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The inverted complex Wishart distribution and its use for the construction 
of spectral estimates are studied. The density, some marginals of the distribution, 

and the first- and second-order moments are given. For a vector-valued time 
series, estimation of the spectral density at a collection of frequencies and 
estimation of the increments of the spectral distribution function in each of 

a set of frequency bands are considered. A formal procedure applies Bayes 
theorem, where the complex Wishart is used to represent the distribution of an 

average ,of adjacent periodogram values. A conjugate prior distribution for 
each parameter is an inverted complex Wishart distribution. Use of the pro- 

cedure for estimation of a 2 x 2 spectral density matrix is discussed. 

1. INTRODUC~~N 

In multiple time series analysis complex multivariate distributions are com- 
monly used to describe estimates of frequency domain parameters. A review 
of complex multivariate distributions and their application in time series has 
been given by Krishnaiah [8]. The complex Wishart distribution, in particular, 
was introduced and used by Goodman [4, 51 to approximate the distribution 
of an estimate of the spectral density matrix for a vector-valued stationary 
Gaussian process. In this paper the inverted complex Wishart distribution is 
studied and its use for the construction of spectral estimates is illustrated. 

Methods of spectral estimation typically involve periodogram smoothing. 
The amount and type of smoothing one performs depend to a considerable 
extent upon prior ImowIedge of the spectral density to be estimated. A method 
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of incorporating prior information about the shape and smoothness of a spectral 
density into the formation of a spectral estimate has been given by Shaman [9] 
for a univariate time series. Two types of finite-dimensional parameters are 
considered, the spectral density ordinates at a specified collection of frequencies 
and the amount of power in each of a set of frequency bands. The method is 
conditional upon the asymptotic distribution of nonoverlapping periodogram 
averages. A formal procedure applies Bayes theorem, with a conjugate prior 
distribution for a single parameter being an inverted gamma distribution. The 
mean of the posterior distribution involves a simple linear adjustment of the 
periodogram average, with coefficients depending upon prior distribution para- 
meters. The prior distributions corresponding to different parameters, as well 
as the posteriors, are independent. Although the method is not genuinely 
Bayesian, it does permit one to incorporate prior information about the height 
and shape of the spectral density into the construction of an estimate in a formal 
manner. 

The spectral density estimation methodology just discussed is extended to 
a vector time series model in the present paper. The asymptotic distribution 
of a periodogram average is a complex Wishart distribution. A conjugate prior 
distribution is an inverted complex Wishart distribution. 

In Section 2 the density of the inverted complex Wishart distribution, will 
be derived, as well as some marginals of the distribution and its first- and 
second-order moments. Details of the proposed use of the inverted complex 
Wishart distribution in spectral estimation are given in Section 3. 

2. THE INVERTED COMPLEX WISHART DISTRIBUTION 

Let XI ,..., X, be independent Y x 1 vectors, each complex normal with mean 
0 and Hermitian covariance matrix Z (see Wooding [13] and Goodman [5]). 
Then the r x r matrix 

w = i xjx;, 
j=l 

where the asterisk designates conjugate transpose, has a complex Wishart 
distribution with R degrees of freedom and covariance matrix Z, denoted 
Wc(r, n, Z). The density is (Goodman [5]) 

f,(n:, z’ In 
( w p--T etr(-22lW), ?I > 7, w > 0, 

Fr(n) = ,(1/m-(-l) fi qn - j + 1) 
i=l 
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is the complex multivariate gamma function. The mean is E(W) = tzA’ and the 
covariance matrix may be expressed as Cov(vec W) = 2’ @ 2. The convention 
used for the covariance between complex random variables y and x is 

E( Y - Et Y))@ - JW). Th e covariance result cited is known (e.g., see Brillinger 
[2, Problem 8.16.461, who uses the notation I3 @A for the Kronecker product 
written here as A @ B). 

The Jacobian of the transformation Y = X-l for an r x Y Hermitian non- 
singular matrix X is ) Y I--2r. This may be deduced from (2.8) of Khatri [7]. 
Then the density of V = W-l is 

) Y Jn etr( - V-Y) 
is,(n) 1 v In+7 ’ 

71 > r, v > 0, (2) 

where Y = Z-l. Denote the distribution of V by W;l(r, rz, Y). The marginal 
distribution of V,, , the q x q upper left-hand corner of V, is W&, n - r + q, 
Yrl), where YIu,, is the corresponding submatrix of Y. This may be derived from 
the method used by Tiao and Zellner [IO] to obtain marginals of the inverted 
Wishart distribution, modified for the present complex case. When q = 1, 
VI, has an inverted gamma distribution. 

