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Predicting First Traversal Times for Virions and Nanoparticles in Mucus
with Slowed Diffusion
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ABSTRACT Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square dis-
placements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such par-
ticles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the
mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit
experimental measurements of mean-square displacements. We show that these models yield very different estimates for the
time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displace-
ments to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computa-
tional methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier
against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual inter-
course, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection
from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to sub-
diffusive data.
INTRODUCTION
Biological hydrogels, such as mucus, are ubiquitous in the
human body and they play a vital role in microscopically
regulating particle transport (1). For example, specially pre-
pared nanoparticles may pass through mucus, but in general
their movement is obstructed (2–4). Virions of different in-
fections have been shown to be trapped or to pass through
mucus to varying degrees, partly in accordance with their
size (2–9). In particular, normal, acidic cervicovaginal
mucus greatly hinders the movement of virions of herpes
simplex virus (HSV) (8) and human immunodeficiency vi-
rus (HIV) (10), whereas mucus that is neutralized by semen
deposited during coitus or by bacterial vaginosis provides a
much less effective barrier against the same virions (10,11).
Many experiments focused on particle tracking in mucus, or
in simulated biological hydrogels, show subdiffusive
behavior (2,4,6,10,12,13) or greatly slowed diffusive
behavior (14–17).

The efficacy of hydrogels in providing such a barrier
against infection is an important area of study (1,16).
Fundamental to this is an understanding of particle diffu-
sion in these systems. Single- and multiple-particle
tracking experiments are frequently used to analyze the
behavior of particle diffusion through mucus and gels
(2–4,6,10,12,14–16). Typical results are in the form of
two-dimensional images (and, less commonly, three-
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dimensional images (12)), which can be used to find tra-
jectories for individual particles. Single-particle tracking
experiments make it possible to measure the mean-square
displacement of the particles, and many studies infer diffu-
sion coefficients from this (12,18). In standard diffusion,
the mean-square displacement of diffusing particles scales
as a linear function of time, but in more general models of
diffusion such as time-scaled diffusion and fractional sub-
diffusion, the mean-square displacement scales sublinearly
with time. In experimental observations, there is often a
large amount of noise in measurements of mean-square
displacements, leading to different possible interpretations.
Moreover, the means are sometimes calculated as
ensemble averages over many particle trajectories, some-
times as time averages over a single-particle trajectory,
and sometimes as a combination of the two. The ensemble
and time averages are equivalent in standard diffusion, but
they are different in time-scaled diffusion and fractional
subdiffusion (19). A better understanding of the methods
to be applied in particle diffusion through gels is therefore
needed.

In the Materials and Methods section, we describe
different mathematical models for diffusion, namely, stan-
dard diffusion, time-scaled diffusion, and fractional subdif-
fusion. We present formulae for the first-traversal-time
distribution and the associated survival probability for
diffusing particles traversing a layer. The first-traversal-
time distribution, f ðtÞ, gives the probability of a particle
arriving at time zero and completely traversing the layer
http://dx.doi.org/10.1016/j.bpj.2015.05.034
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by the later time t. The survival probability, SðtÞ, is the prob-
ability that the particle is still in the layer at time t. For an
ensemble of noninteracting particles entering the layer at
time t ¼ 0, the survival probability represents the proportion
of those particles that remain in the layer.

In the Results section, we consider the diffusion of HIV
virions in human cervicovaginal mucus. Most of the models
for the transport theory of HIV virions, including diffusion
across layers, assume standard diffusion (20,21). We use
data from experimental observations of mean-square dis-
placements relevant to this problem for three different diffu-
sion models, standard diffusion with an effective diffusion
coefficient, time-scaled diffusion, and fractional subdiffu-
sion. We calculate traversal-time statistics based on each
of the models. There are large variations in the traversal-
time statistics depending on which model is used. Traversal
times calculated from a subdiffusive model reveal that the
motion of virions is greatly hindered by the presence of
acidic mucus. This calculation holds the promise that a
thin layer of mucus is thus capable of providing an effective
barrier against particle transport.
MATERIALS AND METHODS

In this section, we are interested in calculations relating to the time it takes a

particle governed by a particular diffusion process to traverse a layer. For

each of the mathematical diffusion models—standard diffusion, time-

scaled diffusion, and fractional subdiffusion—we determine the survival

probability, SðtÞ, for particles initially localized at a boundary, x ¼ 0, to

be in the domain 0%x%h at a later time t, given that x ¼ h is an absorbing

boundary. Fig. 1 is a schematic representation of an initial innoculum of vi-

rions entering a mucus layer with absorption at the epithelium. The analysis

in this article could be extended to multilayer models taking into account

the explicit arrival times of particles and dependent on the different charac-

teristics of the layers. An analagous process could be applied for an axisym-

metric three-dimensional model representing the entire vaginal mucosa.

