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We study the effect of dimension 7 and 8 operators on inclusive semileptonic B decays and the extraction 
of |V cb|. Using moments of semileptonic B decay spectra and information based on the Lowest-Lying 
State saturation Approximation (LLSA) we perform a global fit of the non-perturbative parameters of the 
heavy quark expansion including for the first time the O(1/m4,5

b ) contributions. Higher power corrections 
appear to have a very small effect on the extraction of |V cb|, independently of the weight we attribute 
to the LLSA.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The results of the B Factories and LHC place stringent con-
straints on new physics in the flavor sector. Only small deviations 
from the SM are allowed, and their detection represents an exper-
imental and theoretical challenge. In the next few years a wealth 
of new experimental results will come from Belle-II and from the 
high-luminosity phase of LHC. In this context, the precise deter-
mination of the parameters of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix remains a high priority, as it is instrumental to con-
straining new physics models and to setting bounds on the scale 
of new effective interactions. However, the determination of the 
CKM element V cb , which plays a special role in tests of the CKM 
unitarity and in FCNC transitions, is plagued by a long-standing 
∼3σ tension between the analyses based on inclusive and exclu-
sive decays. This is unlikely to signal new physics [1] and calls for 
a thorough investigation of all possible sources of theoretical un-
certainty.

The determination of |V cb| from inclusive semileptonic B de-
cays is based on an Operator Product Expansion (OPE) [2–5] which 
allows us to parameterize all of the non-perturbative physics in 
terms of the expectation values of local operators in the B-meson 
to be extracted from experimental data. Since the contribution of 
higher dimensional operators is suppressed by powers of the heavy 
quark mass, only the operators of low dimension are expected to 
be relevant. Current fits of inclusive semileptonic B decays [6] use 
experimental data on the moments of kinematic distributions to 
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constrain the power corrections up to 1/m3
b terms, corresponding 

to dimension ≤ 6 operators, and neglect higher power corrections 
altogether.

While present data appear to be well described by these fits, 
investigations of higher power corrections are mandatory to test 
the convergence of the heavy quark mass expansion. Moreover, 
the OPE does not lead to an expansion of inclusive observables 
in inverse powers of mb but also contains terms of O(1/mn

b 1/mk
c), 

with odd n ≥ 3 and even k ≥ 2, sometimes dubbed intrinsic charm
(IC) contributions [7–9], which alter the actual power counting 
since numerically m2

c ∼ �Q C Dmb and thus O(1/m3
bm2

c ) �O(1/m4
b). 

Higher power corrections have been studied in [10,11], where nine 
new operators of dimension 7 and eighteen new operators of di-
mension 8 have been identified and their Wilson coefficients com-
puted at the tree-level. A rough estimate of the matrix elements of 
these 27 new operators is given by the Lowest-Lying State Approx-
imation (LLSA) [11,12], which assumes that the lowest lying heavy 
meson states saturate a sum-rule for the insertion of a heavy me-
son state sum. The LLSA relates higher-order matrix elements to 
lower dimensional ones and to the excitation energy ε and is ex-
pected to be valid within 50–100% [12].

In this Letter, after briefly reviewing the structure of the 1/m4,5
b

corrections computed in [11], we study their inclusion in the fit 
of Ref. [6] and discuss how the results depend on the uncertainty 
associated to the LLSA.

2. Power corrections and matrix elements

Our analysis is based on the calculation of higher power cor-
rections of [11], which is performed at leading order in αs . The 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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inclusive observables considered below (width, moments of kine-
matic distributions) can be calculated by an appropriate (weighted) 
phase-space integral of the differential decay width

d� = 16πG2
F |V cb|2Wμν Lμνdφ , (1)

where all the soft hadronic information is contained in the 
hadronic tensor Wμν = − 1

π Im Tμν . The hadronic tensor is the 
imaginary part of the forward matrix element of a time-ordered 
product of weak currents. The charm quark in this forward ma-
trix element propagates in a background field. We expand the 
background field propagator SBGF, with momentum Q μ = mb vμ +
kμ − qμ , in powers of kμ/mb , where kμ → iDμ is the residual mo-
mentum of the b-quark inside the B-meson

Tμν = 〈B(p)|b̄v�μi SBGF�
†
νbv |B(p)〉

=
∑

i

Tr

{
�μ

1

/Q − mc + iε
�

†
ν �̂(i)

}
A(i,0)