Let the I x r Hermitian matrix W be written as TT*, where T is lower 
triangular and has real diagonal entries. Then the density of T when Z = I 
is (Goodman [5], p. 165) 

which is the density of &(Y + 1) independent random variables. 
The inverted complex Wishart matrix V = W-1 is S*S, where S = 

(s& = T-l is lower triangular. In terms of elements of T, 

1 
sj5 = G 9 j = l,..., r, 

where 

( 
j-1 

sjk = 2 -Ujk + c UjZ,UZ,k - 

i-2 i-l 

c 1 %ZluZIZeUZsk 
Z,=k+l Zz=k+lZ,=Z,+l 

+ *a- + (-I)'-" Uj,j-lUj-l,j--$ "' , i > k (5) 

%k = t,k/tjj , j > k. (6) 

The elements of V are 
+ 

v5k = c jgj%k 9 j > k. 
s=maxo.k) 

(7) 
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This decomposition of Was TT* is similar to the one indicated by Brillinger 
[2, problem 4.8.27; a factor & is missing]. For W a real Wishart matrix Kaufman 
[6] uses a corresponding decomposition to deduce first and second moments 
of W-l. 

Now we consider first- and second-order moments of V = W-l. Let E,(.) 
and Cov,(*) denote expectation and covariance when W is Wc(r, n, Z). Assume 
that Z is nonsingular and let P/2 designate the Hermitian square root of Z. 
We shall use the result that Z-1/2 WZ-1/2 is distributed as W,-(r, n, I). Moreover, 
if W is W,-(r, R, I), then Wand UWU* have the same distribution for any r x I 
unitary matrix U. The latter implies UE,( W-l) = E,( W-l) U for every Y x T 
unitary matrix U. Thus E,( W-l) must be a scalar multiple of the identity matrix 
and it suffices to calculate, for Z = I, 

-%A = A, n > I, 

by (3), (4), and (7). Then 

&( W-1) = ~-V&(~WW-l~W) 2-W = Z-1/2,55( W-4) z-l/a 

1 
= - E-1, n > r. 

n--r (8) 

This result was given by Wahba [l 11. 
To deduce the covariance matrix of vec(W-l), note that for every r x I 

unitary matrix U 

or 

Cov,[vec( W-l)] = Cov,[( D @ U) vec( W-l)] 

= (D @ U) Cov,[vec(W-l)](u’ @ U*), 

(a @ U) Cov,[vec( W-l)] = Cov,[vec( W-l)]( t7 @ U). 

This implies 

Cov,[vec( W-l)] = b(I, @ I,) + c vet I,(vec I,)’ + (a - b - c) J, 

where a, b, and c are real constants, I, is the r x r identity matrix, and J is 
an r2 x r2 diagonal matrix with ones in diagonal positions 1 + (Y + 1) j, 
j = 0, I,..., T - 1, and zeros elsewhere. It is therefore sufficient to determine 
for Z = I, from (3~(8), 

Var(%) = (n _ 42(; - y - 1) ’ n>r+l, 

W~r-l,r) = (n - r + l)(n L r)(n - Y - 1) ’ 
n>r+l, 
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and 

co+,-1.7-l 7 %I = (n - Y + l)(n L Y)“(?t - T - 1) ’ 
n>r+l. 

Then 

Cov,[vec( W-l)] = Cov=[vec(~-112(~1/2W-1~1/2) .Z-1/2)] 

= COV~[((Z-~/~)’ @ Z-1/2) vec(iY2W-12?/2)] 

= [(,ZW2)’ @ 2Y2] Covl[vec(W-1)][(Z-1/2)’ @ 2W2] 

= (Z-l) @ Z-l + l/(rz - r) vec(,F1)(vec(Z-l)‘)’ 
(n - Y + l)(n - T)(?z - Y - 1) ’ 

The inverse of (9), or the precision matrix, is 
n>r+l. (9) 

(A - Y + l)(n - r)(rz - r - 1) [F @ 2 - i vet G(vec(B’))‘]. 

3. APPLICATION OF THE INVERTED COMPLEX WISHART 
DISTRIBUTION TO SPECTRAL ESTIMATION 

The methodology described below is based upon distributional approximations 
and we make assumptions which allow these to hold. The conditions in Brillinger 
[l] and [2], Chapters 5 and 7, in particular, are used. 

Let X(t), t = 0, kl,..., be a vector-valued strictly stationary stochastic 
process for which all moments exist. Denote the components of X(t) by Xi(t), 
j = I,..., I, the mean by E{X(t)} = m, and the spectral density by f(h), 
-ST < ,+ < n. The cumulant functions of the process are 

C,,...& ,-**, h-1) = ~4&,(~1 + Q.-, X&k-l + t), X&)>, 

ji = l,...) I, i = l,...) K, t, + b.., t,-, + t, t = 0, kl,..., K = 2, 3 ,.... 

Assume for ji = l,..., Y, i = I,..., K, that 

5 I cj, ,..., & ,..., Ll)l < 00, k = 2, 3 I.... (10) 
5 ,... .t*-l==-m 

This ensures the existence and uniform continuity of cumulant spectra of all 
orders. 

