P,,i[P A P, + O(P A PJ]

StrPre: Q,, StrPost: Qz such that P A P, A Q, + O(P A Pz A QJ

Cons: l P, A P2 e OQ, Post: Q

Trig: l P, A P2

The first rule was applied to derive the strengthenings on the GoToFloor action

from the DoorsClosedWhileMoving constraint in Section 2.8. The second rule was

applied to derive the strengthenings on the OpenDoors action from that constraint.

The third rule was applied to derive the strengthening

#{bc 1 Borrowing (bor, bc)} < Max(bor)

on the precondition of the Checkout action to ensure the LimitedBorrowingAmount

constraint also formalized in Section 2.8. The fourth rule of inference is used to

derive the trigger condition

l l(3bc: BookCopy) (Copy (bc, b) A bcE lib.available) A

(3bc: BookCopy)(Copy (bc, b) A bcE lib.available) A

Requesting (bor, b)

to be attached to the SendAvailabilityNotice action revealed in Step 4 above; this

trigger condition is derived from the Achieve [BorrowerNotijed] instantiation of the

Achieve [UserNotzjied] constraint introduced in Step 3 above.

New actions to restore soft constraints can be derived using the same general

principle. (E.g., the IssueReminder action introduced in Section 2.5 is acquired to

restore the LimitedBorrowingPeriod constraint; the RectifyLibraryDatabase action

mentioned in Section 2.3.2 is acquired to restore the Maintain [SameLibraries]

constraint introduced in Section 2.9.)

Tactics can also be used to help in the derivation of Ensuring links.

1. Reuse relevant generic actions and strengthenings by specializing/ instantiating

their description

Generic Ensuring links are retrieved in the domain knowledge base; the links

considered are those which ensure the generic constraints retrieved in Step 3. The

retrieved links and their associated strengthenings are then considered for specializ-

Goal-directed requirements acquisition 43

ation and adaptation to the specific composite system being modeled. The process

is similar to the one suggested in Steps l-3.

2. Choose an alternative Ensuring link that minimizes the restrictions on the

Ensuring actions

Strengthened conditions defined on actions restrict the agents’ behavior (see the

Responsibility axiom in Section 2.8); therefore, it is often preferable to define an

alternative Ensuring structure which imposes as few restrictions as possible.

Step 6. Identify alternative responsibilities

What

In this step the analyst acquires the AndOr Responsibility structure linking the

agents to the constraints. For each constraint obtained in Step 3, the various possible

Responsibility links are identified; the identification is based on the capabilities of

the agents determined in Step 2. The acquisition of Responsibility links includes the

determination of values for the Cost, Motivation, and Reliability attributes attached

to the Responsibility meta-relationship. The various automation alternatives being

considered are thus made explicit at this stage. PrivateGoals and Wish links (if any)

are also acquired for the human agents identified in Step 2.

The information acquired in this step is needed in the next step to make the right

decisions about which processor (human agent or program) to assign to which

action-so that all constraints operationalizing the system goals are guaranteed to

be met.

How

The acquisition is guided by meta-constraints on the Responsibility meta-relation-

ship. (See Section 2.8.) A constraint is assigned to one agent in each alternative

assignment considered. An agent is a possible candidate provided (i) the actions

Ensuring the constraint are in the capability list of the agent, and (ii) the agent can

behave according to the requirements put on the actions-precondition, postcondi-

tion, trigger condition, and their respective strengthenings attached to Ensuring

links. (In other words, the Responsibility axiom must be satisfied.)

PrivateGoals and Wish links are acquired by interaction between the analysts

and the clients. Values for the Cost, Motivation, and Reliability meta-attributes

attached to Responsibility links are also estimated through such interactions; cost

estimation models can be integrated here. In general, costs will depend upon both

the agent and the actions being involved to meet the constraint. Motivation can be

partially estimated from the potential source of conflict or mutual support between

the private goals of the agent and the leaf goal(s) operationalized by the constraint.

The motivation of the agent for controlling actions to meet the constraint is expected

to be low in case of conflict and high in case of mutual support.