+
∑

i

Tr

{
�μ

1

/Q − mc + iε
γ μ1

1

/Q − mc + iε
�

†
ν �̂(i)

}
A(i,1)

μ1

+· · · (2)

The coefficients A(i,m)
μ1μ2...μm containing the non-perturbative param-

eters are known analytically at O(1/m2
b) [4,5] (corresponding to 

m = 2), at O(1/m3
b) [13], and at order 1/m4,5

b [11]. At the low-
est non-trivial order, corresponding to dimension 5 operators, the 
non-perturbative parameters are given by

2MB μ2
π = −〈B̄|b̄v iDρ iDσ bv |B̄〉 �ρσ , (3)

2MB μ2
G = 1

2
〈B̄|b̄v

[
iDρ, iDσ

](−iσαβ

)
bv |B̄〉 �αρ�βσ ,

where �μν = gμν − vμvν , and vμ is the heavy quark velocity. 
At each higher order in 1/mb we have one more derivative in 
A(i,m)

μ1μ2...μm . Thus the number of parameters proliferates. We have 
only 2 parameters, ρ3

D and ρ3
L S , at O (1/m3

b), but there are nine ad-
ditional ones at O (1/m4

b) and eighteen at O (1/m5
b). As mentioned 

in the Introduction, upon integration over the phase space the Wil-
son coefficient of some of the dimension 8 operators are sensitive 
to the (infrared) charm mass scale and represent the IC terms of 
O (1/m3

bm2
c ), which numerically dominate the O (1/m5

b) contribu-
tions.

In the following we will include the O (1/m4,5
b ) corrections in 

the fit to the semileptonic moments on which the inclusive deter-
mination of |V cb| is based. We will use the LLSA ansatz, proposed 
in [11] and made more systematic in [12], to constrain the 27 new 
parameters.

The goal of LLSA is to estimate expectation values of local op-
erators of the form b̄v iDμ1 iDμ2 . . . iDμn �bv , where � is a Dirac 
matrix. Splitting the chain of covariant derivatives into two shorter 
ones labeled by Ak

1 and Cn
k and inserting a full set of intermediate 

states between them one finds in the heavy quark limit [11,12]

〈B̄|b̄v Ak
1 Cn

k � bv |B̄〉 = (4)

1

2MB

∑
n

〈B̄|b̄v Ak
1 bv(0)|Hn〉〈Hn|b̄v(0) Cn

k � bv |B̄〉 ,

where |Hn〉 are hadronic states with the appropriate quantum 
numbers. The LLSA assumes that the sum of intermediate states 
is saturated by the lowest-lying state that can contribute, i.e. ei-
ther the ground-state multiplet B, B∗ or the first excited states 
with � = 1. Indeed, the matrix elements involving time deriva-
tives like 〈B|b̄iD j iDk iDlb|B〉 are saturated by P -wave intermediate 
0
Table 1
LLSA expressions for the higher-order non-perturbative parameters.

m1
5(μ2

π )2

9 r6 ε2ρ3
D

m2 −ερ3
D r7 0

m3 − (μ2
G )2

6 r8 ε2ρ3
L S

m4
(μ2

G )2

8 + (μ2
π )2

6 r9 −μ2
πρ3

L S
m5 −ερ3

L S r10 μ2
Gρ3

D

m6
(μ2

G )2

6 r11
μ2

G ρ3
D

3 − μ2
G ρ3

L S
6 + μ2

π ρ3
L S

3

m7 − μ2
G μ2

π
3 r12 − μ2

G ρ3
D

3 − μ2
G ρ3

L S
6 − μ2

π ρ3
L S

3

m8 −μ2
Gμ2

π r13 − μ2
G ρ3

D
3 + μ2

G ρ3
L S

6 + μ2
π ρ3

L S
3

m9
(μ2

G )2

8 − 5μ2
G μ2

π
12 r14 ρ3

L S

(
ε2 + μ2

G
6 − μ2

π
3

)
+ μ2

G ρ3
D

3

r1 ε2ρ3
D r15 0

r2 −μ2
πρ3

D r16 0

r3 − μ2
G ρ3

L S
6 − μ2

π ρ3
D

3 r17 ε2ρ3
L S

r4 ε2ρ3
D + μ2

G ρ3
L S

6 − μ2
π ρ3

D
3 r18 0

r5 0

states, with parity opposite to that of the ground state. Including 
these states in the sum leads to extra powers of the P -wave excita-
tion energy, ε = M P − MB . While there exist separate contributions 
coming from the spin 1

2 , 32 light degrees of freedom, we assume 
ε1/2 = ε3/2 = ε � 0.4 GeV.

