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Requirements analysis includes a preliminary acquisition step where a global model for the 

specification of the system and its environment is elaborated. This model, called requirements 

model, involves concepts that are currently not supported by existing formal specification 

languages, such as goals to be achieved, agents to be assigned, alternatives to be negotiated, etc. 

The paper presents an approach to requirements acquisition which is driven by such higher-level 

concepts. Requirements models are acquired as instances of a conceptual meta-model. The latter 

can be represented as a graph where each node captures an abstraction such as, e.g., goal, action, 

agent, entity, or event, and where the edges capture semantic links between such abstractions. 

Well-formedness properties on nodes and links constrain their instances-that is, elements of 

requirements models. Requirements acquisition processes then correspond to particular ways of 

traversing the meta-model graph to acquire appropriate instances of the various nodes and links 

according to such constraints. Acquisition processes are governed by strategies telling which way 

to follow systematically in that graph; at each node specific tactics can be used to acquire the 

corresponding instances. The paper describes a significant portion of the meta-model related to 

system goals, and one particular acquisition strategy where the meta-model is traversed backwards 

from such goals. The meta-model and the strategy are illustrated by excerpts of a university library 

system. 
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1. Introduction 

Requirements analysis is a highly critical step in the software lifecycle. A great 

variety of problems can arise during this step, e.g., inadequacies, incompleteness, 

contradictions, ambiguities, noises, forward references, or overspecifications 

[34,41,49]. Such errors and deficiencies can have disastrous effects on the sub- 

sequent development steps and on the quality of the resulting software product. 

Therefore, it is essential that requirements engineering be done with great care and 

precision. Formal methods, supported by automated tools, enable engineers to 

capture and specify the software requirements carefully and precisely. 

Recently, researchers have devoted considerable effort to the design of formal 

specification languages. The use of such languages allows the requirements 

specification to be manipulated formally. The specification can be checked against 

a set of desired properties, can be used to generate a prototype implementation, 

and so forth. Specification languages differ mainly by the particular specifica- 

tion paradigm used. For example, Z (Spivey [42]) and VDM (Jones [30]) support 

state-bused specifications; INFOLOG (Fiadeiro and Sernadas [16]) and ERAE 

(Dubois et al. [12]) support history-bused specifications; STATECHARTS (Hare1 

[28]) supports transition-based specifications; languages like LARCH (Guttag and 

Horning [25]), ASL (Astesiano and Wirsing [2]), and PLUSS (Gaudel[21]) support 

algebraic specifications; PAISLEY (Zave [50]) and GIST (Balzer et al. [3]) support 

operational specifications. In using such languages to formalize the requirements 

for complex systems, requirements engineers face two difficulties-the limited scope 

of the languages and the preliminary acquisition of relevant requirements. 

The scope problem 

Most existing specification languages focus on functional requirements-that is, 

requirements about what the software system is expected to do. Nonfunctional 

requirements are most often left outside of any kind of formal treatment [35]. Such 

requirements form an important part of real requirements documents [32]; they 

refer to operational costs, responsibilities, interaction with the external environment, 

reliability, integrity, flexibility, and so forth. The limited scope of current formal 

specification languages results from the restricted set of built-in abstractions in terms 

of which the requirements must be captured. For example, in state-based languages 

requirements must be expressed in terms of typed entities and operations on them; 

in algebraic languages they must be expressed in terms of abstract data types. (Such 

languages thus appear to be more appropriate in the design phase that follows 

requirements analysis.) To overcome these limitations language designers have 

proposed richer constructs, in particular for expressing temporal requirements (e.g., 

[ 12,22,24,27]) and for capturing requirements about agents and their behavior in 

the composite system under consideration [ 14,201. (In the sequel, the term composite 

system will be used to refer to the automated system together with the relevant part 

of its environment [9, 141.) 
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The acquisition problem 

To formalize the requirements, one must first know what these requirements are. 

Requirements acquisition and elicitation is not an easy task. Often the clients are 

unable to formulate all relevant requirements explicitly and precisely, the analysts 

have limited knowledge about the environment in which the system will be used, 

different automation alternatives arise so that a most suitable one must be selected, 

and so forth. Surprisingly, very little attention has been paid so far to the requirements 

acquisition process. The role of knowledge about the application domain and about 

similar systems has been recognized [ 171. For example, requirements cliches avail- 

able in domain-specific libraries can be instantiated and/or specialized [38]. Pre- 

liminary models for acquisition dialogues to support multiple viewpoints, negoti- 

ation, and cooperative elaboration of requirements have also been proposed [ 19,401. 

In this context, we view requirements analysis as being made of two coordinated 

tasks, requirements acquisition and formal specification. 

l In requirements acquisition a preliminary model for the specification of the 

entire composite system is elaborated and expressed in a “rich” language. This 

language needs a variety of built-in concepts to structure requirements about 

the composite system in terms of the kind of abstractions usually found in 

requirements documents, such as objectives and constraints to be met by the 

composite system, entities, relationships, events, and actions taking place in it, 

agents controlling the actions, responsibilities assigned, possible scenarios of 

system behavior, and so forth. The language should also provide facilities for 

capturing multiple automation alternatives in a form amenable to evaluation 

and negotiation between the analysts and the clients. (In the sequel, the term 

requirements model will be used to refer to the preliminary model elaborated 

during acquisition; the language used to express this model will be called 

acquisition language.) The acquisition language should be formal enough to 

provide some formal basis for elicitation of requirements; on the other hand 

its use should not require too much hard coding by the analysts, and the 

preliminary model being sketched must be made visible to the clients. 

l In formal specijicution a specific automation alternative that emerged during 

acquisition is considered, and the part to be automated in the corresponding 

composite system is retained; the preliminary specification obtained for the 

data and operations of that subsystem is refined and made more precise using 

a formalism suitable for detailed formal proofs and prototype generation. 

Requirements acquisition and formal specification are not necessarily sequential 

tasks; from a process programming perspective, one could see them as coroutines. 

We justify this decomposition into two tasks by making the following observations. 

l Formal specification needs some input to start with. 

l The acquisition of knowledge about the composite system involves concepts 

such as objectives, agents, and responsibilities; such concepts are not found in 

the final formal specification given to the designers. 
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l Requirements acquisition relies more on knowledge about the application 

domain (e.g., library management or aircraft control) whereas formal specifi- 

cation relies more on knowledge about the sophisticated formalism being used 

(e.g., modularization or import mechanisms). 

l The basic processes involved in requirements acquisition and in formal 

specification are rather different. Requirements acquisition involves learning 

[44] and negotiation [40], whereas formal specification involves data/operation 

refinement and structuring, assertion strengthening and weakening, and so 

forth [ll, 151. 

The focus of this paper is on the requirements acquisition task. Our aim is to 

present elements of a general approach to requirements acquisition we have 

developed in the context of the KAOS project. (KAOS stands for Knowledge 

Acquisition in automated Specification [45].) The driving forces of this approach 

are the reuse of domain knowledge and the application of machine learning tech- 

nology [44]. Two learning strategies have been adapted to the context of require- 

ments acquisition: learning-by-instruction, where the learner conducts the 

acquisition process by using meta-knowledge about the kind of knowledge to be 

acquired [4,8,43], and learning-by-analogy, where the learner retrieves knowledge 

about some “similar” system to map it to the system being learned [26]. 

The overall approach taken in KAOS has three components. 

(i) a conceptual model for acquiring and structuring requirements models, with 

an associated acquisition language, 

(ii) a set of strategies for elaborating requirements models in this framework, and 

(iii) an automated assistant to provide guidance in the acquisition process accord- 

ing to such strategies. 

To introduce the context of this paper, we first outline these three components briefly. 

The conceptual model 

The conceptual model provides a number of abstractions in terms of which 

requirements models have to be acquired; it is thus a meta-model. It is aimed at 

being sufficiently rich to allow both functional and nonfunctional requirements for 

any kind of composite system to be captured in a precise and natural way. Work 

on knowledge representation [5] has already been shown to be highly relevant in 

this context. For example, RML proposes abstractions such as the “entity”, 

“activity”, and “assertion” concepts together with the “subclass specialization” link 

type [24]. It was felt, however, that a richer set of abstractions is needed if one 

wants to also capture objectives of the system under consideration, constraints that 

make such objectives operational, agents like human beings or programs that control 

the system’s behavior according to such constraints, events that cause the application 

of actions on entities, and so forth. Also, other structuring link types are needed 

beside subclass specialization, like (alternative) refinement links between objectives 



Goal-directed requirements acquisition 7 

or between constraints, (alternative) assignment links between agents and con- 

straints, and so forth. The meta-model for requirements acquisition can be represen- 

ted as a conceptual graph where nodes represent abstractions and edges represent 

structuring links. (Figure 2 illustrates a portion of this graph.) 

Acquisition strategies 

An acquisition strategy in this framework defines a well-justified composition of 

steps for acquiring components of the requirements model as instances of meta- 

model components. In other words, a strategy corresponds to a specific way of 

traversing the meta-model graph to acquire instances of its various nodes and links. 

For example, the meta-model can be traversed backwards from the objectives to be 

fulfilled by the composite system, or backwards from the agents available in the 

system and their respective views, or backwards from client-supplied scenarios for 

combining actions. Each step in a strategy is itself composed from finer steps like, 

for example, question-answering, input validation against known properties of 

meta-model components, application of tactics to select among alternatives, deduc- 

tive inferencing based on property inheritance through specialization links, analogi- 

cal inferencing based on knowledge about similar systems, or conflict resolution 

between multiple views of human agents involved. 

The acquisition assistant 

The acquisition assistant is aimed at providing automated support in following 

one acquisition strategy or another. It is built around two repositories: a requirements 

database and a requirements knowledge base. Both are structured according to the 

meta-model components. The requirements database maintains the requirements 

model built gradually during acquisition; the latter can be analyzed using query 

facilities similar to those provided by project database systems [47]. The requirements 

knowledge base contains two kinds of knowledge. Domain-level knowledge concerns 

concepts and requirements typically found in the application domain considered. 

As in [4,38], this knowledge is organized into specialization hierarchies; require- 

ments fragments for a particular class of systems known to the assistant (e.g., library 

management, airline reservation, telephone network) are thereby inherited from 

more general applications (e.g., resource management, transportation, communica- 

tion) and from more general tasks (e.g., transaction processing, history tracking, 

device control). Besides, meta-level knowledge concerns properties of the abstrac- 

tions found in the meta-model (e.g., “a constraint that can be temporarily violated 

needs to be restored by some appropriate action”) and ways of conducting specific 

acquisition strategies. The latter aspect includes tactics that can be used within 

strategies (e.g., “prefer those alternative refinements of objectives which split 

responsibility among fewer agents”). 

In this overall framework, the objective of this paper is to present a significant 

portion of the KAOS meta-model together with one specific acquisition strategy 
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associated with it. The part of the meta-model considered relates to the refinement 

of system objectives, their operationalization through constraints, the specification 

of objects and actions to satisfy such constraints, and the assignment of agents like 

human beings, devices, or programs to constraints and actions. The acquisition 

strategy considered in the paper is a learning-by-instruction one. The meta-model 

graph is traversed backwards from the Goal node through adjacent links. Instances 

of the Goal node that are acquired represent objectives to be achieved by the 

composite system (like, e.g., satisfy as many book requests as possible, provide 

bibliographical knowledge in relevant domains, or maintain privacy about user 

interests). At each node on the path prescribed by the strategy the corresponding 

meta-level knowledge is used for guiding instance acquisition. 

A distinguished feature of the approach presented in the paper is the importance 

given to high-level goals as opposed to their operationalization into constraints to 

be ensured by agents through appropriate actions. Instead of starting directly from 

lower-level process- or action-oriented descriptions as is usually done in current 

requirements engineering methods, the approach starts from system-level and 

organizational objectives from which such lower-level descriptions are progressively 

derived. 

Goals are important in several respects. They lead to the incorporation of require- 

ments components which should support them. They justify and explain the presence 

of requirements components which are not necessarily comprehensible to clients. 

They may be used to assign the respective responsibilities of agents in the system; 

more precisely, they may provide the basis for defining which agents should best 

perform which actions to fit prescribed constraints (according to their capabilities, 

reliability, cost, load, motivation, and so forth). Finally, they provide basic informa- 

tion for detecting and resolving conflicts that arise from multiple viewpoints among 

human agents [39]. 