The survival probability is calculated using
FIGURE 1 Schematic representation of the geometry of the model sys-

tem for diffusive transport of virions across a mucus layer with an absorbing

boundary at the epithelium. To see this figure in color, go online.
SðtÞ ¼
Zh
0

rðx; tÞdx;

where rðx; tÞ is the probability distribution for the position of the particle in
the domain at time t. The first-traversal-time distribution can then be found
from

f ðtÞ ¼ �vS

vt
:

Standard diffusion

A mathematical description of the physical process that underlies standard

diffusion is Brownian motion (Bm). This can be derived as the diffusion

limit of a standard random walk. A standard random walk, in one space

dimension, is the process where a walking particle, at each time step,

will step to the left or right with equal probability. The diffusion limit is

found by taking the length of the spatial and time steps simultaneously to

zero (22). The standard diffusion equation provides a model for random

motion of the particle in a spatially homogenous medium.

For a particle undergoing Bm, the evolution of the probability density,

rðx; tÞ, is governed by a diffusion equation. In one dimension, this is given

by

vr

vt
¼ D

v2r

vx2
; (1)

where D is the diffusion coefficient dependent on physical properties of the

diffusing particle and the environment. In this Gaussian process, if two par-

ticles have the same diffusion coefficient, D, then all their transport proper-

ties are equivalent.

The fundamental solution of the diffusion equation is given by

rðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp

�
� x2

4Dt

�
:

The mean-square displacement is then given by�
x2
� ¼ 2Dt; (2)

where the average is an ensemble average. The first-traversal-time statistics

are found by solving the diffusion equation (Eq. 1) subject to a zero-flux
boundary at x ¼ 0,

vr

vx
ð0; tÞ ¼ 0; (3)

and an absorbing boundary at x ¼ h,

rðh; tÞ ¼ 0: (4)

An infinite-series solution to this equation can be found using the standard

method of separation of variables. Applying the boundary conditions above,

we obtain the solution

rBmðx; tÞ ¼ 2

h

XN
n¼ 0

"
exp

 
�
�ð2nþ 1Þp

2h

�2

Dt

!

� cos

�ð2nþ 1Þp
2h

x

�#
:

(5)
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This is not normalized for all time, because there is an absorbing boundary

condition at x ¼ h. The survival function is the integral of this solution over

the spatial domain,

SBmðtÞ ¼ 4

p

XN
n¼ 0

"
exp

 
�
�ð2nþ 1Þp

2h

�2

Dt

!
ð�1Þn
2nþ 1

#
:

(6)

The first-traversal-time distribution is the time derivative of the survival

function,

fBmðtÞ ¼ Dp

h2

XN
n¼ 0

"
exp

 
�
�ð2nþ 1Þp

2h

�2

Dt

!

� ð2nþ 1Þð�1Þn
#
: (7)

The median traversal time, defined as the time at which the survival func-

tion is equal to one-half, can readily be calculated as a function of the phys-

ical parametersD and h. To do this, we define the rescaled survival function,bSBmðDt=h2Þ ¼ SBmðtÞ. The time at which SBmðtÞ is equal to a half, tBm, is

given by

tBm ¼ h2

D
bS�1

Bm

�
1

2

�
: (8)

By numerically inverting Eq. 8. we find that bS�1

Bmð1=2Þ ¼ 0:378748; this is
independent of D and h.

The same rescaling applies to the calculation of the mean first transit

time, yielding

hti ¼ h2

D
s�; (9)

where

s� ¼
ZN
0

sbf BmðsÞds; (10)

with s ¼ ðDt=h2Þ and

bf BmðsÞ ¼ h2

D
fBmðtÞ: (11)

Note that s� is independent of h and D and is equal to the mean first transit

time when h ¼ 1 and D ¼ 1, so that s� ¼ 1=2.
Time-scaled diffusion

In the standard diffusion equation the mean-square displacement scales lin-

early with time, in contradiction to many experimental measurements.