44 A. Dardenne et al.

The following tactic can also be used to help in the identification of alternative

Responsibility links.

Reuse relevant Responsibility links between generic constraints and agents

Generic Responsibility links are retrieved in the domain knowledge base; the links

considered are those which link the generic agents retrieved in Step 2 to the generic

constraints retrieved in Step 3. The retrieved links are then considered for specializ-

ation and adaptation to the specific composite system being modeled. The process

is similar to the one suggested in Steps 1-3.

Let us suggest a few examples for some of the constraints introduced before in

the paper. The LimitedBorrowingPeriod constraint is assignable to the Borrower

agent or to the StaRagent; both agents have the Return and IssueReminder actions

in their capability list, and they both could enforce the corresponding strengthenings

on these actions to ensure the constraint. (The strengthening amounts to a strength-

ened postcondition for Return and to a trigger condition for IssuedReminder.) The

Borrower agent has a LongBorrowingPeriod private goal which conflicts with the

RegularAvailability goal and LimitedBorrowingPeriod constraint operationalizing

this goal. (See Fig. 3 and the formal expressions given in Sections 2.7 and 2.8.)

Therefore, the values for Motivation and Reliability in the corresponding Responsibil-

ity links are very low for Borrower while being high for Stafl Automated counterparts

for the Return and IssueReminder actions were identified in Step 2 and defined as

specializations of these actions; the inherited LimitedBorrowingPeriod constraint

referring to the automated representations of the corresponding objects is assignable

to the LibraryDatabaseManager agent since the latter can enforce the constraint

through corresponding strengthenings.

Similarly, the LimitedBorrowingAmount constraint is assignable to the Stagagent

or to the Borrower agent; both can enforce the strengthening on the Checkout action

derived in Step 5 to ensure that constraint. For the alternative Responsibility link

involving Borrower, the values of Motivation and Reliability are very low because

there is a conflict with the AsManyBooksAsNeeded private goal. The automated

counterpart of LimitedBorrowingAmount is assignable to the LibraryDatabase-

Manager agent which can enforce the corresponding strengthened precondition on

the CheckOutTransaction action.

As a last example, consider the AccurateClassijication leaf goal appearing in Fig.

3. This goal is operationalized through two constraints, namely, AccurateSheZfn/lark

and AccurateKeywordsAssigned. The former can be assigned to the Staff agent or

to a shelf-mark allocation program; the latter can be assigned to the SecretaryStafl

agent with low Reliability or to the ResearchStafl agent with high Reliability.

Step 7. Assign actions to responsible agents

What

Pecforms links are effectively assigned to agents for the various actions elaborated

in Steps 2 and 4 on the basis of the alternative Responsibility links established in

Goal-directed requirements acquisition 45

Step 6. The allocation of actions to processors implies, in particular, that the

Performing agents selected are contractually committed to satisfy the Responsibility

axiom (see Section 2.8).

The agent Loud values are gradually updated as the assignment of Performs links

to the agent proceeds. (An agent can initially have a non-null load if it has

assignments in other composite systems.) Backtracking on assignment decisions

may take place when an agent becomes overloaded; some Performs links are then

undone.

The eventual assignment of actions to agents under commitment to the Responsi-

bihty axiom guarantees that the constraints operationalizing system goals will be

met through appropriate behavior of the agents.

How

An action is assigned to an agent only if the agent has been determined to be

among the alternative candidates for taking responsibility over the constraints the

action ensures. (See Step 6.)

The following tactics can be used to help in deciding between alternative

candidates.

1. Do not make effective assignments that would prevent other constraints from

being met

For example, deciding that the Checkout action is allocated to the Borrower agent

can prevent the SameLibraries consistency constraint from being met; the Borrower

agent has indeed no responsibility link with the latter constraint. (The formal

expression of this constraint was given in Section 2.9. In fact, the RectifyDatabase

restoration action and its specializations are not in the capability list of the Borrower

agent.) The rational decision is thus to allocate the Checkout action to the Staff

agent. In that case, the Stu# agent actually has the CheckOutTransaction action

under supervision as well because he/she is also responsible for the SameLibraries

constraint.