The remainder of the paper is organized as follows. Section 2 describes the various 

abstractions involved in the portion of the meta-model relevant to the goal-directed 

acquisition strategy. Requirements fragments from a library system are also provided 

there to illustrate the use of the acquisition language. The strategy itself and its 

various associated tactics are then discussed in Section 3. Section 4 then concludes 

by discussing achievements and open issues. 

2. A conceptual meta-model for requirements acquisition 

The three levels involved in our approach to requirements acquisition are first 

clarified in Section 2.1. The central role played by the model at the meta level is 

then discussed in greater detail in Section 2.2. Section 2.3 introduces some back- 

ground material used in the sequel to define the meta-model components. The 

remainder of Section 2 is devoted to a tour through the portion of the meta-model 

relevant to this paper (Sections 2.4-2.9). 
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2.1. The meta, domain, and instance levels 

As shown in Fig. 1, our approach to requirements acquisition involves three levels 

of modeling. (In the sequel, the “meta” prefix will be used wherever felt necessary 

to avoid confusions between levels.) 

l The meta level refers to domain-independent abstractions. This level is made 

of meta-concepts (e.g., “Agent”, “Action”, “Relationship”, etc.), meta-relation- 

ships linking meta-concepts (e.g., “Performs”, “Input”, “Link”, “ISA” special- 

ization, etc.), meta-attributes of meta-concepts or meta-relationships (e.g., 

“Load” of “Agent”, “PostCondition” of “Action”, “Cardinality” of “Link”, 

etc.), and meta-constraints on meta-concepts and meta-relationships (e.g., “a 

constraint that can be temporarily violated must have a restoration action 

meta-linked to it”). 

l The domain level refers to concepts specific to the application domain (e.g., 

resource management, telephone network, etc.) and to the type of task con- 

sidered (e.g., transaction processing, history tracking, etc.). This level is made 

of concepts that are instances of meta-level abstractions (e.g., for the library 

management subdomain, the “Borrower” concept which is an instance of the 

“Agent” meta-concept, the “Checkout” concept which is an instance of the 

meta level 

iomain level 

nstance level 

_______~r_ = InstanceOf link 

Fig. 1. The meta, domain, and instance levels. 
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“Action” meta-concept, the “Copy” concept which is an instance of the 

“Relationship” meta-concept, etc.). Domain-level concepts are linked through 

instances of the meta-relationships linking the corresponding meta-level con- 

cepts they are an instance of (e.g., “Borrower” Performs “Checkout”, “Copy” 

Links “Book” and “BookCopy”). Domain-level concepts must also satisfy 

instantiations of the meta-constraints on the corresponding meta-level concepts 

they are an instance of (e.g., the constraint of “limited borrow time” can be 

violated and must thus have a restoration action associated with it-such as 

sending a reminder). The requirements model to be acquired is thus structured 

from such domain-level concepts according to instances of the corresponding 

meta-relationships inherited from the meta level. The domain knowledge which 

can be reused during acquisition is structured in a similar way. 

l The instance level refers to specific instances of domain-level concepts (see 

Fig. 1). 

A similar distinction between object and meta levels has been used before for 

requirements modeling, see [23]. The meta, domain, and instance levels are thus 

made from meta-types, types, and type instances, respectively. The KAOS meta- 

model is a conceptual model for the meta level, thus consisting of meta-level 

concepts, relationships, attributes, and constraints. 

2.2. Role of the conceptual meta-model 

In the context of requirements acquisition, the KAOS meta-model fills several 

roles. 

(i) As seen before, the components of a requirements model are acquired as 

domain-specific instances of meta-concepts, linked by instances of meta- 

relationships, characterized by instances of meta-attributes, and constrained 

by instances of meta-constraints. 

(ii) As a consequence of (i), the meta-model determines the structure of the 

acquisition language. 

(iii) As another consequence of (i), the components of a requirements model 

inherit all the features defined once for all for the corresponding meta-level 

abstractions they are an instance of. 

(iv) The meta-model drives the acquisition process as in learning-by-instruction 

systems. For example, with the goal-directed strategy presented in Section 

3, the Goal meta-concept is the first to be considered; instances of it are 

acquired through Reduction and ISA specialization links (see Fig. 2); the 

objects Concerned by the goals acquired are also preliminarily defined. Then 

the Agent and Capability meta-level abstractions are considered to identify 

relevant instances of them. Next the Constraint meta-concept is considered; 

instances of it are acquired from goals through Operationalization links, and 

so forth. It is important to recognize that the more domain-independent 

knowledge is attached to these meta-concepts and meta-relationships under the 
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form of meta-attributes and meta-constraints, the more knowledge-based guid- 

ance can be provided in the acquisition process, 

(v) The various components of the meta-model yield criteria for measuring 

conceptual similarity when a learning-by-analogy strategy is followed [lo]. 

Analog requirements fragments are retrieved in the domain knowledge base 

and mapped to the target requirements from similarities that are evaluated 

between goals, constraints, actions, agents, events, and the like. 

(vi) The meta-model determines the structure of the requirements database where 

the requirements model is gradually elaborated; similarly, it determines the 

structure of the domain knowledge base where model fragments can be 

retrieved during acquisition and reused. As shown in [47], meta-models 

provide a basis for defining generic environment architectures where tools 

know nothing about domain-level concepts; they know just about meta-level 

concepts. 

2.3. Characterizing model components 

Models at the meta level and at the domain level were already seen to consist of 

concepts, relationships linking concepts, and attributes attached to concepts or 

relationships (see Section 2.1). This style of model definition is close to the one 

used in semantic data models [6,29] or structured object representations [5]. What 

is meant by attribute and relationship is now made more precise; next we will 

see how meta-level and domain-level concepts, relationships, and attributes are 

characterized. 

23.1. Terminology 

Attributes. An attribute Att of a concept or relationship T is defined as a function 

Att:T+D 

where D is called the domain of values for the attribute. 

Relationships. An n-ary relationship R over concepts C, through C,, is defined by 

R=TuPLE(C,,...,C,,) 

where TUPLE denotes the tuple type constructor (that is, any instance of R is a tuple 

of corresponding instances of C,). Sometimes the role played by C, in R is given 

an explicit name. The cardinality of R is defined by a sequence of pairs 

{mink : maxk)l=-kGn, where min, and maxk denote the minimum and maximum 

number of instances of R, respectively, in which every instance of Ck must participate. 

Cardinalities allow various kinds of constraints on relationships to be expressed. 

For example, the cardinality of the Copy relationship that links the BookCopy and 

Book concepts in Fig. 1 is { 1: 1, 1: N}. This expresses that a book copy must be a 

copy of one and exactly one book whereas a book may have a number of copies 

ranging from one to an arbitrary number N. Cardinality constraints for a number 

of relationships in the KAOS meta-model are depicted in Fig. 2. 
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AndOr relationships. AND/OR graph structures [37] need to be introduced if one 

wants to support the tracking of alternative requirements options at the domain 

level. For example, a goal can be refined into several alternative combinations of 

subgoals, a goal can be made operational through several alternative combinations 

of constraints, a constraint can be under responsibility of several alternative combina- 

tions of agents, and so forth. AndOr relationships are introduced at the meta level 

for that purpose. (Instances of such relationships will be declared in the acquisition 

language using the corresponding logical connectives.) An AndOr relationship R 

over concepts C, and C2 is a compound binary relationship defined as follows: 

with 

R = AndR 0 OrR (“0” denotes relation composition) 

OrR = TUPLE (C,, AltR), AndR = TUPLE ( AltR, C,), 

that is, any instance of R is a pair of concept instances (c, , c2) such that there exists 

an alternative alt for which (cr , ah) and (u/t, CJ are instances of OrR and AndR, 

respectively. (AltR thus represents the set of possible alternatives to link C, and 

&--in AND/OR graph terminology, instances of AftR correspond to AND-nodes 

whereas instances of C, and C2 correspond to OR-nodes.) 

AndOr relationships have a Selected attribute with “yes” and “no” as possible 

values to record which alternative is eventually selected during acquisition. These 

values must be updated in case of backtracking to explore another alternative. 

IsA relationship. Subclass specialization is captured through the binary IsA relation- 

ship over concepts. This relationship is defined by 

ISA (C, , C,) iff every instance of C, is also an instance of C,. 

As a result, features of C2 are inherited by C, according to the inheritance mode 

specified; a feature is uninheritable, instance-inheritable, type-inheritable, or fully 

inheritable (for more details, see [46]). A concept may be linked to several others 

through ISA relationship instances; thus multiple inheritance is supported. As first 

shown by Greenspan [24], specialization hierarchies are of great benefit in the 

development of conceptual requirements models. 

2.3.2. De&zing concepts, relationships, and attributes 

At the meta and domain levels, model components are characterized as follows. 

A concept C is defined by a set of features; a concept feature is either an attribute 

of C or a relationship involving C. For example, the “Agent” meta-level concept 

in Fig. 1 could have a “Load” attribute and is involved in the “Performs” relation- 

ship; the “Book” domain-level concept could have a“Title” attribute and is involved 

in the “Copy” relationship. 

A relationship R is also defined by a set of features; a relationship feature is either 

an attribute of R or the ordered list of concepts linked by R together with their 

respective role and cardinality. For example, the “Performs” meta-level relationship 

In Fig. 1 could have a “Reliability” attribute and links the “Agent” and “Action” 
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meta-level concepts; the “Borrowing” domain-level relationship could have a 

“DateOfCheckOut” attribute and links the “Borrower” and “BookCopy” domain- 

level concepts. 

An attribute Att is defined by a set of characteristics like its name, informal 

definition, domain of values, and unit of values. A domain is either elementary or 

compound. An elementary domain is a set of atomic values; this set can be simple, 

linearly ordered, or ISA-structured (e.g., the “Keyword” domain is ZsA-structured). 

A compound domain is built from other domains through the Union, Tuple, SetOf; 

or SequenceOf domain constructors, or through abstract syntax domain constructors 

[31]. The latter are used for those attributes attached to concepts or relationships 

which have formal assertions as values. 

Formal assertions as attribute values. At the domain level, formal assertions can thus 

be attached to domain-specific concepts; they are values for attributes inherited 

from the meta level, like the Invariant attribute that can be attached to objects, the 

Precondition, PostCondition, Triggercondition, and StopCondition attributes that can 

be attached to actions, or the FormalDef attribute attached to goals or constraints 

(see Sections 2.4, 2.5, and 2.8). The assertion sublanguage used for writing such 

attribute values is a typed temporal first-order logic equipped with real-time temporal 

constructs [33]; it is inspired by ERAE [12]. The primary notations used in the 

examples below are summarized as follows. For a well-formed formula P, 

P means “property P holds in the current state”, 

OP means “property P holds in the next state”, 

OP means “property P holds in current or some future state”, 

q iP means “property P holds in current and all future states”, 

l P means “property P holds in the previous state”, 

4P means “property P holds in current or some previous state”, 

n P means “property P holds in current and all previous states”. 

Inheritance mode. An additional characteristic that may be attached to a relationship 

or an attribute is its inheritance mode through ISA specialization hierarchies (with 

“uninheritable”, “instance-inheritable”, “type-inheritable”, or “fully inheritable” 

as possible values, see above). All features of meta-concepts and meta-relationships 

are fully inheritable by each corresponding instance at the domain level. Similarly, 

constraints on model components at the meta level are correspondingly instantiated 

at the domain level. For example, consider the following meta-constraint. 

A constraint that may be temporarily violated must have a restoration 

action meta-linked to it. 

A possible instantiation of it at the domain level might be 

The RectifyLibraryDatabase action must be introduced with appropriate 

conditions to restore the constraint of consistency between the library 

database and the library shelves. 
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Figure 2 summarizes the portion of the meta-model of relevance to this paper; a 

detailed description of the complete meta-model can be found in [46]. We proceed 

now from the more-or-less classical concepts, which already appear in some form 

in existing specification languages, to the new concepts which have been introduced 

in KAOS. (The order of presentation thus does not correspond to the order in which 

instances must be acquired at the domain level; the latter issue will be addressed 

in Section 3.) In the sequel, where no ambiguity arises we will say “a C” instead 

of “an instance of meta-concept C”. 