Anomalous scaling, which is not linear with time, can be obtained from a

diffusion equation with the diffusion constant replaced by an effective

time-dependent diffusion coefficient. The time rescaling models an

increasing propensity for a diffusing particle to become trapped and

restricted in its motion. The evolution of the probability density in this

time-scaled diffusion equation is governed by

vr

vt
¼ ata�1D

v2r

vx2
; (12)
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so that there is now a power-law time-dependent diffusion coefficient (23),

DðtÞ ¼ ata�1D: (13)

In free space, without boundary conditions, the solution to this equation

matches the probability density function for fractional Brownian motion
(24–27). However, with the introduction of boundary conditions, the

time-scaled diffusion model is no longer a valid model of fractional Brow-

nian motion (19,25,28), and it provides a model for subdiffusion that can be

studied in its own right. Like the standard diffusion equation, the time-

scaled diffusion equation can be derived as the diffusion limit of a random

walk. In this case, at each time step, the random-walking particle steps to

either the left or the right with equal probability, or it remains at the

same location; the probability of remaining at the same location increases

with time. The solution for time-scaled diffusion can be obtained from

the solution for standard diffusion (25) by employing a deterministic rescal-

ing in time, replacing t with ta where a˛ð0; 1Þ is a scaling exponent. This is
also true for the mean-square displacement, which thus scales sublinearly

with time, i.e., hx2i ¼ 2Dta. This process is essentially a fitting mechanism

that may be useful in approximating true physical processes (19,29).

With the boundary conditions given by Eqs. 3 and 4, and using a deter-

ministic time rescaling in Eq. 5. we obtain

rsBmðx; tÞ ¼ 2

h

XN
n¼ 0

"
exp

 
�
�ð2nþ 1Þp

2h

�2

Dta

!

� cos

�ð2nþ 1Þp
2h

x

�#
: (14)

This then can be integrated over the spatial domain to give the survival

function,
SsBmðtÞ ¼ 4

p

XN
n¼ 0

"
exp

 
�
�ð2nþ 1Þp

2h

�2

Dta

!
ð�1Þn
2nþ 1

#
:

(15)

After differentiating with respect to time, we obtain the first-traversal-time

distribution,
fsBmðtÞ ¼ ta�1aDp

h2

XN
n¼ 0

"
exp

 
�
�ð2nþ 1Þp

2h

�2

Dta

!

� ð2nþ 1Þð�1Þn
#
; (16)

which recovers the result for standard diffusion when a ¼ 1.

Similar to the case of standard diffusion, we can derive scaling relations
for the mean and median traversal times. Again we can define the rescaled

survival function, bSsBmðDta=h2Þ ¼ SsBmðtÞ. The time at which SsBmðtÞ is

equal to a half, tsBm, is given by

tsBm ¼
�
h2

D
bS�1

sBm

�
1

2

��1
a

: (17)

As this must limit to the standard case when a ¼ 1, we can see thatbS�1

sBmð1=2Þ ¼ bS�1

Bmð1=2Þ ¼ 0:378748.
The same rescaling applies to the calculation of the mean first transit

time, yielding

hti ¼
�
h2

D
s�
�1

a

; (18)

where again s� ¼ ð1=2Þ.
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Fractional subdiffusion

The evolution equation for the probability density function for particles un-

dergoing fractional subdiffusion is given by

vr

vt
¼ 0D

1�a
t

v2r

vx2
; (19)

where

0D
1�a
t yðx; tÞ ¼ 1

GðaÞ
v

vt

Z t

0

yðx; t0Þ
ðt � t0Þ1�a

dt0

is the Riemann-Liouville fractional time derivative of the function yðx; tÞ
(30). The fractional subdiffusion model can be derived as the diffusion limit
of a continuous-time random walk (CTRW). CTRWs are a generalization of

the random walk in which the particle undergoes random jumps, drawn

from a jump-length probability density, after waiting random times, drawn

from a waiting-time probability density (31). If the jump-length density has

finite variance and the waiting-time density has a finite first moment, then

the diffusion limit of the CTRW recovers the standard diffusion equation.

However, if the jump-length density has finite variance but the waiting-

time density has a power-law tail, with an infinite first moment, then the

diffusion limit of the CTRW recovers a time fractional diffusion equation

(30). CTRWs with power-law waiting times are well suited for modeling

subdiffusion from particle motion with traps and obstacles. The fractional

subdiffusion model is nonergodic and the mean-square displacement scales

as a sublinear power law in time,�
x2
� ¼ 2Dat

a;

whereDa is a fractional diffusion coefficient that is different for different a.

The solution to the fractional subdiffusion equation can be found from
the solution to the standard diffusion equation by performing a stochastic

time transformation. This is done by time-subordinating the solution of

the standard diffusion equation using an inverse-alpha stable Levy subordi-

nator (32). The time subordination of an exponential function, e�kta , is

given by Eað�ktaÞ, where EaðzÞ is a Mittag-Leffler function (33),

EaðzÞ ¼
XN
k¼ 0

zk

Gð1þ akÞ:

Hence, the probability density function for fractional subdiffusion is simply

found by replacing the exponential function in Eq. 14. with a Mittag-Leffler
function. This yields

rCTRWðx; tÞ ¼ 2

h

XN
n¼ 0

"
Ea

 
�
�ð2nþ 1Þp

2h

�2

Dat
a

!