2. Reuse relevant Performs links between generic agents and actions

Generic Performs links are retrieved in the domain knowledge base; the links

considered are those which link the generic agents retrieved in Step 2 to the generic

actions retrieved in Step 5. The retrieved links are then considered for specialization

and adaptation to the specific composite system being modeled.

3. First assign Performs links for actions ensuring constraints that operationalize the

highest priority goals

Using this tactic, one would assign the Checkout or PutKeywords actions (with

Load values being increased correspondingly) before the action of issuing a list of

recent book acquisitions.

46 A. Dardenne et al.

4. Do not make eflective assignments that would be conflicting with PrivateGoals

If a human agent is assigned an action ensuring constraints that operationalize

goals in conflict with his/her private goals, the agent will not be very motivated to

guarantee satisfaction of that constraint. The assignment of the ReturnTransition

action to the Borrower agent would be rejected on that ground.

5. Maximize reliability

If there is a choice among several agents, select the agent with the highest reliability.

Using this tactics, one would retain the ResearchStaff agent for the PutKeywords

action to ensure the AccurateKeywordsAssigned constraint above.

6. Avoid overloading agent

An excessive load of actions to ensure constraints can seriously degrade the overall

system performance.

7. Minimize cost of performance

If there is a choice among several agents, select the agent with the lowest

performance cost.

Note that these tactics refer to one single meta-attribute/relationship. This kind

of hill climbing search for local optima may not reach a global optimum; ideally

all criteria should be considered together. Multicriteria analysis techniques might

be of great help in this context [51]. (The same remark holds for the other tactics

in the previous steps.) For example, the eventual decision of choosing the alternative

where the LibraryDatabaseManager agent is allocated a number of transactions that

automate their manual counterpart will be governed by a combination of tactics

integrating goal achievement, reliability, cost, and load reduction.

4. Conclusion

This paper has proposed a meta-model for capturing initial requirements and a

strategy for conducting the requirements acquisition process. The requirements

considered here refer to the entire composite system-that is, the part to be auto-

mated, its physical environment, and the way both parts have to cooperate. A salient

feature of the approach is the importance given to system-level goals and their

operationalization through constraints. This contrasts with some traditional tech-

nology for formal or semi-formal specification, where all requirements are supposed

to be captured in terms of “data” and “operation” abstractions.

Some experience with real requirements documents has convinced the authors

that higher-level abstractions such as “goal”, “operationalization”, “ensuring

action”, “agent”, “responsility”, or “alternative assignment” are found informally

and explicitly in the requirements of non-toy systems. The formal framework

Goal-directed requirements acquisition 41

proposed here can be seen as a preliminary attempt to reason more formally in

terms of such higher-level concepts. Meta-level constraints and rules of inference

based on temporal logic allow formal checking of requirements and formal derivation

of goal-directed strengthenings of them. It is encouraging to see that others have

independently recognized the need for reasoning about system goals, their category

and their reduction or interference links (Mylopoulos et al. [35]).

The strategy discussed in this paper amounts to a goal-directed traversal of the

meta-model graph; specific tactics are applied at each node to acquire the corre-

sponding requirements fragments. Another salient feature here is the reuse of both

meta-level and domain-level knowledge. The principle of a rich meta-model to guide

the acquisition process was inspired from work on machine learning; in some

learning strategies, the acquisition process is guided by abstract knowledge about

what should be acquired [4,8]. The KAOS meta-model may appear to be rather

complex; this is the price to pay for meta-level guidance during acquisition. The

more domain-independent knowledge the meta-model privides, the more guidance

the acquisition strategy can provide. On another hand, our experience in acquiring

requirements for a variety of resource management systems (library systems, airline

reservation, warehouse processing, hospital management) and transportations sys-

tems (lifts, trains, metros) has given us much confidence in the power of reusing

generic descriptions. Such descriptions are retrieved in a domain knowledge base

and then instantiated, specialized, and adapted to the system considered. Beside

the usual benefits of reuse, the matching of such descriptions against the requirements

already acquired often results in detecting problems which otherwise can be very

hard to detect-notably, inadequacies, incompletenesses, and contradictions.