2.4. Objects, entities, relationships, and events 

An object is a thing of interest which can be referenced in requirements. Instances 

of objects may evolve from state to state (because of applications of actions, see 

Section 2.5). The state of an object instance Ob at some time is defined as a mapping 

from Ob to the set of values at that time of all features of Ob. 

In addition to Name and InformalDeJnition, the primary meta-attributes of the 

OBJECT meta-concept include: 

l Exists, with values true at the instance level if the corresponding object instance 

exists in the current state, and false otherwise; 

Reduction 

Operatiorralization 

_ : Binmy Relationship 
: AndOr Relationship 

- - : ISA Relationship 
1:N Capability 

Fig. 2. A portion of the KAOS conceptual meta-model. 
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l Invariant, whose values at the domain level are assertions that restrict the class 

of possible states for the corresponding object. An invariant is implicitly 

universally quantified over the object states. 

As seen in Fig. 2, the OBJECT meta-concept is involved in a number of meta- 

relationships. These will be defined later when the other meta-concepts involved in 

them will be defined. In addition to those inherited from the meta level, new 

domain-specific attributes can be attached to objects at the domain level (e.g., a 

“Title” attribute for the “Book” concept). 

The ENTITY, RELATIONSHIP, EVENT, and AGENT concepts are specializ- 

ations of the OBJECT meta-concept and inherit all its features. 

An entity is an autonomous object; its instances may exist independently from 

other object instances. Examples of entities are “Borrower”, “Book”, “BookCopy”, 

“Library”, and so forth. In the acquisition language, one might write 

Entity Library 

Has available, checkedout, lost: SetOf [BookCopy] 

coverageArea: SetOf [Subject] 

% declaration of domain-specific attributes % 

Invariant (Glib: Library) 

(lib = lib.available u lib.checkedOut u liblost) A 

(lib.available n lib.checkedOut # 0 A 

lib.available n liblost = 0 A 

lib.checkedOut n lib.lost = 0) 

. . . 

end Library 

The acquisition language can be seen to have a two-level structure: an outer level 

for declaring domain-level concepts in terms of meta-model components, and an 

inner level for expressing assertions as values for some meta-attributes. The outer 

declaration level has an entity-relationship structure which yields the structure of 

the requirements database; static semantics checking can thereby be performed 

through entity-relationship queries [47]. The inner assertion level corresponds to 

typed temporal first-order logic. 

A relationship is a subordinate object; the existence of its instances depends upon 

the existence of the corresponding object instances linked by the relationship. If 

OB, through OB, denote the linked objects, its structure is 

TUPLE (OB,, . . . , OB,). 

The Exists meta-attribute inherited from the OBJECT meta-concept is renamed; 

in the acquisition language, the expression 

R(ob,,...,ob,) 

is used rather than 

[R(ob,, . . . , ob,)].Exists = true. 
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Since a relationship links objects, the RELATIONSHIP meta-concept has a 

specific meta-relationship with the OBJECT meta-concept (see Figs. 1 and 2): the 

Link meta-relationship. In this meta-relationship, the meta-role “Links” is played 

by RELATIONSHIP with meta-cardinality 1:N (that is, relationships are n-ary 

with n 2 1); the meta-role “LinkedBy” is played by OBJECT with meta-cardinality 

0:N (that is, an object does not necessarily participate in relationships). The Link 

meta-relationship has two meta-attributes: Role and Cardinality. Values for these 

meta-attributes yield roles and cardinalities for relationships at the domain level. 

(The reader now may understand why the “meta” prefix is used: meta-roles and 

meta-cardinalities of a meta-relationship should not be confused with the Role and 

Cardinality meta-attributes of the Link meta-relationship.) For example, the Borrow- 

ing relationship might be partially described in the acquisition language as follows. 

Relationship Borrowing 

Links Borrower {Role Borrows, Card 0: N} 

BookCopy {Role BorrowedBy, Card O:l} 
% Borrowers may have no copy borrowed, and may borrow several copies at same 

time; copy may be not borrowed, and may be borrowed by at most one borrower % 

Invariant (Vlib: Library, bor: Borrower, bc: BookCopy) 

[Borrowing (bor, bc) A bc E lib + 

bc E lib.checkedOut A 4Requesting (bar, bc)] 

(Vlib: Library, bc: BookCopy) 

[bc E lib.checkedOut 3 

(3bor: Borrower) Borrowing (bar, bc)] 

. . . 

end Borrowing 

An event is an instantaneous object; that is, its instances exist at the instance 

level in one state only. Again, the Exists meta-attribute inherited from the OBJECT 

meta-concept is renamed; in the acquisition language, the expression “Occurs (ev)” 

is used instead of “ev.Exists = true”. 

For example, the event of a reminder being sent for a borrower to return a book 

copy might be expressed as follows. 

Event ReminderIssued 

Has ToWhom: Borrower, What: BookCopy, Message: TEXT 

Invariant (Vrs: ReminderIssued) 

(Occurs (rs) e 

(3~: Staff) Performs (p, IssueReminder)) 

end ReminderIssued 

(We will come back to this example later when the IssueReminder action and 

Performs meta-relationship will be introduced.) 
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The EVENT meta-concept has specific meta-attributes in addition to those 

inherited from OBJECT. Among them, the Frequency meta-attribute can be used 

to express the time interval between repeating instances of the event. Specific 

meta-relationships are introduced to model the fact that events may cause the 

application of actions or are produced by such applications, as shown below. 

2.5. Actions 

An action is a mathematical relation over objects. (If the action is deterministic, 

this relation reduces to a function.) Action applications define state transitions. 

In addition to Name and InformalDefinition, the primary meta-attributes of the 

ACTION meta-concept include 

l Precondition, whose values at the domain level are the weakest necessary 

conditions on initial states for application of the corresponding action; 

l TriggerCondition, whose values at the domain level are the weakest suficient 

conditions on initial states for application of the corresponding action; 

l PostCondition, whose values at the domain level are the strongest conditions 

on final states that describe the net effect of applying the corresponding action. 

The pair (Precondition, PostCondition) captures the state transition produced by 

application of the action. This pair often has a pattern (P A . . . , 1P A + + *) or 

(lPA...,PA...). 

Note the difference between a precondition and a trigger condition. An action 

can only be applied if its precondition holds whereas it must be applied if its trigger 

condition becomes true. A meta-constraint here is that the action’s precondition 

must be logically implied by the trigger condition taken in conjunction with the 

invariants on the objects referred to in the precondition. 

Other attributes, such as StopCondition or Duration, can be attached to ACTIONS. 

See [46] for more detail. 

The ACTION meta-concept is linked to OBJECT through the Input/Output 

meta-relationships and to EVENT through the Cause/Stop meta-relationships. They 

are defined as follows. Let act, ob, and eu denote instances of the ACTION, OBJECT, 

and EVENT meta-concepts, respectively. 

Input (act, ob) iff ob is among the types making up the domain of act. 

Ouput (act, ob) 

iff ob is among the types making up the codomain of act. 

Cause (ev, act) 

iff ev instances are among those causing applications of act. 

Stop (ev, act) 

iff ev instances are among those causing abortions of act. 

Two specializations of ACTION are distinguished in the meta-model, viz. 

INSPECT and MODIFY actions. For a modification action act, Output (act, ob) 

means that instances of object ob are created, are deleted, or have their features 
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updated. The Input and Output meta-relationships have optional Argument and 

Result meta-attributes, respectively, to declare instance variables referenced in the 

assertions attached to the corresponding action. 

The examples below suggest how these meta-relationships and meta-attributes 

are reflected in the acquisition language. 

Action Checkout 

Input BookCopy {Arg: bc}, 

Library {Arg: lib}, Borrower {Arg: bor} 

Output Library {Res: lib}, Borrowing 

Precondition bc E lib.available 

PostCondition l(bc E lib.available) A bc E lib.checkedOut A 

Borrowing (bor, bc) 

Action IssueReminder 

Input Borrower {Arg: bor}, BookCopy {Arg: bc} 

Output Reminder 

TriggerCondition 

n D2w Borrowing (bor, bc) A 

1 l s-lw (3r: ReminderIssued) [Occurs (r) A r= (bor, bc, -)] 

PostCondition. . . 

The trigger condition above states the condition and frequency under which 

reminders must be produced. (The Reminder-Issued event was introduced before.) 

This example also shows the use of real-time temporal constructs [12,33]; e.g., 

“U >2w ” means “in every past state from the current one up to more than 2 weeks”. 

2.6. Agents 

An agent is an object which is a processor for some actions; agents thus control 

state transitions. As opposed to the other kinds of objects (i.e., entities, relationships, 

and events), agents have choice on their behavior [14]. Examples of agents are 

human beings, physical devices, or programs that exist or are to be developed in 

the automated part of the composite system. 

Agents have states like any other kind of object. They inherit all features that 

may characterize objects. In particular, they can be structured from other agents 

through the tuple type constructor; agent refinement into finer ones can thereby be 

supported. 

In addition to the features inherited from the OBJECT meta-concept, the AGENT 

meta-concept has a Loud meta-attribute, whose values denote occupation rates of 

the corresponding agents. The load of an agent will increase progressively during 

requirements acquisition as responsibility assignments are made. Initially it might 

be non-null if the agent already has assignments in another composite system. The 

process according to which loads are evaluated is outside the current scope of our 

approach. The Loud attribute acts as a placeholder where values resulting from 
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cost analysis can be integrated; such values are used in the tactics for responsibility 

assignment, see Section 3. 

As shown in Fig. 2, the AGENT meta-concept has two meta-relationships with 

ACTION: Capability and Performs. They are defined as follows. 

Capability (ag, act) iff agent ug is capable of performing action act. 

Performs (ug, act) iff agent ug is a processor allocated to act. 

An agent is thereby partly defined by two sets of actions: the set of actions it can 

perform and the set of actions it must perform after assignment decisions have been 

made (see Section 2.8 and Section 3). An obvious meta-constraint here is that 

(Vug: AGENT, act: ACTION) 

(Performs (ug, act) * Capability (ug, act)). 

The Performs relationship is more precisely captured through the following 

meta-level Performance Axiom: 

(Vug: AGENT, act: ACTION) 

(Performs (ug, act) = {?Pre,!Trig} [ug, act] {Post}). 

The right-hand side of this equivalence has the following meaning: 

if agent ug actually performs action act, it must guarantee to start if the 

trigger condition of act becomes true and only if the precondition of 

act is true, to yield a state satisfying the postcondition of act. 

In terms of the FOREST notations [20], the Performance Axiom can be stated as 

(Vug: AGENT, act: ACTION) 

(Performs (ug, act) 3 

(Pre + [ ag, act] Post) & (Trig & Pre + obl (ug, act))). 

A last meta-relationship which will be used below is the Knows meta-relationship 

between the AGENT and OBJECT meta-concepts. This meta-relationship is defined 

by 

Knows (ug, ob) 

iff the states of object ob are made observable to agent ug. 

Note that Performs (ug, act) means that ug can actually control the state transitions 

associated with act whereas Knows (ug, ob) means that ug can actually observe ob 

states. Also note that ob can be an object of any kind. In particular, the state of an 

agent can thereby be made observable to other agents. 

Often the interface through which an agent can observe object states should be 

made precise in the requirements [9]. An Interface meta-attribute attached to the 

Knows meta-relationship is introduced for that purpose; its values are references 

to other objects-and, in particular, to other agents. 
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To illustrate these various notions, one could get the following description at 

some stage during acquisition: 

Agent Staff 

Has CompetenceArea,. . . 

% declaration of domain-specific attributes % 

Invariant (Vst: Staff) (InstanceOf (st, ResearchStaff) v 

InstanceOf (st, SecretaryStaff)) 

Load . . . 

CapableOf AddCopy, RemoveCopy, BiblioQuery, 

Checkout, Return, IssueReminder,. . . 

Performs AddCopy, RemoveCopy,. . . 

Knows Borrowing {Interface: BorrowingSheet}, . . . 

2.7. Goals 

A goal is a nonoperational objective to be achieved by the composite system. 

Nonoperational means that the objective is not formulated in terms of objects and 

actions available to some agent in the system; in other words, a goal as it is formulated 

cannot be established through appropriate state transitions under control of one of 

the agents. 