In the following we use the notation of [11], according to which 
the nine matrix elements that occur at O (1/m4) are denoted by 
mi , and the eighteen at O (1/m5) by ri . The operators involved 
coincide with those identified in [12], even though different no-
tations are adopted. It is useful to redefine the 1/m4

b parameters 
to account for combinatorial factors. In practice, we expand the 
(anti-)commutators and count the number of terms after expung-
ing those which are of higher order in 1/mb due to the equations 
of motion. We then expect the parameters to have a natural scale 
of O (�n

Q C D), with n the dimension of the corresponding opera-
tor, as is also the case for the parameters in Eq. (3). The rescaled 
parameters are

m1 = m1 m2 = m2 m3 = m3/4

m4 = m4/8 m5 = m5 m6 = m6/4

m7 = m7/8 m8 = m8/8 m9 = m9/8 .

(5)

No such redefinition is necessary for the 1/m5
b parameters, as they 

were already defined in this way. The LLSA expressions for the 
mi, ri are reported in Table 1.

3. Inclusive observables

The OPE allows us to express sufficiently inclusive observ-
ables as a double series in αs and �Q C D/mb . In fact, the non-
perturbative corrections to the semileptonic differential rate start 
at O(1/m2

b). Perturbative corrections are known up to NNLO 
[14–17] and the mixed O(αsμ

2
π,G/m2

b) corrections [18–20] have 
also been calculated. The expansion requires knowledge of the ex-
pectation values of local operators in the B-meson. These non-per-
turbative parameters can be determined from measurements of the 
normalized moments of the lepton energy and invariant hadronic 
mass distributions in inclusive B → Xc�ν decays,

〈En
�〉 = 1

�E�>Ecut

∫
E�>Ecut

En
�

d�

dE�

dE� , (6)

〈M2n
X 〉 = 1

�E�>Ecut

∫
M2n

X
d�

dM2
X

dM2
X ,
E�>Ecut
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where E� is the lepton energy, m2
X the invariant hadronic mass 

squared and Ecut an experimental lower cut on the lepton energy 
applied by the experiments. The cut dependence of the moments 
provides additional information on the OPE parameters we are fit-
ting. For moments with n > 1, it is convenient to employ central
moments, computed relative to 〈E�〉 ≡ �1 and 〈m2

X 〉 ≡ h1,

�n(Ecut) = 〈(E� − 〈E�〉)n〉E�>Ecut ,

hn(Ecut) = 〈(M2
X − 〈M2

X 〉)n〉E�>Ecut . (7)

We also have information on the lepton energy cut dependence 
of the inclusive width, which can be studied introducing R∗ =
�E�>Ecut/�tot. The information on the non-perturbative parameters 
obtained from a fit to these observables enables us to then extract 
|V cb| from the total semileptonic width [6,21–24].

All analyses have so far considered only the minimal set of four 
matrix elements which appear at O(1/m2,3

b ). The O(1/m4,5
b ) con-

tributions have never been included, although a rough estimate 
of their importance has been given in [11]. From the results of 
that paper we have computed all the O(1/m4,5

b ) corrections to 
the first three hadronic and leptonic moments and to R∗; we will 
now employ these expressions in the global fit to determine |V cb|. 
The result for the width is given in the Appendix. Notice that 
normalized moments are ratios of two heavy quark expansions; 
re-expanding these ratios in inverse powers of mb one finds that 
the O(1/m4,5

b ) corrections also include products of O(1/m2
b) with 

O(1/m2,3
b ) terms.

4. The fit

We upgrade the fit strategy introduced in [24] in the kinetic 
scheme, and use as a baseline the default parameters and settings 
most recently employed in [6]. In particular, we use the same ex-
perimental data; the full list of available measurements [25–31]
and the leptonic energy cuts employed in the fit is given in Ta-
ble 1 of Ref. [24]. We also employ the MS scheme for the charm 
mass and use the constraints mc(3 GeV) = 0.986(13) GeV [32], 
μ2

G(mb) = 0.35(7) GeV2, ρ3
L S = −0.15(10) GeV3.