The requirements fragments given in the paper come from a rational rederivation

of the requirements for a university library system currently in use. It may be worth

to compare these fragments with the simplistic requirements of the classical library

problem [49] to see how some of the informal requirements stated there are derived

in our approach.

We have argued that requirements acquisition languages need much richer abstrac-

tions than those supported by traditional specification formalisms such as, e.g.,

state-based or algebraic ones. The latter are, however, needed but at a later stage

where more sophisticated formal checking is undertaken on the specification of the

automated subsystem. Acquisition languages and (design) specification formalisms

may thus play complementary roles. Based on this, we have developed a set of rules

for transforming KAOS objects and actions into Z data and operation schemas [42].

Other components of the KAOS meta-model, not discussed in the paper, provide

the basis for defining other strategies-like agent-directed strategies where the

meta-model is traversed from the views agents have about the composite system,

or scenario-directed strategies where typical usage scenarios are elaborated first. Our

current belief, however, is that a goal-directed strategy is the best one to establish

that the system objectives will be achieved by proper cooperation of responsible

agents.

48 A. Dardenne et al.

There are some weak facets in our approach, on which we plan to work in a near

future. The declaration part of the acquisition language should clearly have a

graphical concrete syntax that would reflect the various concepts and links supported

by the meta-model. The assertion sublanguage should incorporate deontic logic

extensions to support a deeper level of formal reasoning about agent capabilities

and responsibility assignment. Cooperation and communication among agents

should also be supported more explicitly. As alluded to before, the tactics should

also be refined to handle multiple criteria and extended to form a rich body of

rules; in particular, goal conflict resolution strategies need to be carefully investi-

gated. (The problem of interfering goals is well recognized as being a difficult one

to tackle, see, e.g., [48].) Ultimately, tactics will have to be formalized for use by

the acquisition assistant we are designing. In parallel with the reuse tactics suggested

in this paper, we are also working on analogical acquisition techniques where

requirements about similar systems are retrieved and transposed [lo].

Acknowledgments

Thanks are due to Bruno Delcourt and FranGoise Dubisy for their contribution

to the first approximation of the KAOS meta-model. We are also grateful to John

Anderson, Robert Darimont, Brian Durney, Martin Feather, Anthony Finkelstein,

Jacques Hagelstein, Rob Helm, Jeff Kramer, Philippe Massonet, and Bill Robinson

for useful questions and suggestions on this work. Constructive comments by the

reviewers on the presentation of this paper are also gratefully acknowledged. The

KAOS project was supported by the Belgian Ministry of Scientific Affairs in the

context of the Belgian Incentive Program for Fundamental Research in Artificial

Intelligence under grant no. RFO/AI/13. The third author has been supported by

NSF grant no. CCR-8804085.

References

[l] J. Anderson, Private communication.

[2] E. Astesiano and M. Wirsing, An introduction to ASL, in: Proceedings IFIP WG 2.1 Working
Conference on Program Specijications and Transformation (North-Holland, Amsterdam, 1986).

[3] R.M. Balzer, D. Cohen, M.S. Feather, N.M. Goldman, W. Swartout and D.S. Wile, Operational

specification as the basis for specification validation, in: D. Ferrari, M. Bolognani and J. Goguen,

eds., Theory and Practice of Software Technology (North-Holland, Amsterdam, 1983) 21-50.
[4] J. Benett, A knowledge-based system for acquiring the conceptual structure of a diagnostic expert

system, J. Automated Reasoning 1 (1985) 49-74.
[5] R.J. Brachman and H.J. Levesque, eds., Readings in Knowledge Representation (Morgan Kaufman&

Los Altos, CA, 1985).

[6] P. Chen, The entity relationship model--towards a unified view of data, ACM Trans. Database
Systems 1 (1) (1976) 9-36.

[7] A. Dardenne, S. Fickas and A. van Lamsweerde, Goal-directed concept acquisition in requirements
elicitation, in: Proceedings 6th International Workshop on Software Specification and Design, Como,

Italy (1991) 14-21.