For example, a standard objective for a library system would be to have any book 

request eventually satisfied; requests should be made by registered borrowers and 

refer to books relevant to the subject area covered by the library. This objective 

might be captured by the following requirements fragment: 

SystemGoal Achieve [ BookRequestSatisfied] 

InstanceOf SatisfactionGoal 

% declaration of goal category % 

Concerns Borrower, Book, Borrowing,. . . 

FormalDef 

(Vbor: Borrower, b: Book, lib: Library) 

Requesting (bor, b) A b.subject E lib.coverageArea =3 

O(3bc: BookCopy) (Copy(bc, b) A Borrowing (bor, bc)) 

This objective is nonoperational in that it cannot be achieved by application of 

actions available to some agent. For example, a Borrower agent cannot establish 

the objective by application of the MakeBookRequest, Checkout, and Return actions 

it is capable of; the Checkout action can make the predicate Borrowing (bar, bc) 

become true, but the precondition bc E lib.available for that action cannot be made 

true by application of actions available to that agent. (As it will be seen in Section 

2.8, such a goal needs to be “implemented” by operational constraints; the latter 

can be established through state transitions under control of some agents.) 

As seen in Fig. 2, the Concerns meta-relationship links the GOAL and OBJECT 

meta-concepts. Explicit links can thereby be established at the domain level between 
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a goal and the objects the goal refers to; these links are used during acquisition to 

get object descriptions from goal descriptions. (See Section 3.) For example, the 

formulation of the BookRequestSatisJied goal above requires the introduction 

and later description of the Borrower agent and the Borrowing and Requesting 

relationships. 

A goal taxonomy is defined at the meta level to support guidance during acquisi- 

tion, reuse of goal descriptions, and formal checks. Goals are classified according 

to their pattern and their category. 

The pattern of a goal is based on the pattern of its formal definition. Five patterns 

can be identified: 

Achieve: pattern P * OQ, 

Cease : pattern P =3 0 ~0, 

Maintain: pattern P =3 q Q, 

Avoid: pattern P * Cl iQ, 

Optimize: pattern Maximize (objective function) or 

Minimize (objective function). 

These patterns have an impact on the set of possible behaviors of the system; Achieve 

and Cease goals generate behaviors, Maintain and Avoid goals restrict behaviors, 

and Optimize goals compare behaviors [l]. Goal patterns are declared by making 

the pattern name precede the goal name, see the example above. 

Goals found in requirements documents can be of different categories. At the 

meta level, such categories are organized into a specialization hierarchy. (Only the 

top level of this taxonomy is shown in Fig. 2.) A first distinction is made between 

SystemGoals and PrivateGoals. SystemGoals are application-specific goals that must 

be achieved by the composite system; e.g., the BookRequestSatisjied goal above is 

declared as a SystemGoal. PrivateGoals are agent-specific goals that might be 

achieved by the composite system; e.g., the goal of keeping borrowed copies as long 

as needed would be private to the Borrower agent. (We will come back to private 

goals below.) System goals are specialized into several categories. The categories 

considered so far include: 

l SatisfactionGoals concerned with satisfying agent requests; 

l InformationGoals concerned with getting agents informed about object states; 

l RobustnessGoals concerned with recovering from foibles of human agents or 

from breakdowns of automated agents; 

l ConsistencyGoals concerned with maintaining the consistency between the 

automated and physical parts of the composite system; 

l SafetyGoals and PrivacyGoals concerned with maintaining agents in states 

which are safe and observable under restricted conditions, respectively. 

The specific category of a domain-level goal is declared by an InstanceOf clause 

which makes the goal inherit all features of the corresponding goal category. 
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As another example, the objective of safe transportation in a lift system might be 

captured by the following requirements fragment: 

SystemGoal Maintain [SafeTransportation] 

InstanceOf SafetyGoal 

Concerns Passenger 

InformalDef . . . 

Note again that this objective is nonoperational because as formulated it cannot be 

established by the MakeRequest, Getln, and GetOut actions available to the 

Passenger agent nor by the OpenDoors, CloseDoors, Stop, and GoToFloor actions 

available to the LiftController agents. One difference with the previous example is 

that the SafeTransportation goal is even more abstract than the BookRequestSatisfied 

goal; it cannot be directly formalized. Goals can thus be described formally or 

informally. Abstract/informal goals need to be refined into concrete/formal ones; 

the latter may also need to be further refined in order to obtain subgoals that can 

be more easily made operational through constraints. (The notions of formality and 

operationality should not be confused.) 

The Reduction meta-relationship is thus introduced for goal refinement. Since a 

goal can be reduced into several alternative combinations of subgoals, Reduction 

is an AndOr meta-relationship; it corresponds to the classical problem reduction 

operator in problem solving [37]. The precise definition is as follows. 

Reduction (G, g) 

iff achieving goal g possibly with other subgoals is 

among the alternative ways of achieving goal G. 

At the domain level, goals are thus structured as AND/OR graphs (a goal node 

can have several parent nodes as it can occur in several reductions, see the corre- 

sponding cardinality in Fig. 2). 

Let us come back to the BookRequestSatisJied goal above. The predicate Borrow- 

ing (bar, bc) will eventually become true from states where Requesting (bar, b) holds 

provided the precondition bc E lib.available of the Checkout action becomes true 

sooner or later. This could be achieved either by (i) having a reasonable amount 

of relevant book copies in the library, (ii) guaranteeing the regular availability of 

such book copies, and (iii) notifying borrowers in case of requested book copies 

being returned, or by guaranteeing that a copy of any book is available for any 

borrower at any time. (The latter alternative would probably be later rejected due 

to the cost of ensuring the constraint operationalizing it, see below.) These possible 

refinements would be captured during acquisition as follows. 

SystemGoal Achieve [BookRequestSatisfied] 

InstanceOf.. . 
Concerns . . . 

FormalDef . . . 

ReducedTo EnoughCopies, RegularAvailability, AvailabilityNotified 

or ReducedTo AsManyCopiesAsNeeded 
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Systemgoal Maintain [ RegularAvailability] 

Concerns Library 

FormalDef 
(Vlib: Library, bc: BookCopy) 

bcElib + 

q l[ l(bc E lib.available) =3 OsNw (bee lib.available)] 

% N is a system parameter % 

. . . 

Systemgoal Achieve [AvailabilityNotified] 

InstanceOf InformationGoal 

Concerns Borrower, Library,. . . 

FormalDef 

(Vlib: Library, bor: Borrower, b: Book, bc: BookCopy) 

Requesting (bor, b) A 

l l(3bc: BookCopy) (Copy (bc, b) A bcE lib.available) A 

(3bc: BookCopy) (Copy (bc, b) A bcE lib.available) =3 

OKnows (bor, lib.available) 

% The Knows predicate was introduced in Sec. 2.6 % 

. . . 

The Reduction meta-relationship allows one to capture goals that contribute 

positively to other goals. Goals can also contribute negatively to other ones; this is 

captured in the Conjlict relationship. The latter is defined as follows. 

Conflict (gl, 8.2) iff goals g1, g2 cannot be achieved together. 

Suppose, for example, that the following private goal has been acquired from 

borrowers: 

PrivateGoal Maintain [ LongBorrowingPeriod] 

InstanceOf SatisfactionGoal 

Concerns Borrower, Borrowing 

FormalDef 

(Vbor: Borrower, b: Book, bc: BookCopy) 

q [Borrowing (bor, bc) A Copy (bc, b) A ONeed (bor, b) + 

OBorrowing (bor, bc)] 

This goal can clearly be seen to conflict with the RegularAvailability goal above 

(see the formal definitions of these goals and the invariants attached to the Library 

entity and the Borrowing relationship). The description of LongBorrowingPeriod is 

therefore complemented with 

ConflictsWith RegularAvailability 

Thus, conflicts between goals can be made explicit. Recording such conflicts is 

required to support subsequent conflict resolution through evaluation and 
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negotiation. In that prospect, a Priority meta-attribute is also attached to the GOAL 

meta-concept. Its values can be used for conflict resolution and for agent responsibil- 

ity assignment. (Priorities takes values in the range 0 to 1; the latter value being the 

highest priority.) A meta-constraint here is that SafetyGoals always are of highest 

priority. 

Finally, a Wish meta-relationship is introduced between the HumanAGENT 

specialization of the AGENT meta-concept (not shown in Fig. 2) and the GOAL 

meta-concept; it is defined by 

Wish (ag, G) iff human agent ag wants goal G to be achieved. 

For example, the LongBorrowingPeriod goal above is clearly Wished by Borrower 

agents; the system goal Avoid [ LostCopies] is Wished by StafS agents who do not 

want copies to disappear improperly. 

The introduction of private goals and Wish links provides useful information at 

the domain level for making decisions among alternative responsibility assignments 

and conflict resolutions. (See Section 3.) For example, private goals have low Priority 

values and therefore will often be dropped in case of conflict; if an agent wishes 

some system goal, the constraint operationalizing that goal will be assigned prefer- 

ably to that agent-e.g., staff agents will be in charge of the constraint operationaliz- 

ing Avoid [LostCopies]; an agent is not assigned a constraint operationalizing a 

goal that conflicts with its private goals-e.g., the Borrower agent would not be in 

charge of the LimitedBorrowingAmount constraint that operationalizes the Enough- 

Copies goal above. 

2.8. Constraints 

A constraint is an operational objective to be achieved by the composite system. 

As opposed to goals, a constraint is formulated in terms of objects and actions 

available to some agent in the system; that is, it can be established through appropri- 

ate state transitions under control of one of the agents. 

For example, the LimitedBorrowingPeriod constraint might be captured by the 

following requirements fragment. 

SoftConstraint Maintain [LimitedBorrowingPeriod] 

FormalDef 

(Vbor: Borrower, bc: BookCopy) 

q [Borrowing (bor, bc) A l lBorrowing (bor, bc) + 

0 c-Nw iBorrowing (bor, bc)] 

. . 

This constraint is operational in that it can be achieved by application of actions 

available to some agent in the system. The Borrower agent has the Return action 

in its capabilities; the latter has Borrowing (bor, bc) in its precondition and iBorrow- 

ing (bar, bc) in its postcondition. The constraint can thus be established through 
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appropriate state transitions under control of the Borrower agent. 

Goals are made operational through constraints. The link between goals and 

constraints is captured in the Operutionalization meta-relationship defined as follows: 

Operationalization (C, G) 

iff meeting constraint C is among the 

operational ways to achieve goal G. 

A constraint operationalizing a goal thus amounts to some abstract “implementa- 

tion” of this goal. In general a goal can be operationalized through several alternative 

combinations of constraints; like Reduction, Operationalization is an AndOr relation- 

ship. A meta-constraint here is that a goal operationalized into constraints may not 

be reduced further. 

Coming back to the RegularAvailability goal, one can verify from its formal 

definition and from the definitions of the Library entity and Borrowing relationship 

that the LimitedBorrowingPeriod constraint above is among the operational ways to 

achieve it. The NoLostCopies constraint is another way to make the goal operational. 

The description above would thus be complemented as follows: 

Systemgoal Maintain [ RegularAvailability] 

Concerns. . . 

FormalDef . . . 

OperationalizedBy LimitedBorrowingPeriod, NoLostCopies 

The Operationahzation meta-relationship propagates all features of the GOAL 

meta-concept to the CONSTRAINT meta-concept (see Fig. 2). Thus, constraints 

can be AND/OR-reduced in the same way that goals are; they can be conflicting, 

may have assigned priorities and may be wished; they concern objects and are 

classified by pattern and by category. Moreover, conflicts and categories are propa- 

gated through Operationalization links at the domain level as well; that is, constraints 

that operationalize conflicting goals are conflicting as well, a SatisfactionGoal is 

operationalized into a SatisfactionConstraint, and so forth. 

A goal can be achieved provided the constraints operationalizing it can be met. 

To meet these constraints, appropriate restrictions may be required in turn on the 

actions and objects already identified; new actions and objects might also be required. 

Also, the possible agents that are able to enforce the constraints through these 

restricted and/or new actions need to be identified before most appropriate ones 

can be selected. The Ensuring and Responsibility meta-relationships are introduced 

for that purpose. (See Fig. 2.) 