Assume a time series X(t), t = 0, l,..., T - 1, is available. The periodogram 
is 

I(X) = y;y Z(h)Z(A)*, -7T<h<?7, (11) 
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where Z(h) = Ciii eiAtX(t), -V < h < rr. Letp = [&(T - l)]. Then1(2?rj/T) 
are asymptotically independent variables distributed as Wc{r, 1, f(2nj/T)), 
j = l,..., p (see Brillinger [2], Theorem 7.2.4). Also I(a) is asymptotically an 
r x r Wishart variable with one degree of freedom and covariance matrix 
f(n), and is independent of the other variables. If m # 0, I(0) is approximately 
an r x r noncentral Wishart variable with one degree of freedom. 

Restrict attention to frequencies 0 < /\ < r and let j(T) be a sequence of 
integers such that 27~j(T)/T is near A(#O, V) and converges to h as T + co. 
Then 

is an estimate of f(/\) and is asymptotically distributed as (2n 
Wc{r, 2n + l,f(/\)}. If h = 0 (12) is replaced by 

andifh =rr, 

-I- 

(12) 

1)-l x 

(13) 

z = &(7r -25-h/T) (T even) 

(14) 

= ; @r - n/T - 2?rh/T) (T odd) 

is used. The complex Wishart was established as a limiting distribution for (11) 
and (12) with fixed 7t by Brillinger [l] for the case m = 0. For h # 0, the asymp- 
totic distributions of I(h) and z do not depend on m and in [2] Brillinger treats 
an arbitrary m. Wahba [12] and Gleser and Pagan0 [3] allow n + co under the 
assumption X(t) is Gaussian. Under appropriate conditions, M nonoverlapping 
sums of the form (12) are asymptotically independent complex Wishart matrices 
as n, M, T-+ co. The covariance matrices of the asymptotic complex Wishart 
distributions aref[2rrj(T)/T], where 2?rj(T)/T converges to some X as T + co. 

Consider estimation of the spectral density at a fixed, preassigned set of 
frequencies, 0 < X, < ... < h, < n-. The choice of M and the frequencies 
may involve use of prior information. For example, if the spectral density is 
considered a priori to be approximately constant in certain bands, the frequencies 
may be interior points of the bands. 

To avoid anomalous cases assume h, > 0, h, < r. Since the spectral esti- 
mates are asymptotically independent and the priors will also be independent, 
it suffices to discuss a single frequency, labelled )\ for simplicity, in the pre- 
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assigned set. We use the asymptotic distribution described above of z in (12). 
Then x has density 

A conjugate prior density is an inverted complex Wishart, 

where B is Hermitian. The posterior density from (15) and (16) is 

h(f(X) , x) = lb + 1) z + B I ~+l+~ etr[-j(h)-l((2n + 1) a + B)] 

Q2n + 1 + a) If(h)lan+r+l+= 

L 1 >r. 

(15) 

(16) 

(17) 

The mean of the posterior occurs atf(x) = ((2n + 1) z + B)/(2n + 1 + OL - r). 
Knowledge of the spectral density ordinate at each of a number of specified 

frequencies can convey an accurate picture of the shape of the curve. However, 
more basic interest may concern the increments of the spectral distribution 
function in certain frequency bands. Consider a partition 0 = h, < h, < **. < 
&I < bf,l = rr and let F(h) denote the spectral distribution function. Consider 
the parameterp =( pI,..., P~+~), wherep, = F(&) - F(hr-J, I= l,..., M + 1. The 
partition is fixed for all sample sizes. Let kE( T), 1 = O,..., M + 1, K,( 2’) = 1, 

b,+l(T) = MT - 111, b e m e * t g ers such that the frequencies 2vj/T are in the 
interval (A,-, , h,) for k,-,(T) < j < /El(T) - 1 and define m,(T) = K,(T) - 
k,-,(T). Then under the assumption (10) and the conditions in Wahba [12] 
or Gleser and Pagan0 [3] the sums 

yt = c WdTh I = l,..., M + 1, 
i=k,,u-1 

are approximately distributed as independent Y x r complex Wishart variables 
with ml(T) degrees of freedom and covariance matrices 

& ““f)-’ f(2+“), I = l,..., M + 1. 
f-kg-,(T) 

We further approximate the distribution of yI as that of W&r, ml(T), Tp,/ 

(27nn,(T))l, 1 = L..., M + 1. Details of the transition to a posterior distribution 
for the parameter p are similar to those given at (15~(17). One can restrict 
attention to a set of frequency bands whose union forms a subset of [0, ?r]. 

Selection of a prior distribution for spectral estimation may be based upon 
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first- and second-order moments. For illustration let I = 2 and denote the 
spectral and cross spectral densities by fir(A), f,,(h), and f,,(h) = c(A) + $(A). 
For a given frequency h the moments of the prior (16), with B = (/ljkR + ipjkl), 

mdy be written as 

Ii ( fll@> _ -- 1 Q(h) 44 1 fd4 ci - 2 ( Al a,, AM 1 AZ 
and 

fil(4 
cov faz(h) = ( i ‘I 44 8% _ & _ 2)a 

\ d4 / 

a1az 
a-1 

X 
81lLR 

a1t%2I 

Thus (o - 2)-l B may be chosen to match prior opinion about the value of 
f(h), and the magnitude of 01 should reflect the firmness of this opionion. 
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