The inclusion of higher power corrections allows us to slightly 
decrease the theoretical errors, which are estimated using the 
method of Ref. [24], i.e. varying the HQE parameters by fixed 
amounts in the calculation of an observable. Here we use the 
same settings as in [6], except for the variation in ρ3

D,L S , which 
we decrease from 30% to 22%, to take into account the inclusion of 
O(1/m4, 5) power corrections. For what concerns the correlations 
among theoretical errors we choose scenario D of Ref. [24], where 
different central moments are uncorrelated and the correlation be-
tween measurements of the same moment with Ecut differing by 
100 MeV is given by a factor which becomes smaller for increasing 
Ecut .

The results of the default fit performed in [6] read

mkin
b = 4.553(20), mc(3 GeV) = 0.987(13),

μ2
π = 0.465(68), μ2

G = 0.332(62), (8)

ρD = 0.170(38), ρ3
L S = −0.150(96),

where all parameters except for mc are in the kinetic scheme with 
cutoff μkin = 1 GeV. Using τB = 1.579 ps, Ref. [6] gets |V cb| =
42.21(78) 10−3.

As a first step in the analysis, we repeat exactly the same fit to 
the O(1/m2,3

b ) parameters but include the O(1/m4,5
b ) corrections 

in the theoretical predictions. We fix their values using the LLSA 
expressions for the matrix elements mi, ri , computed using the 
central values in (8) and ε = 0.4 GeV. The products of 1/m2 and 
b
1/m3
b effects are also computed using (8) and cannot vary in the fit. 

The results are similar to those in (8), except that μ2
π and ρ3

D get 
a significant shift up, μ2

π = 0.506(74) GeV2, ρ3
D = 0.257(42) GeV3, 

and that the central value of |V cb | is 42.47 10−3. This total 0.7% 
increase in |V cb| occurs despite the O(1/m4,5

b ) contributions in-
crease the semileptonic width by more than 1%, leading to a direct
reduction of |V cb|. A similar pattern (larger μ2

π , ρ3
D , and |V cb|) is 

observed if we fix only the matrix elements mi, ri to their LLSA 
values, and let the products of 1/m2

b and 1/m3
b effects to vary.

While the LLSA can set the scale of the higher power effects, 
it is certainly subject to large corrections. We therefore assign 
an error to the LLSA predictions and assume gaussian priors for 
all the mi, ri , which are then fit along with the other parame-
ters. The accuracy of the LLSA is hard to quantify. At O(1/m3

b)

the values of ρ3
D and ρ3

L S in (8) match well the LLSA expres-
sions ρ3

D = εμ2
π and ρ3

L S = −εμ2
G . Ref. [12] estimates a ∼50%

uncertainty, which obviously does not hold when the LLSA leads 
to zero matrix elements. Ref. [33] in Sec. 6.5 found indications 
for large non-factorisable corrections, which could reach 100% in 
some expectation values not affected by cancellations. Dimension-
ally, we know that the non-perturbative parameters of the OPE are 
quantities of O(�n

Q C D). There are in fact two scales involved in 
their determination: MB − mb and the mass splitting ε � 0.4 GeV
between the B meson and the lowest P -wave excitation. Accord-
ingly, we prescribe the error to be the maximum of either 60% of 
the parameter’s value or �n

LL/2 (n = 4, 5), where we use a scale 
�LL = 0.55 GeV which roughly corresponds to the average of the 
two relevant scales. The fit is performed starting with LLSA central 
values based on Eq. (8) and ε = 0.4 GeV. The LLSA central values 
are then updated to the results of the new fit, iterating the proce-
dure until the results stabilize.

5. Results

We report the results of the default fit in Table 2. In Fig. 1 we 
compare the μ2

π,G , ρ3
D,L S results of the 2014 fit in (8) with those 

of the new default fit. We also compare the LLSA predictions for 
mi, ri based on (8) with the results of the default fit. The LLSA 
uncertainty is computed as explained in the previous paragraph. 
We can see that most of the new parameters do not change much 
from their LLSA value, reflecting the low sensitivity of the fit to 
higher power parameters. However, there are exceptions, especially 
among the mi : the largest shift occurs for m2 and corresponds to 
1.2σLL S A . Indeed, the hadronic moments at higher cuts are specif-

Table 2
Default fit results: the second and third columns give the central values and stan-
dard deviations.