To introduce the definition of Ensuring, it is important to recognize that constraint 

satisfaction may require: 

l the strengthening of Preconditions, Triggerconditions, and PostConditions of 

several actions, and of Invariants of several objects, 

l the acquisition of new specific actions and objects, 

l the acquisition of new specific features for actions and objects already acquired. 
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To make that point more precise, consider the SafeTransportation goal intro- 

duced in Section 2.7. For a lift system, this goal might be operationalized by the 

DoorsClosedWhileMoving constraint formally defined by 

(Vl: Lift, d: Doors, f, f’: Floor) 

PartOf (d, 1) j 0 [LiftAt (1, f) A OLiftAt (I, f’) A f’# f j 

d.State = ‘closed’ A O(d.State = ‘closed’)] 

Assume the specifications of the GoToFloor and OpenDoor actions have already 

been acquired under the following form. 

Action GoToFloor 

Input Lift {arg: 1}, Floor {arg: f, f’}, Passenger {arg: p}; 

Output LiftAt 

Precondition LiftAt (1, f) A Requesting (p, f’) A f’ # f 

PostCondition LiftAt (1, f’) 

Action OpenDoors 

Input Lift {arg: l}, Doors {arg: d}; 

Output Lift {res: 1}, Doors {res: d} 

Precondition PartOf (d, 1) A d.State = ‘closed’ 

PostCondition d.State = ‘open’ 

To meet the DoorsClosedWhileMoving constraint above, one can make the following 

derivations. 

(i) From the formal expression of the constraint and the pre- and postconditions 

of the GoToFloor action, one derives that the predicate d.State = ‘closed’ 

must hold both in the initial and final states where GoToFloor is applied; a 

strengthening of the precondition and postcondition of GoToFloor with the 

assertion 

d.State = ‘closed’ 

is thus required. 

(ii) From the formal expression of the constraint and the pre- and postconditions 

of the OpenDoors action, one derives that the antecedent in the constraint 

must be false in the initial states of OpenDoors (because the consequent is 

then false), that is, the predicate LiftAt (1,f) must hold both in the initial 

and final states where OpenDoors is applied; a strengthening of the precondi- 

tion and postcondition of OpenDoors with the assertion 

LiftAt (1, f) 

is thus required. 

(iii) From the formal expression of the constraint, one derives that another action 

is required to yield transitions from states such that l(d.State = ‘closed’) to 

states such that d.State = ‘closed’-the latter conditions define a precondition 

and a postcondition for a new action that might be named CloseDoor. 
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The Ensuring meta-relationship thus has the following meta-attributes attached 

to it: StrengthenedPre, StrengthenedTrig, StrengthenedPost, and Strengthenedlnv. 
Their values at the domain level represent constraint-oriented preconditions, trigger 

conditions, postconditions, and invariants, respectively. Since a constraint can in 

general be met by several alternative combinations of strengthenings, Ensuring is 

an AndOr relationship. It is defined between the ACTION or OBJECT meta- 

concepts on one hand and the CONSTRAINT meta-concept on the other. The 

precise definition is as follows. 

Ensuring (act, C) 

iff the application of action act under strengthened conditions 

Pre A StrengthenedPred, Trig A StrengthenedTrig, Post A 
StrengthenedPost guarantees that constraint C holds in the 

initial and final state of act. 

Ensuring (obj, C) 
iff the restriction of ob states to the strengthened condition 

Inv A StrengthenedInv guarantees that constraint C holds 

in the initial and final states of any action on ob. 

The combination of Operationalization and Ensuring links at the domain level 

provides explanations about the rationale of requirements on actions and objects 

with regard to system-level or organizational goals; it can be seen as a refinement 

of the notion of operationalization used in explanation-based learning [ 13,361. 

Constraints operationalizing goals must be assigned to agents that will be in 

charge of the strengthened actions. This is captured by the Responsibility meta- 

relationship. Since a constraint can in general be assigned to several alternative 

agents, Responsibility is an AndOr relationship. It is defined by 

Responsibility (ag, C) 
iff agent ag is among the candidates to enforce constraint C 

through some restricted behavior prescribed by Ensuring links. 

The Responsibility relationship is more precisely characterized through the follow- 

ing Responsibility Axiom which is a strengthened version of the Performance Axiom 

in Section 2.6. 

(Vag: AGENT, c: CONSTRAINT) 

Responsibility (ag, c) + 
(Vact: ACTION) 

Ensuring (act, c) A Performs (ag, act) + 
{?Pre A StrPre, !Trig A StrTrig} [ ag, act] {Post A StrPost} 

Constraints may thus restrict the behavior of responsible agents, in a way similar 

to [14] (note, however, that no distinction is made in [14] between nonoperational 

goals and operational constraints). 
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Beside the fact that a constraint is assigned to exactly one agent in each alternative 

assignment considered (see the cardinality in Fig. 2), Responsibility is subject to 

two other meta-constraints: 

(Vag: AGENT, c: CONSTRAINT, act: ACTION) 

Performs (ag, act) A Ensuring (act, c) =3 Responsibility (ag, c) 

(Vag: AGENT, c: CONSTRAINT, act: ACTION) 

Responsibility (ag, c) A Ensuring (act, c) 3 Capability (ag, act) 

The Responsibility meta-relationship has optional meta-attributes like the Cost 

for the agent to take responsibility over the constraint, the Reliability of the agent 

with respect to the constraint, and the Motivation of the agent to control the system 

behavior so as to meet the constraint. Values for such meta-attributes at the domain 

level are used in tactics for selecting among several alternative responsibility 

assignments. 

For example, the EnoughCopies goal that appeared as a reduction of the Book- 

RequestSatisjed goal in Section 2.7 might be operationalized through two con- 

straints: HighCoverage and LimitedBorrowingAmount. The formal definition of the 

latter is 

(V lib: Library, bor: Borrower, bc: BookCopy) 

0 [# {bc 1 Borrowing (bor, bc) A bee lib} c Max (bor)] 

% Max (bor) defines an upper limit for the number of borrowed copies as a function on 

borrowers % 

Following a same line of reasoning as above, one may derive a strengthened 

precondition to be attached to the Ensuring instance linking that constraint and the 

Checkout action; after determination of responsibility links and acquisition of 

values for the Cost, Reliability, and Motivation attributes, one might get the following 

requirements fragment: 

Constraint Maintain[LimitedBorrowingAmount] 

Operationalizes EnoughCopies 

FormalDef . . . (see above) 

EnsuredBy 

Checkout {StrengthenedPre: 

#{bc 1 Borrowing (bor, bc)} < Max (bor)} 

UnderResponsibilityOf 

Borrower {Reliability: low, Motivation: low, Cost: low} 

or UnderResponsibilityOf 

Staff {Reliability: high, Motivation: high, Cost: low} 

From this fragment one would most probably decide that the Performs link for the 

Checkout action will be assigned to StafS rather than Borrower; the decision can 

be based on negotiation or use of tactics, see Step 7 in Section 3. 
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The difference between the Responsibility and Performs meta-relationships is 

important. Responsibility is defined between agents and constraints. It captures 

alternative assignments of constraints to agents. On the other hand, performance is 

defined between agents and actions. It captures the decisions of actual assignment 

of actions to agents; as a consequence, additional restrictions are imposed upon 

the agent’s behavior, that is, the strengthenings of the conditions. 

The CONSTRAINT meta-concept has two specializations (not represented in 

Fig. 2). HardConstraints may never be violated; SoftConstraints may be temporarily 

violated. For example, “no planes on same portion of air corridor” is a Hurd- 

Constraint. Another example of a meta-constraint built into the meta-model is that 

“domain-level constraints in the SafetyConstraint category always are Hard- 

Constraints”. 

SoftConstraints need specific actions to restore them. This knowledge is captured 

in the meta-model by introducing the Restoration meta-relationship, defined by 

Restoration (act, C) 

iff action act contributes to re-establishing soft constraint C. 

Restoration has a meta-cardinality 1: N for the RestoredBy role; every soft constraint 

must have at least one restoration action associated with it. This meta-constraint is 

a source of acquisition of new requirements fragments; e.g., the IssueReminder 

action introduced in Section 2.5 was acquired from the fact that the Limited- 

BorrowingPeriod constraint shown at the beginning of this section is declared as a 

SoftConstraint. 

2.9. Other features of the KAOS meta-model 

The KAOS meta-model incorporates other meta-concepts and meta-relationships 

that are not directly related to the goal-directed strategy discussed in Section 3. 

Here is a short list of them. 

l The Structuring and Composition meta-relationships are used to structure 

complex objects and complex actions into components according to various 

structuring modes. 

l The SCENARIO meta-concept is linked to the ACTION meta-concept through 

a Combination meta-relationship to support sequential, parallel, alternative, 

and repetitive compositions of scenarios; the latter can then be discussed with 

clients to validate requirements. 

l The View ternary meta-relationship links agents, concepts (playing the role of 

muster concept), and concepts (playing the role of facet concept). This allows 

domain-level concepts to be visible by agents under restricted facets only; 

conflicting views can also be thereby recorded for later resolution. For example, 

the ProceedingsCopy entity can be seen by the Borrower agent as a Borrowable- 

Proceedings entity structured as a pair (title, set of papers) whereas it could be 
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seen by the stafS agent as a LocatableProceedings entity structured as a triple 

(title, date, location in shelves). 

l The Mapping meta-relationship is a reflexive one on OBJECT or ACTION; it 

is used to specify requirements about the links between the objects and actions 

in the automated part of the composite system and the corresponding objects 

and actions in the “manual” part of it. For example, the constraint of consistency 

between the library database and the physical library is captured as follows. 

Entity LibraryDatabase 

ISA Library 

% inherits features of Library, e.g., the available attribute, invariants, etc. % 

. . . 

% specific features % 

SoftConstraint Maintain [ SameLibraries] 

InstanceOf ConsistencyConstraint 

FormalDef 

(Vlibdb: LibraryDatabase, lib: Library) 

Mapping(libdb, lib) + 

0 [libdb.available = lib.available A 

libdb.checkedOut = lib.checkedOut A 

libdb.lost = lib.lost] 

For more details, see [46]. 

3. A goal-directed acquisition strategy 

In a learning-by-instruction framework [4,8,43], requirements about the com- 

posite system are acquired as domain-specific instances of elements of the conceptual 

meta-model. Such instances must satisfy the meta-constraints specified once and 

for all-like, e.g., the cardinality constraints on meta-relationships (see Fig. 2) or 

the various meta-constraints made explicit all along Section 2. The requirements 

gradually acquired are expressed in the acquisition language which closely reflects 

the structure of the meta-model, as suggested in the examples introduced in 

Section 2. 

Acquisition processes are guided by strategies and domain models. Strategies define 

specific ways of traversing the meta-model graph to acquire instances of its various 

nodes and links. Each step in a strategy is itself composed from finer steps like 

question-answering, input validation against meta-constraints, application of tactics 

to select preferred alternatives for the various AndOr meta-relationship instances 

that arise during acquisition, deductive inferencing based on property inheritance 

through specialization links, or analogical reuse of domain models. Domain models 

are described in the same acquisition language as requirements are. They are 
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organized as ISA inheritance hierarchies in the domain knowledge base; one finds 

various levels of specialization of goals, constraints, objects, actions, and agents 

involved in resource management systems, transportation systems, communication 

systems, and so forth. Ultimately the acquisition assistant’s knowledge base should 

include a rich variety of domain models, strategies, and tactics. During the acquisition 

process, the critical decisions are made by the analyst based upon the knowledge 

and guidance provided by the assistant. 

The strategies considered so far differ by the meta-concept(s) around which they 

are centered; goal-directed, view-directed, and scenario-directed strategies have 

been identified. The strategy of interest in this paper is the goal-directed one. It is 

made of the following steps. (Upper case letters are used to refer to meta-level 

concepts.) 

(1) Acquisition of Goal structure and identification of Concerned Objects. 

(2) Preliminary identification of potential Agents and their Capabilities. 

(3) Operationalization of Goals to Constraints. 

(4) Refinement of Objects and Actions. 

(5) Derivation of strengthened Actions and Objects to Ensure Constraints. 

(6) Identification of alternative Responsibilities. 

(7) Assignment of Actions to responsible Agents. 

In this strategy, the steps are ordered but some of them may overlap (notably, 

Steps 1 and 2). Moreover, backtracking is possible at every step. For example, 

information acquired during the responsibility identification step (Step 6) may 

induce changes to the results of the operationalization step (Step 3). The changes 

made to the latter step must then be propagated through the succeeding steps. 