Goal-directed requirements acquisition 49

[8] R. Davis, Teiresias: applications of meta-level knowledge, in: R. Davis and D. Lenat, eds.,

Knowledge-Based Systems in ArtiJciat Intelligence (McGraw-Hill, New York 1982) 227-490.
[9] E. Doerry, S. Fickas, R. Helm and MS. Feather, A model for composite system design, in: Proceedings

6th International Workshop on Software Specification and Design, Como, Italy (1991) 216-219.

[IO] F. Dubisy and A. van Lamsweerde, Requirements acquisition by analogy, Report No. 13, KAOS

Project, Institut d’Informatique, Fact&es Universitaires de Namur, Belgium (1992).

[ll] E. Dubois and A. van Lamsweerde, Making specification processes explicit, in: Proceedings 4th

International Workshop on Software Spec$cation and Design, Monterey, CA (1987) 169-177.

[12] E. Dubois, J. Hagelstein and A. Rifaut, A formal language for the requirements engineering of

computer systems, in: A. Thayse, ed., Introducing a Logic Based Approach to Artificial Intelligence,

Vol. 3 (Wiley, New York, 1991) 357-433.

[131 T. Ellman, Explanation-based learning: a survey of programs and perspectives, ACM Comput. Sure.

21 (2) (1989) 163-222.

[14] M.S. Feather, Language support for the specification and development of composite systems, ACM

Trans. Programming Languages Systems 9 (2) (1987) 198-234.

[15] M.S. Feather, Constructing specifications by combining parallel elaborations, IEEE Trans. Softw.

Engrg. 15 (2) (1989) 198-208.

[16] J. Fiadeiro and A. Sernadas, The INFOLOG linear tense propositional logic of events and trans-

actions, Inform. Systems 11 (1986) 61-85.

[17] S. Fickas and P. Nagarajan, Critiquing software specifications, IEEE Software (November 1988)

37-46.

[18] J.P. Finance, J. Souquieres, A. van Lamsweerde, P. Du Bois and J. Hagelstein, First version of a

model for the requirements development process, Intermediate Deliverable, ESPRIT Project 2537

(1991).
[19] A. Finkelstein and H. Fuks, Multi-party specification, in: Proceedings 5th International Workshop

on Software Specification and Design, Pittsburgh, PA (1989) 185-195.

[20] A. Finkelstein and C. Potts. Building formal specifications using structured common sense, in:

Proceedings 4th International Workshop on Software Specification and Design, Monterey, CA (1987)

108-113.

[21] M.C. Gaudel, Towards structured algebraic specifications, in: ESPRIT’85 Status Report (North-

Holland, Amsterdam, 1986) 493-510.

[22] C. Ghezzi, D. Mandrioli and A. Morzenti, TRIO: a logic language for executable specifications of

real-time systems, J. Systems Softw. (1990).

[23] S.J. Greenspan, Requirements modelling: a knowledge representation approach to software require-

ments definition, Ph.D. Thesis, Report CSRG-155, University of Toronto, Toronto, Ont. (1984).

[24] S.J. Greenspan, A. Borgida and J. Mylopoulos, A requirements modeling language and its logic,

in: M.L. Brodie and J. Mylopoulos, eds., On Knowledge-Based Management Systems (Springer,

Berlin, 1986) 471-502.

[25] J.V. Guttag and J.J. Horning, Report on the LARCH shared language, Sci. Comput. Programming

6 (1986) 24-36.

[26] R.P. Hall, Computational approaches to analogical reasoning: a comparative analysis, ArtiJiciaL

Intelligence 39 (1989) 39-120.

[27] K.M. Hansen, A.P. Ravn and H. Rischel, Specifying and verifying requirements of real-time systems,

in: Proceedings ACM SIGSOFT’91 Conference on Software for Critical Systems, ACM Softw. Engrg.

Notes 16 (5) (1991) 44-54.

[28] D. Harel, Statecharts: a visual formalism for complex systems, Sci. Comput. Programming 8 (1987)

231-274.