mkin
b 4.546 0.021 r1 0.032 0.024

mc(3 GeV) 0.987 0.013 r2 −0.063 0.037
μ2

π 0.432 0.068 r3 −0.017 0.025
μ2

G 0.355 0.060 r4 −0.002 0.025
ρ3

D 0.145 0.061 r5 0.001 0.025
ρ3

L S −0.169 0.097 r6 0.016 0.025
m1 0.084 0.059 r7 0.002 0.025
m2 −0.019 0.036 r8 −0.026 0.025
m3 −0.011 0.045 r9 0.072 0.044
m4 0.048 0.043 r10 0.043 0.030
m5 0.072 0.045 r11 0.003 0.025
m6 0.015 0.041 r12 0.018 0.025
m7 −0.059 0.043 r13 −0.052 0.031
m8 −0.178 0.073 r14 0.003 0.025
m9 −0.035 0.044 r15 0.001 0.025
χ2/dof 0.46 r16 0.001 0.025
B R(%) 10.652 0.156 r17 −0.028 0.025
103|Vcb| 42.11 0.74 r18 −0.001 0.025
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Fig. 1. Shifts in the OPE parameters from the LLSA using the 2014 fit results (upper ranges) to the current fit including higher-order corrections (lower ranges). Error bars 
represent the error in the priors and the resulting fit error, respectively.

Fig. 2. Dependence of the fit results as a function of the LLSA uncertainty.
ically sensitive to some of the mi , see Eqs. (11) in the Appendix. 
Using the fit results we compute the total semileptonic width, also 
reported in the Appendix, and comparing it to the BR in Table 2
divided by τB , we get |V cb|. The value of |V cb| is remarkably close 
to that obtained in [6] and the quality of the fit is very good, 
χ2/dof = 0.46, but somewhat higher than in [6].
To verify the stability of the fit with respect to the choices 
we made for the LLSA uncertainty, we varied this uncertainty by 
a multiplicative factor ξ . The results are shown in Fig. 2: |V cb|
changes very little. Of course, increasing the uncertainty on the 
higher-order matrix elements too much is equivalent to ignoring 
the LLSA completely, which would be unwise. We can therefore 
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Fig. 3. Dependence of the fit results as a function of the P-wave excitation energy ε .
estimate the uncertainty related to the assumptions on the LLSA 
error by varying ξ between 0.7 and 1.3, obtaining the relative vari-
ations on the main parameters

δξ V cb =+0.2%
−0.2%, δξμ2

π =+4.7%
−2.0%, δξμ2

G =+1.0%
−0.9%,

δξρ3
D =+18.2%

−10.0%, δξρ3
L S =−1.3%

+0.9% . (9)

We will include this uncertainty in the final error on |V cb|. We 
also vary ε over the range 0.4 ± 0.1 GeV to gauge the related 
uncertainty. The dependence of the parameters on the choice of 
excitation energy can be seen in Fig. 3, and the resulting relative 
uncertainties are

δε V cb =+0.04%
−0.04%, δεμ2

π =+0.7%
−0.8%, δεμ2

G =−0.4%
+0.3%,

δερ3
D =+3.3%

−3.6%, δερ3
L S =+0.3%

−0.4%, (10)

which are mostly negligible.
We also repeated the default fit in two slightly different ways: 

i) adding the PDG constraint on mb [34] after a scheme conver-
sion, mkin

b = 4.550(42) GeV, which leads to |V cb| = 42.10(73) 10−3; 
ii) changing, in addition to that, the mc constraint into mc(2 GeV) =
1.091(14) GeV, obtained evolving the result of [32] to 2 GeV. 
This leads to a somewhat better convergence of the perturba-
tive series for the semileptonic width [17]; in this case |V cb | =
42.00(64) 10−3 and χ2/dof = 0.44. The results of all these fits are 
remarkably consistent with each other.

6. The fourth hadronic moment

The central hadronic moments are sensitive probes of power 
corrections. For instance, O(1/m4,5

) affect h3 in a significant way 
b
and one could expect even higher moments to be able to constrain 
the higher power contributions in a useful way. As DELPHI has 
measured h4,5 without a cut on the lepton energy [31], we have 
computed h4 to explore the possibility of including them in the 
fit, despite the high correlation with lower hadronic moments. The 
result, in GeV8, is

h4 = 0.15tree + 15.97pert + 4.23μ2
π

+ 1.81αsμ
2
π

− 0.16μ2
G

+ 0.74αsμ
2
G

+ 2.31ρ3
D

− 0.10ρ3
L S

+ 3.80mi − 4.91ri ,

where we have evaluated the different contributions using Table 2. 
Perturbative contributions are largely dominant, diluting any pos-
sible O(1/m4,5

b ) effect and amplifying the uncertainty. In fact, the 
inclusion of DELPHI’s h4 in the fit has negligible impact on |V cb |
and the OPE parameters.