To understand the proposed strategy, we must address three questions for each 

step: What tasks are done during the step? Why are those tasks necessary? How are 

the tasks carried out? We must also identify which components of the meta-model 

are involved in the step. (In Fig. 2, we can trace the acquisition path from the GOAL 

node back through the meta-model graph.) 

Step 1. Acquire goal structure and identify concerned objects 

What 

The system goals given by the client are incrementally refined into an overall 

goal/subgoal structure-an AND/OR graph. In other words, instances of the GOAL 

meta-concept and Reduction meta-relationship are acquired under the constraints 

specified at the meta-level. The leaf goals of this structure are primitive goals which 

can be made operational through constraints in Step 3. A portion of a possible goal 

structure related to borrower goals in a library system is visualized in Fig. 3. 

The elaboration of the goal structure consists of three substeps: 

(i) Identify SystemGoals, their category, and their pattern, and associate them 

with the parent goal(s) they Reduce; formalize refined subgoals according 
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Fig. 3. Portion of a Goal structure for borrower goals. 

A = OR reduction links 

A = AND reduction links 

= conflict 

. . . 

0 = goal 0 = operofionalizable goal 

(ii) 

(iii) 

to their specified pattern as soon as they become concrete enough. (In general 

abstract goals near roots of trees cannot be formalized.) 

As the reduction proceeds, identify the objects concerned by the goals and 

elaborate a preliminary definition of their features-e.g., basic domain- 

specific attributes that appear in goal descriptions, preliminary invariants to 

be attached to them. 

Identify possible conflicts among system goals; that is, define instances of 

the Conjlict meta-relationship. For each conflict being detected, assign 

priorities to the conflicting goals. (Those priorities define a partial order on 

goals.) 

The three substeps above are not sequential; they are intertwined. When conflicts 

are identified, it may be necessary to find an alternative reduction that has fewer 

conflicts. As a result, new goals may be identified. 

The reduction of system goals into primitive goals is necessary because global 

goals usually cannot be directly translated into constraints; only simple, primitive 

goals can be operationalized. Moreover, the system-wide goal structure records the 

history of the acquisition process. This structure is important because: 

l it ties specification components to their rationale (i.e., goal descriptions); 

l it will be used in case negotiation is required to resolve goal conflicts [39]; 

l it can be used to replay some part of the acquisition process in other circum- 

stances where similar portions of the goal structure are recognized. 



Goal-directed requirements acquisition 33 

The preliminary identification and characterization of objects from goals ensures 

that only those objects which are relevant to goals are under consideration. 

How 

The identification and reduction of goals is a nontrivial, but critical, task. Analysts 

and clients must interact a lot at this stage. The following tactics help the analyst 

to refine the goal structure. 

1. Reuse relevant generic goals and reductions by specializing/instantiating their 

description 

Generic goals are retrieved in the domain knowledge base; the indexing scheme 

for retrieval is based on goal category, goal pattern, and ISA links between the 

Concerned objects already identified and their generalizations in the domain models 

available. The retrieved goals and their reductions are then considered for specializ- 

ation and adaptation to the specific composite system being modeled. 

For example, the BookRequestSatisjied introduced in Section 2.1 was handled in 

that way. This goal was classified in the SatisfactionGoal category and was declared 

to have an Achieve pattern; the Concerned Borrower and Book objects were declared 

to be ISA specializations of the generic User and Resource objects in the resource 

management domain model, respectively. The following requirements fragment is 

then retrieved in the domain knowledge base on that basis: 

SystemGoal Achieve [ ResourceRequestSatisfied] 

InstanceOf SatisfactionGoal 

Concerns User, Resource, Using,. . . 

FormalDef 

(Vu: User, res: Resource, rep: Repository) 

Requesting (u, res) A InScope (res, rep) + 

O(3ru: ResourceUnit ) (Unit (ru, res) A Using (u, ru)) 

ReducedTo EnoughUnits, UnitsAvailable, AvailabilityNotified 

The generic concept names are then instantiated to their library-specific counter- 

part, and the generic InScope predicate has to be specialized in an appropriate 

fashion to the library-specific context. Note that a reduction into three generic 

subgoals is also proposed. The UnitsAvailable subgoal and its formal expression 

could even be more specific if the Book concept is declared as an ISA specialization 

of a more specific concept than the Resource concept, namely, the Returnable- 

Resource concept; the UnitsAvailable subgoal becomes RegularAvailability in this 

case, and the formal expression of that goal in Section 2.7 is obtained as a straight- 

forward instantiation of it. (The reader should be convinced that the same process 

can be replayed for the BedRequestSatisJed goal in a hospital management system.) 

The reuse process is under control of the analyst, of course. At any time it is 

possible to adapt proposed goals, to reject them or to provide new specific ones. 

The more abstract and general the reused concept description is, the more important 
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the required adaptation might be. For example, the AvaiZubihtyNotijied goal in 

Section 2.7 could be seen as an adapted specialization of the following very abstract 

goal. 

Systemgoal Achieve [ UserInformedOfStateChange] 

InstanceOf InformationGoal 

Concerns User, SystemComponent 

FormalDef 

(Vu: User, camp: SystemComponent) 

[P(comp) A l lP(comp) + OKnows (u, camp)] 

Other tactics can be used during acquisition of the goal structure such as the 

following ones. 

2. Stop reducing a goal when it can be operationalized 

The sooner a goal description can be translated into an operational form, the 

better; formal reasoning can then take place to ensure constraints through appropri- 

ate actions and to assign responsibilities to agents. (Remember that operational 

constraints can themselves be reduced.) For example, the BookRequestSatisfied goal 

was seen in Section 2.7 to require further reduction as it could not be operationalized; 

its RegularAvailability subgoal requires no further reduction because it can be 

operationalized into the LimitedBorrowingPeriod constraint defined in Section 2.8. 

3. Reduce goals into subgoals so that the latter require cooperation of fewer potential 

agents to achieve them 

This tactics is the basic one to ensure that the reduction process makes progress 

towards a stage where all goals are operationalizable. Its use requires that some 

progress has already been made in Step 2 since information about potential agents 

and their capabilities need to be available. Thus, Step 1 and Step 2 are working like 

coroutines. 

4. Choose an alternative reduction that minimizes costs 

Costs are taken in a broad sense here (e.g., cost of achieving a goal by means of 

a human agent versus cost of achieving it by means of a program to be developed 

or to be acquired for that purpose, cost of purchasing the resources concerned by 

the goal, etc.). When it can be anticipated that a goal will be too costly to achieve, 

it might be necessary to find cheaper alternative reductions. The problem with this 

heuristic is that cost evaluation is a very complex task; moreover it is normally 

handled later when Responsibilitycosts are evaluated, prior to assigning Performs 

links to agents. Nevertheless, we don’t need complex evaluation functions to detect 

goals which appear from the beginning to be very costly. 

For example, the AsManyCopiesAsNeeded subgoal introduced in Section 2.7 as 

one alternative reduction of the BookRequestSatis$ed goal would be rejected using 

this tactics-at least in the case of large libraries with many potential borrowers. 
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5. Choose an alternative reduction with as few conflicts as possible 

6. Resolve conflicts according to the relative priority among goals 

The conflicts with the highest priority goals should be resolved first. Higher priority 

goals should obviously be favored. For example, the LongBorrowingPeriod goal 

described in Section 2.7 was seen to conflict with the RegularAvailability goal; the 

latter is of much higher priority so that it is most likely the one to be retained. (A 

fair value for the number N of weeks before return might emerge as a compromise 

during negotiation [39].) 

As mentioned before, the various objects Concerned by goal descriptions are 

given partial characterizations. For example, the RegularAvailability goal concerns 

the Library object (see Section 2.7); moreover an available attribute of this object 

appears in the expression of the goal. At this stage one might recognize the Library 

object as being an instance of the ENTITY meta-concept, introduce an additional 

checkedout attribute and write a partial invariant “lib = lib.available u 

lib.checkedOut”; the lost attribute might be introduced later in Step 3 when the 

constraint Avoid [LostCopies] is acquired as one of the ways to operationalize the 

RegularAvailability goal. Similarly, the Borrowing object is concerned by the BookRe- 

questsatisfied goal; it meets the criterion for being a RELATIONSHIP instance 

(see Section 2.4), and the objects it links appear from the expression of the BookRe- 

questsatisfied goal-namely, Borrower and BookCopy. A partial invariant recognized 

at this stage might be 

Borrowing (bor, bc) + bc E lib.checkedOut. 

In case generic goals have been reused according to the first tactics above, the 

features of the generic objects Concerned by these goals are specialized/instantiated 

correspondingly. For example, the generic Repository and Using objects are instanti- 

ated to Library and Borrowing, respectively; the partial invariants of the Library 

and Borrowing objects suggested above can then be obtained as instantiations of 

the following generic invariants: 

rep = rep.available u rep.used 

Using (u, ru) 3 ru E rep.used 

(In these assertions, rep.available and rep.used are generic attributes of the Repository 

entity; their domain is known to be “SetOf [ResourceUnit]“.) 

Step 2. Identify potential agents and their capabilities 

What 

A preliminary identification is made of the agents that could be available in the 

composite system, together with their category (human agent, physical device, 

program) and the actions they are capable of performing on the objects involved 

in goal descriptions. In other words, goal-directed instances of the AGENT meta- 

concept, Capability meta-relationship, and ACTION meta-concept are acquired 
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under the constraints specified at the meta-level. For each action appearing in the 

capability list of an agent, a pair of basic precondition and postcondition is specified; 

this pair must capture the elementary state transitions produced by application of 

the action on the objects identified in Step 1. 

Such preliminary information about agents potentially available is needed to 

determine when the reduction process can terminate (Step 1) and to guide the 

operationalization process (Step 3). 

How 

The various objects appearing in the goal descriptions elaborated in Step 1 are 

reviewed to determine those which can control state transitions of the others. For 

each agent obtained thereby, the actions corresponding to these state transitions 

are identified and the elementary pre- and postconditions describing these transitions 

are written down. For example, the Borrower agent is identified from the description 

of the BookRequestSatisJied goal introduced in Section 2.7. This object is an agent 

because it can control state transitions of the Borrowing object appearing in the 

forma1 expression of that goal; the two possible transitions are “Borrowing+ 

iBorrowing” and “iBorrowing + Borrowing”, from which Return and Checkout 

actions are identified together with their elementary pre- and postcondition (e.g., 

Borrowing (bor, bc) and iBorrowing (bor, bc) for Return). Similarly, the Passenger 

object referenced in the SafeTransportation goal is identified as an agent because 

it can control transitions such as being in and then out of the lift or getting the 

doors open and then closed. 

Additional agents and capabilities are acquired by interaction between the clients 

and the analysts. All the agents eventually required in the composite system are not 

necessarily identified at this stage, however. For example, a Counter device agent 

could be required to ensure that no book copy is improperly removed without being 

checked out; the need for such an agent might arise later in Step 6 when Responsibility 

links are identified for the Avoid [LostCopies] constraint operationalizing the 

RegularAvailability goal. 

Also remember that agents can be organized into specialization hierarchies like 

any other domain-level concepts. A specialized agent then inherits all capabilities 

of the more general agents it specializes; in addition it may have specific capabilities 

(e.g., the ResearchStufS agent has all capabilities of the Stu# agent plus specific 

ones such as ordering new book copies). 

The following tactics may be helpful in identifying agents and capabilities. 

1. Reuse relevant generic agents and capabilities by specializing/instantiating their 

description 

Generic agents are retrieved in the domain knowledge base; the agents considered 

are those objects Concerned by the generic goals retrieved in Step 1 which are of 
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the AGENT meta-type. The retrieved agents and the generic actions they are capable 

of are then considered for specialization and adaptation to the specific composite 

system being modeled. 

For example, in case the generic ResourceRequestSatisJied goal has been reused 

in the more specific context of the ReturnableResource concept, the User agent is 

retrieved with the GetResource and ReturnResource actions from its capability list. 

The following partial description of, e.g., the GetResource action is then proposed 

for instantiation and specialization: 

Action GetResource 

Input ResourceUnit {Arg: ru}, 

Repository {Arg: rep}, User {Arg: u}; 

Output Repository {Res: rep}, Using 

Precondition ru E rep.available 

PostCondition 

l(ru E rep.available) A ru E rep.used A Using (u, ru) 

The process of instantiating, specializing, and adapting generic descriptions follows 

the same line as suggested for Step 1. The outcome in this simple case is the 

description of the Checkout action given in Section 2.5. 