[29] R. Hull and R. King, Semantic database modeling: survey, applications and research issues, ACM

Comput. Suru. 19 (3) (1987) 201-260.

[30] C.B. Jones, Systematic Software Development Using VDM (Prentice-Hall, Englewood Cliffs, NJ,
2nd ed., 1990).

[31] G. Kahn, B. Lang, B. Mel&e and E. Morcos, Metal: a formalism to specify formalism, Sci. Comput.

Programming 3 (1983) 151-188.

[32] S.E. Keller, L.G. Kahn and R.B. Panara, Specifying software quality requirements with metrics,
in: R.H. Thayer and M. Dorfman, eds., Tutorial: System and Software Requirements Engineering

(IEEE Computer Society Press, Silver Spring, MD, 1990) 145-163.

50

[331

r341
[351

[361

c371
[381

[391

r401

[411

r421
[431

[441

r451

[46

[47

[481

[49
[50

[511 M. Zeleny, Multiple Criteria Decision Making (McGraw-Hill, New York, 1982).

A. Dardenne et al.

R. Koymans, J. Vytopil and W.P. de Roever, Real-time programming and asynchronous message
passing, in: Proceedings 2nd ACM Conference on Principles of Distributed Computing, Montreal,

Que. (1983).

B. Meyer, On formalism in specifications, IEEE Software 2 (1) (1985) 6-26.

J. Mylopoulos, L. Chung and B. Nixon, Representing and using nonfunctional requirements: a

process-oriented approach, IEEE Trans. Softw. Engrg 18 (6) (1992) 483-497.

J. Mostow, A problem solver for making advice operational, in: Proceedings AAAI-83, Washington,

DC (1983) 279-283.

N.J. Nilsson, Problem-Soolving Methods in AI (McGraw-Hill, New York, 1971).

H.B. Reubenstein and R.C. Waters, The requirements apprentice: automated assistance for require-

ments acquisition, IEEE Trans. Softw. Engrg. 17 (3) (1991) 226-240.

W.N. Robinson, Integrating multiple specifications using domain goals, in: Proceedings 5th Inter-

national Workshop on Software Specijication and Design, Pittsburgh, PA (1989) 219-226.

W.N. Robinson, Negotiation behavior during requirement specification, in: Proceedings 22th Inter-

national Conference on Software Engineering (1990) 268-276.

G.-C. Roman, A taxonomy of current issues in requirements engineering, IEEE Comput. 2 (April

1985) 14-22.
J.M. Spivey, 7’he 2 Notation (Prentice-Hall, Englewood Cliffs, NJ, 1989).

W. Swartout, XPLAIN: a system for creating and explaining expert consulting programs, Artificial

Intelligence 21 (1983) 285-325.

A. van Lamsweerde, Learning machine learning, in: A. Thayse, ed., Introducing a Logic Based

Approach to Artijicial Intelligence, Vol. 3 (Wiley, New York, 1991) 263-356.

A. van Lamsweerde, A. Dardenne, B. Delcourt and F. Dubisy, The KAOS project: knowledge

acquisition in automated specification of software, in: Proceedings AAAI Spring Symposium Series,

Design of Composite Systems, Stanford, CA (1991) 59-62.

A. van Lamsweerde, A. Dardenne and F. Dubisy, KAOS knowledge representations as initial

support for formal specification processes, Report RR-91-8, Unite d’lnformatique, University of

Louvain, Louvain-la-Neuve, Belgium (1991).

A. van Lamsweerde, B. Delcourt, E. Delor, M.C. Schayes and R. Champagne, Generic lifecycle

support in the ALMA environment, IEEE Trans. Softw. Engrg. 14 (6) (1988) 720-741.

R. Waldinger, Achieving several goals simultaneously, in: E. Elcock and D. Michie, eds., Machine

Intelligence 8 (Ellis Horwood, Chichester, England, 1977).

J.M. Wing, A study of 12 specifications of the library problem, IEEE Software (July 1988) 66-76.

P. Zave, An operational approach to requirements specification for embedded systems, IEEE Trans.

Softw. Engrg. 8 (3) (1982) 250-269.