7. Summary

We have studied the effect of higher power corrections on the 
fits to inclusive semileptonic B decays which determine |V cb|. Be-
cause of the large number of new parameters at O(1/m4,5

b ), we 
used the LLSA to provide loose constraints on the higher power 
matrix elements and performed a new global fit to the semilep-
tonic moments. The higher power corrections have a minor effect 
on |V cb| and on the expectation values of the lower dimensional 
operators, and we observe a good convergence of the heavy mass 
expansion. There is a −0.25% reduction in |V cb|
103 |V cb| = 42.11(53)(50)(07)(10) = 42.11(74),

where the four errors are, respectively, the parametric error from 
the fit, the theoretical error on the semileptonic width, and those 
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due to the τB uncertainty, and to δξ , δε . The bottom mass determi-
nation from the fit is mkin

b = 4.546(21) GeV. A slightly more precise 
alternative fit makes use of mc at a lower scale, 2 GeV, and of the 
PDG average for mb , leading to

103 |V cb| = 42.00(50)(39)(07)(10) = 42.00(64).

After the implementation of various higher order effects the inclu-
sive determination of V cb appears robust. Further improvements 
may come from the calculation of O(αs/m3

b) and O(α3
s ) effects, 

from lattice QCD determination of some of the non-perturbative 
parameters, and from new [35] and more precise measurements at 
Belle-II.
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Appendix A

The O(1/m4
b) corrections to the hi for Ecut = 1 GeV and mc,b

from Table 2 are (in units GeV2,4,6)

δh1 = 0.01m1 + 0.28m2 + 0.54m3 − 0.40m4 − 0.04m5

− 0.21m6 − 0.01m7 − 0.08m8 + 0.00m9

δh2 = 0.6m1 − 3.3m2 − 2.0m3 − 0.0m4 + 0.2m5

+ 0.9m6 + 0.8m7 + 1.0m8 − 0.2m9 (11)

δh3 = −9.5m1 + 27.2m2 − 0.8m3 + 3.6m4 + 0m5

+ 1.5m6 − 3.3m7 − 4.2m8 + 0.6m9.

The total semileptonic width can be written as

� = �0

[
z(r)

(
1 − μ2

π − μ2
G

2m2
b

− ρ3
D + ρ3

L S

2m3
b

+
1
8 m1 + 1

3 m4 + 1
4 m8

m4
b

)

− 2(1 − r)4

(
μ2

G

m2
b

− ρ3
D + ρ3

L S

m3
b

+ 16

9

m9

m4
b

)

+ d(r)

(
ρ3

D

m3
b

− 2m4 + 2
3 m9

m4
b

)
+

∑
i=2,3,5,6

hi(r)
mi

m4
b

(12)

+
18∑

i=1

ki(r)
ri

m5
b

+
2∑

i=1

ai(r)
(αs

π

)i +
∑

i=π,G

fi(r)
αs

π

μ2
i

m2
b

+ ...

⎤
⎦ ,

where �0 = Aew G2
F (mkin

b )5|V cb|2/192π3, Aew = 1.014, r =
(mc(3 GeV)/mkin

b )2, z(r) = 1 − 8r + 8r3 − r4 − 12r2 ln r, d(r) =
2(17 − 16r − 12r2 + 16r3 − 5r4 + 12 ln r)/3, and hi, ki, ai and f i

are listed in Table 3 for a specific r value. Using the values of the 
parameters given in Table 2 one gets

�

z(r)�0
= 1 − 0.116αs − 0.030α2

s
− 0.0421/m2 − 0.002αs/m2

− 0.0301/m3 + 0.0051/m4 + 0.0051/m5 . (13)
Table 3
Higher-order contributions to the semileptonic width evaluated at r = 0.0472.

h2 −2.65 k6 75.20 k15 −34.41
h3 −11.20 k7 −20.17 k16 −17.33
h5 3.12 k8 4.26 k17 −0.23
h6 −2.94 k9 19.91 k18 18.00
k1 −1.25 k10 59.21 a1 −1.17
k2 −91.12 k11 −23.57 a2 −4.26
k3 120.83 k12 −26.13 fπ 0.95
k4 −131.94 k13 26.56 fG −2.10
k5 20.88 k14 5.25
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