2. For each action in the capability list of a human agent, consider the relevance of 

an automated agent with a corresponding action in its capability list 

This tactics is the basic one for introducing new devices and programs as candi- 

dates in the space of alternative agent assignments (see Step 6). If the introduction 

of an automated action appears to be relevant, this action and the objects involved 

in it can be defined as ISA specializations of the action and objects already defined; 

in particular, pre- and postconditions on the corresponding image objects are thereby 

inherited as features of the automated action. Instances of the Mapping 

meta-relationship must then be introduced to link concepts and their automated 

counterpart. (See Section 2.9.) Most often new goals have then to be introduced; 

such goals are in the ConsistencyGoal category. For example, a CheckOutTransaction 

action might be identified as a possible capability of an automated LibraryDatabase- 

Manager agent; it is defined as an ISA specialization of the Checkout action. 

Corresponding image objects are then identified and defined in a similar way (e.g., 

the LibraryDatabase entity introduced in Section 2.9). An object and its correspond- 

ing image must both be instances of the OBJECT meta-type; however, they need 

not necessarily be instances of the same specialized meta-type (e.g., the automated 

counterpart of the Borrower agent will be a BorrowerRecord entity which will record 

relevant information about borrowers). One of the ConsistencyGoals required in 

this example should concern the Library and LibraryDatabase entities; this goal is 

operationalized in the Maintain [ SameLibraries] soft constraint given in Section 

2.9. The use of this tactics allows one to avoid confusions between the physical and 
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automated parts of the composite system; such confusions are frequently made in 

specifications [49]. 

Step 3. Operationalize goals into constraints 

What 

The leaf goals in the goal structure elaborated in Step 1 are transformed into 

system objectives formulated in terms of objects and actions available to some agent 

identified in Step 2. In other words, instances of the CONSTRAINT meta-concept 

and Operationalization meta-relationship are elaborated under the constraints 

specified at the meta level. A constraint definition can lead to the identification of 

new objects and actions involved in the constraint. 

The system objectives need to be made operational in order to (i) derive new or 

strengthened actions and objects which will support them (Steps 4 and 5) and (ii) 

assign responsibilities (Steps 6 and 7). 

How 

Like the elaboration of goals, the transformation of goals into constraints is a 

nontrivial task. Several alternative operationalizations can implement the same goal, 

just like several alternative programs can implement the same specification. In such 

situations, a best operationalization should be retained. The following tactics may 

be used to guide the analyst in carrying out the transformation. 

1. Reuse relevant generic operationalizations by specializing/instantiating their 

description 

Generic constraints are retrieved in the domain knowledge base; the constraints 

considered are those which operationalize the generic goals retrieved in Step 1. The 

retrieved constraints and their reduction (if any) are then considered for specializ- 

ation and adaptation to the specific composite system being modeled. The process 

is similar to the one suggested in Steps 1 and 2. 

For example, the Maintain [ LimitedBorrowingPeriod] constraint was seen in Sec- 

tion 2.8 to operationalize the RegularAvailability goal. This constraint could have 

been obtained by instantiation of the following constraint found in the domain 

knowledge base to operationalize the UnitsAvailable generic goal-at the specializ- 

ation level where the ReturnableResource concept is defined. 

SoftConstraint Maintain [ LimitedPeriodOfUse] 

FormalDef 

(Vu: User, ru: ResourceUnit) 

q [Using (u, ru) A l iUsing (u, ru) * 

0 s N,iUsing (u, ru)] 
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As another example, consider the AvailabilityNotiJied goal introduced in Section 

2.7. This goal is an instantiation of the following generic goal: 

Systemgoal Achieve [AvailabilityNotified] 

InstanceOf InformationGoal 

Concerns User, Repository 

FormalDef 

(Vrep: Repository, u: User, 

res: ReturnableResource, ru: ResourceUnit) 

Requesting (u, res) A 

l l(3ru: ResourceUnit) (Unit (ru, res) A ru E rep.available) A 

(3ru: ResourceUnit ) (Unit (ru, res) A ru E rep.available) + 

O&rows (u, rep.available) 

This goal is known in the domain theory to be operationalizable into the following 

constraint: 

SoftConstraint Achieve [UserNotified] 

InstanceOf InformationGoal 

Concerns User, Repository 

FormalDef 

@rep: Repository, u: User, 

res: ReturnableResource, ru: ResourceUnit) 

Requesting (u, res) A 

l i(gru: ResourceUnit) (Unit (ru, res) A ru E rep.available) A 

(3ru: ResourceUnit) (Unit (ru, res) A ru E rep.available) e 

O(3ntu: NoticeSentToUser) 

[Occurs (ntu) A ntu = (res, u, ‘message’)] 

In this constraint, NoticeSentToUser is an event with appropriate attributes that 

captures the required user notification. (This constraint exhibits a standard pattern 

of operationalizing Knows predicates.) The instantiation of the generic User, Reposi- 

tory, ReturnableResource, and ResourceUnit concepts to Borrower, Library, Book, 

and BookCopy, respectively, yields an instantiated constraint proposed to the analyst 

for possible adaptation. 

A more general form of reuse could be supported at the process level. The 

knowledge base might contain a set of domain-specific operationalization rules that 

could be applied for a variety of similar goals [36]. The operationalization process 

would then be replayed as done in some derivational analogy systems [44]. This 

promising approach has not been explored yet. 

2. Use goal reduction tactics transposed to constraints 

As seen in Section 2.8, constraints are operational system objectives; the Operation- 

alization meta-relationship propagates all features of the GOAL meta-concept to 
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the CONSTRAINT meta-concept-i.e., Reduction, Conflict, Category, etc. Some 

commonsense tactics used in Step 1 can thus be used for goal operationalization 

and constraint reduction, e.g., choose an alternative operationalization or reduction 

that minimizes Ensuring costs, choose an alternative operationalization or reduction 

with as few conflicts as possible, and so forth. 

3. Choose an alternative operationalization that minimizes the need for restoration 

actions 

If the soft constraints chosen to operationalize a given leaf goal need complex 

restoration actions, then an alternative way of operationalizing the leaf goal should 

be considered-an alternative where the constraints are violated in fewer situations 

or where less or simpler restoration actions are required. 

Step 4. Refine objects and actions 

What 

The constraints obtained in Step 3 can involve new objects and new actions; 

entities, relationships, events, agents, and state transitions not identified in Steps 1 

and 2 can emerge from the operational formulations. Also, new features of concepts 

already identified can be referred to (e.g., new domain-specific attributes of objects). 

In this step the analyst defines the objects and actions newly identified and completes 

the description of objects and actions already identified; new domain-specific 

attributes and new elements of invariants and pre- and postconditions are thereby 

introduced. 

The refined descriptions of objects and actions form the basis for the subsequent 

acquisition steps. Invariants and pre- and postconditions will be strengthened to 

ensure the constraints. They are also needed to identify the Responsibility links. 

How 

The process of acquiring additional requirements fragments about objects and 

actions from constraints is similar to the process of acquiring initial ones from goals, 

see Steps 1 and 2. 

For example, the Achieve [ UserNoti$ed] constraint above once instantiated to 

Achieve [ BorrowerNotified] yields an implication whose consequent is 

(3ntb: NoticeSentToBorrower) 

[Occurs (ntb) A ntb = (b, bor, ‘message’)] 

A new object of EVENT meta-type is thus involved. A preliminary description of 

this event might include an invariant capturing its condition of occurrence. According 

to a meta-constraint on the EVENT meta-type, a new action must be acquired 



Goal-directed requirements acquisition 41 

therefrom-that is, the SendAvailabilityNotice action having NoticeSentToBorrower 

as output; a pair of elementary pre- and postconditions for that action should thus 

be acquired. The acquisition process can be based on reuse of generic descriptions, 

as shown before. 

Step 5. Derive strengthened actions and objects to ensure constraints 

What 

The descriptions of actions and objects completed in Step 4 do not necessarily 

guarantee that the constraints obtained in Step 3 will be met. In this step, strengthened 

actions and objects are derived to ensure that all required constraints are satisfied. 

The strengthenings are put on preconditions, postconditions, and invariants; trigger 

conditions are introduced for some actions; new actions can still be introduced to 

yield state transitions involved in the formulation of constraints; restoration actions 

are defined for soft constraints. In other words, instances of the Ensuring meta- 

relationship are elaborated under the meta-constraints specified in the meta-model; 

they link actions and objects to the constraints they Ensure. Note that Ensuring is 

an AndOr relationship (see Fig. 2 and Section 2.8); as a frequent case, a constraint 

can be Ensured by a combination of actions and objects in the physical subsystem 

or alternatively by some counterpart of this combination in the automated sub- 

system. 

Ensuring links are necessary to identify which actions and objects are going to 

contribute to the satisfaction of which constraint and to show how those actions 

and objects are contributing to constraint satisfaction. Action strengthening has an 

impact on the possible behavior of the agent allocated to the action; the information 

acquired in this step is therefore taken into account in the next steps when 

responsibilities are identified and assigned. 

How 

Trigger conditions and strengthenings on pre-, postconditions, and invariants are 

derived from the formal expression of constraints. Each action is matched against 

each constraint to check whether the state transitions defined by the action meet 

the constraint. The match may reveal subsidiary conditions for the action to meet 

the constraint; if this is the case, these conditions are taken as strengthenings on 

the action. The principle is similar for objects and their invariants. To make this 

process more precise, we illustrate it by giving some inference rules for three general 

patterns of constraints. (A full calculus for deriving strengthenings is out of the 

scope of this paper.) 

Let Cons denote the pattern of the constraint, Pre and Post the patterns of the 

action’s pre- and postcondition, StrPre and StrPost the required strengthenings on 
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Pre and Post, respectively, and Trig the required trigger condition (if any). The 

rules of inference are the following. 

Cons: q [C A (P, A OP, * Q, A 0 Qz)], Pre: P,, Post: P2 

StrPre: Q, , StrPost: Q2 

Cons: q [C A (P, A OP, 3 Q1 A OQJ], 

Pre: P with P +l Q, or Post: Q with Q +lQ, 

StrPre: 7 P, or StrPost: 7Pz 

Cons: OP, Pre: P,, Post: P,,i[P A P, + O(P A PJ] 

StrPre: Q,, StrPost: Qz such that P A P, A Q, + O(P A Pz A QJ 

Cons: l P, A P2 e OQ, Post: Q 

Trig: l P, A P2 

The first rule was applied to derive the strengthenings on the GoToFloor action 

from the DoorsClosedWhileMoving constraint in Section 2.8. The second rule was 

applied to derive the strengthenings on the OpenDoors action from that constraint. 

The third rule was applied to derive the strengthening 

#{bc 1 Borrowing (bor, bc)} < Max(bor) 

on the precondition of the Checkout action to ensure the LimitedBorrowingAmount 

constraint also formalized in Section 2.8. The fourth rule of inference is used to 

derive the trigger condition 

l l(3bc: BookCopy) (Copy (bc, b) A bcE lib.available) A 

(3bc: BookCopy )(Copy (bc, b) A bcE lib.available) A 

Requesting (bor, b) 

to be attached to the SendAvailabilityNotice action revealed in Step 4 above; this 

trigger condition is derived from the Achieve [ BorrowerNotijed] instantiation of the 

Achieve [ UserNotzjied] constraint introduced in Step 3 above. 

New actions to restore soft constraints can be derived using the same general 

principle. (E.g., the IssueReminder action introduced in Section 2.5 is acquired to 

restore the LimitedBorrowingPeriod constraint; the RectifyLibraryDatabase action 

mentioned in Section 2.3.2 is acquired to restore the Maintain [SameLibraries] 

constraint introduced in Section 2.9.) 

Tactics can also be used to help in the derivation of Ensuring links. 

1. Reuse relevant generic actions and strengthenings by specializing/ instantiating 

their description 

Generic Ensuring links are retrieved in the domain knowledge base; the links 

considered are those which ensure the generic constraints retrieved in Step 3. The 

retrieved links and their associated strengthenings are then considered for specializ- 
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ation and adaptation to the specific composite system being modeled. The process 

is similar to the one suggested in Steps l-3. 

2. Choose an alternative Ensuring link that minimizes the restrictions on the 

Ensuring actions 

Strengthened conditions defined on actions restrict the agents’ behavior (see the 

Responsibility axiom in Section 2.8); therefore, it is often preferable to define an 

alternative Ensuring structure which imposes as few restrictions as possible. 

Step 6. Identify alternative responsibilities 

What 

In this step the analyst acquires the AndOr Responsibility structure linking the 

agents to the constraints. For each constraint obtained in Step 3, the various possible 

Responsibility links are identified; the identification is based on the capabilities of 

the agents determined in Step 2. The acquisition of Responsibility links includes the 

determination of values for the Cost, Motivation, and Reliability attributes attached 

to the Responsibility meta-relationship. The various automation alternatives being 

considered are thus made explicit at this stage. PrivateGoals and Wish links (if any) 

are also acquired for the human agents identified in Step 2. 

The information acquired in this step is needed in the next step to make the right 

decisions about which processor (human agent or program) to assign to which 

action-so that all constraints operationalizing the system goals are guaranteed to 

be met. 

How 

The acquisition is guided by meta-constraints on the Responsibility meta-relation- 

ship. (See Section 2.8.) A constraint is assigned to one agent in each alternative 

assignment considered. An agent is a possible candidate provided (i) the actions 

Ensuring the constraint are in the capability list of the agent, and (ii) the agent can 

behave according to the requirements put on the actions-precondition, postcondi- 

tion, trigger condition, and their respective strengthenings attached to Ensuring 

links. (In other words, the Responsibility axiom must be satisfied.) 

PrivateGoals and Wish links are acquired by interaction between the analysts 

and the clients. Values for the Cost, Motivation, and Reliability meta-attributes 

attached to Responsibility links are also estimated through such interactions; cost 

estimation models can be integrated here. In general, costs will depend upon both 

the agent and the actions being involved to meet the constraint. Motivation can be 

partially estimated from the potential source of conflict or mutual support between 

the private goals of the agent and the leaf goal(s) operationalized by the constraint. 

The motivation of the agent for controlling actions to meet the constraint is expected 

to be low in case of conflict and high in case of mutual support. 
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The following tactic can also be used to help in the identification of alternative 

Responsibility links. 

Reuse relevant Responsibility links between generic constraints and agents 

Generic Responsibility links are retrieved in the domain knowledge base; the links 

considered are those which link the generic agents retrieved in Step 2 to the generic 

constraints retrieved in Step 3. The retrieved links are then considered for specializ- 

ation and adaptation to the specific composite system being modeled. The process 

is similar to the one suggested in Steps 1-3. 

Let us suggest a few examples for some of the constraints introduced before in 

the paper. The LimitedBorrowingPeriod constraint is assignable to the Borrower 

agent or to the StaRagent; both agents have the Return and IssueReminder actions 

in their capability list, and they both could enforce the corresponding strengthenings 

on these actions to ensure the constraint. (The strengthening amounts to a strength- 

ened postcondition for Return and to a trigger condition for IssuedReminder.) The 

Borrower agent has a LongBorrowingPeriod private goal which conflicts with the 

RegularAvailability goal and LimitedBorrowingPeriod constraint operationalizing 

this goal. (See Fig. 3 and the formal expressions given in Sections 2.7 and 2.8.) 

Therefore, the values for Motivation and Reliability in the corresponding Responsibil- 

ity links are very low for Borrower while being high for Stafl Automated counterparts 

for the Return and IssueReminder actions were identified in Step 2 and defined as 

specializations of these actions; the inherited LimitedBorrowingPeriod constraint 

referring to the automated representations of the corresponding objects is assignable 

to the LibraryDatabaseManager agent since the latter can enforce the constraint 

through corresponding strengthenings. 

Similarly, the LimitedBorrowingAmount constraint is assignable to the Stagagent 

or to the Borrower agent; both can enforce the strengthening on the Checkout action 

derived in Step 5 to ensure that constraint. For the alternative Responsibility link 

involving Borrower, the values of Motivation and Reliability are very low because 

there is a conflict with the AsManyBooksAsNeeded private goal. The automated 

counterpart of LimitedBorrowingAmount is assignable to the LibraryDatabase- 

Manager agent which can enforce the corresponding strengthened precondition on 

the CheckOutTransaction action. 

As a last example, consider the AccurateClassijication leaf goal appearing in Fig. 

3. This goal is operationalized through two constraints, namely, AccurateSheZfn/lark 

and AccurateKeywordsAssigned. The former can be assigned to the Staff agent or 

to a shelf-mark allocation program; the latter can be assigned to the SecretaryStafl 

agent with low Reliability or to the ResearchStafl agent with high Reliability. 

Step 7. Assign actions to responsible agents 

What 

Pecforms links are effectively assigned to agents for the various actions elaborated 

in Steps 2 and 4 on the basis of the alternative Responsibility links established in 
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Step 6. The allocation of actions to processors implies, in particular, that the 

Performing agents selected are contractually committed to satisfy the Responsibility 

axiom (see Section 2.8). 

The agent Loud values are gradually updated as the assignment of Performs links 

to the agent proceeds. (An agent can initially have a non-null load if it has 

assignments in other composite systems.) Backtracking on assignment decisions 

may take place when an agent becomes overloaded; some Performs links are then 

undone. 

The eventual assignment of actions to agents under commitment to the Responsi- 

bihty axiom guarantees that the constraints operationalizing system goals will be 

met through appropriate behavior of the agents. 

How 

An action is assigned to an agent only if the agent has been determined to be 

among the alternative candidates for taking responsibility over the constraints the 

action ensures. (See Step 6.) 

The following tactics can be used to help in deciding between alternative 

candidates. 

1. Do not make effective assignments that would prevent other constraints from 

being met 

For example, deciding that the Checkout action is allocated to the Borrower agent 

can prevent the SameLibraries consistency constraint from being met; the Borrower 

agent has indeed no responsibility link with the latter constraint. (The formal 

expression of this constraint was given in Section 2.9. In fact, the RectifyDatabase 

restoration action and its specializations are not in the capability list of the Borrower 

agent.) The rational decision is thus to allocate the Checkout action to the Staff 

agent. In that case, the Stu# agent actually has the CheckOutTransaction action 

under supervision as well because he/she is also responsible for the SameLibraries 

constraint. 

2. Reuse relevant Performs links between generic agents and actions 

Generic Performs links are retrieved in the domain knowledge base; the links 

considered are those which link the generic agents retrieved in Step 2 to the generic 

actions retrieved in Step 5. The retrieved links are then considered for specialization 

and adaptation to the specific composite system being modeled. 

3. First assign Performs links for actions ensuring constraints that operationalize the 

highest priority goals 

Using this tactic, one would assign the Checkout or PutKeywords actions (with 

Load values being increased correspondingly) before the action of issuing a list of 

recent book acquisitions. 



46 A. Dardenne et al. 

4. Do not make eflective assignments that would be conflicting with PrivateGoals 

If a human agent is assigned an action ensuring constraints that operationalize 

goals in conflict with his/her private goals, the agent will not be very motivated to 

guarantee satisfaction of that constraint. The assignment of the ReturnTransition 

action to the Borrower agent would be rejected on that ground. 

5. Maximize reliability 

If there is a choice among several agents, select the agent with the highest reliability. 

Using this tactics, one would retain the ResearchStaff agent for the PutKeywords 

action to ensure the AccurateKeywordsAssigned constraint above. 

6. Avoid overloading agent 

An excessive load of actions to ensure constraints can seriously degrade the overall 

system performance. 

7. Minimize cost of performance 

If there is a choice among several agents, select the agent with the lowest 

performance cost. 

Note that these tactics refer to one single meta-attribute/relationship. This kind 

of hill climbing search for local optima may not reach a global optimum; ideally 

all criteria should be considered together. Multicriteria analysis techniques might 

be of great help in this context [51]. (The same remark holds for the other tactics 

in the previous steps.) For example, the eventual decision of choosing the alternative 

where the LibraryDatabaseManager agent is allocated a number of transactions that 

automate their manual counterpart will be governed by a combination of tactics 

integrating goal achievement, reliability, cost, and load reduction. 

4. Conclusion 

This paper has proposed a meta-model for capturing initial requirements and a 

strategy for conducting the requirements acquisition process. The requirements 

considered here refer to the entire composite system-that is, the part to be auto- 

mated, its physical environment, and the way both parts have to cooperate. A salient 

feature of the approach is the importance given to system-level goals and their 

operationalization through constraints. This contrasts with some traditional tech- 

nology for formal or semi-formal specification, where all requirements are supposed 

to be captured in terms of “data” and “operation” abstractions. 

Some experience with real requirements documents has convinced the authors 

that higher-level abstractions such as “goal”, “operationalization”, “ensuring 

action”, “agent”, “responsility”, or “alternative assignment” are found informally 

and explicitly in the requirements of non-toy systems. The formal framework 
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proposed here can be seen as a preliminary attempt to reason more formally in 

terms of such higher-level concepts. Meta-level constraints and rules of inference 

based on temporal logic allow formal checking of requirements and formal derivation 

of goal-directed strengthenings of them. It is encouraging to see that others have 

independently recognized the need for reasoning about system goals, their category 

and their reduction or interference links (Mylopoulos et al. [35]). 

The strategy discussed in this paper amounts to a goal-directed traversal of the 

meta-model graph; specific tactics are applied at each node to acquire the corre- 

sponding requirements fragments. Another salient feature here is the reuse of both 

meta-level and domain-level knowledge. The principle of a rich meta-model to guide 

the acquisition process was inspired from work on machine learning; in some 

learning strategies, the acquisition process is guided by abstract knowledge about 

what should be acquired [4,8]. The KAOS meta-model may appear to be rather 

complex; this is the price to pay for meta-level guidance during acquisition. The 

more domain-independent knowledge the meta-model privides, the more guidance 

the acquisition strategy can provide. On another hand, our experience in acquiring 

requirements for a variety of resource management systems (library systems, airline 

reservation, warehouse processing, hospital management) and transportations sys- 

tems (lifts, trains, metros) has given us much confidence in the power of reusing 

generic descriptions. Such descriptions are retrieved in a domain knowledge base 

and then instantiated, specialized, and adapted to the system considered. Beside 

the usual benefits of reuse, the matching of such descriptions against the requirements 

already acquired often results in detecting problems which otherwise can be very 

hard to detect-notably, inadequacies, incompletenesses, and contradictions. 

The requirements fragments given in the paper come from a rational rederivation 

of the requirements for a university library system currently in use. It may be worth 

to compare these fragments with the simplistic requirements of the classical library 

problem [49] to see how some of the informal requirements stated there are derived 

in our approach. 

We have argued that requirements acquisition languages need much richer abstrac- 

tions than those supported by traditional specification formalisms such as, e.g., 

state-based or algebraic ones. The latter are, however, needed but at a later stage 

where more sophisticated formal checking is undertaken on the specification of the 

automated subsystem. Acquisition languages and (design) specification formalisms 

may thus play complementary roles. Based on this, we have developed a set of rules 

for transforming KAOS objects and actions into Z data and operation schemas [42]. 

Other components of the KAOS meta-model, not discussed in the paper, provide 

the basis for defining other strategies-like agent-directed strategies where the 

meta-model is traversed from the views agents have about the composite system, 

or scenario-directed strategies where typical usage scenarios are elaborated first. Our 

current belief, however, is that a goal-directed strategy is the best one to establish 

that the system objectives will be achieved by proper cooperation of responsible 

agents. 
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There are some weak facets in our approach, on which we plan to work in a near 

future. The declaration part of the acquisition language should clearly have a 

graphical concrete syntax that would reflect the various concepts and links supported 

by the meta-model. The assertion sublanguage should incorporate deontic logic 

extensions to support a deeper level of formal reasoning about agent capabilities 

and responsibility assignment. Cooperation and communication among agents 

should also be supported more explicitly. As alluded to before, the tactics should 

also be refined to handle multiple criteria and extended to form a rich body of 

rules; in particular, goal conflict resolution strategies need to be carefully investi- 

gated. (The problem of interfering goals is well recognized as being a difficult one 

to tackle, see, e.g., [48].) Ultimately, tactics will have to be formalized for use by 

the acquisition assistant we are designing. In parallel with the reuse tactics suggested 

in this paper, we are also working on analogical acquisition techniques where 

requirements about similar systems are retrieved and transposed [lo]. 
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