� cos

�ð2nþ 1Þp
2h

x

�#
: (20)

Integrating over the spatial domain gives the survival function,

SCTRWðtÞ ¼ 4

p

XN
n¼ 0

"
Ea

 
�
�ð2nþ 1Þp

2h

�2

Dat
a

!
ð�1Þn
2nþ 1

#
:

(21)

This agrees with the first-survival-time distribution derived in Yuste and

Lindenberg (34) using a different approach.
The first-traversal-time distribution can now be obtained by differenti-

ating the above expression with respect to time, noting that (33)

dEaðzÞ
dz

¼ Ea;aðzÞ
a

;

where

Ea;bðzÞ ¼
XN
k¼ 0

zk

Gðbþ akÞ

is a two-parameter Mittag-Leffler function.

We thus obtain

fCTRWðtÞ¼ ta�1Dap

h2

XN
n¼ 0

"
Ea;a

 
�
�ð2nþ 1Þp

2h

�2

Dat
a

!

� ð2nþ 1Þð�1Þn
#
: (22)

This first-traversal-time distribution for fractional subdiffusion also re-

covers the first-traversal-time distribution for standard diffusion when

a ¼ 1.

Again we can derive scaling relations for the median traversal times,

although the mean times are infinite. In this case, the rescaled survival func-

tion will be dependent on the value of a, bSCTRWðDta=h2Þ ¼ SCTRWðtÞ. The
time at which SCTRWðtÞ is equal to one-half, tCTRW, is given by

tCTRW ¼
�
h2

D
bS�1

CTRW

�
1

2

��1
a

: (23)

As the value of bS�1

CTRWð1=2Þ depends on a, it needs to be calculated for each
value under consideration.
RESULTS

In the analysis above, we obtained algebraic expressions for
first-traversal-time distributions for three different models
of diffusion, standard diffusion, time-scaled diffusion, and
fractional subdiffusion. We now consider numerical evalua-
tions based on these models, to quantify differences in
traversal times. The first step is to extract values of the
model parameters, the diffusion constant D, and the scaling
exponent a, from experimental measurements of mean-
square displacements.
Estimates of diffusion coefficients and scaling
exponents

In an ideal situation, we would have access to experimental
data from a large number of particle trajectories over a long
period of time, ½0; T�. This would enable the computation of
the ensemble-averaged mean-square displacement as a
function of time, hDx2ðtÞi, and a moving time-averaged
mean-square displacement versus time, Dx2TðtÞ. In one space
dimension, the latter can be computed from the particle po-
sition xðtÞ as
Biophysical Journal 109(1) 164–172



FIGURE 2 Randomly generated sample path characteristic of subdiffu-

sion with a ¼ 0:3. Comparisons are made with fits to an ensemble average

of such paths based on the best-fit sublinear power law over the 25 s (red

line), the best-fit straight line for data from the first 5 s (orange line), and

the best-fit straight line for data from the first 25 s (green line). To see

this figure in color, go online.
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Dx2TðtÞ ¼ 1

T � t

ZT�t

0

ðxðt þ T 0Þ � xðT 0ÞÞ2 dT0:

The exponent a can be found as the slope of the line of best
fit in a log-log plot of the ensemble-averaged mean-square
displacement versus time. If hDx2ðtÞizDx2TðtÞ, then the un-
derlying physical process is likely to be Brownian motion if
az1, or fractional Brownian motion otherwise. If a«1 and
the ensemble average and moving time average are not in
agreement, then the time-rescaled diffusion model or the
fractional subdiffusion model should be considered. These
models can be distinguished through their probability den-
sities; Gaussian in the case of time-scaled diffusion, and
non-Gaussian in the case of fractional subdiffusion (30).

Often a particular model is fitted to experimental data
without consideration of the different possible physical pro-
cesses or associated models. Some experimental studies of
diffusion in mucus and simulated mucus assume that the
mean-square displacement varies linearly with time, as in
Eq. 2, to infer a diffusion coefficient, which may be some
orders of magnitude smaller than the diffusion coefficient
for diffusion in water (14–17). This will yield a constant
in the case of standard diffusion. However if the mean-
square displacement varies as a sublinear power of time,
then D calculated in this fashion will be time-dependent,
or it may yield different constant values based on different
observation times. It is straightforward, by minimizing the
area between two curves, to show that the straight line of
best fit to a power law Cta over an interval ½0; t� is given by

yðtÞ ¼ 6Cta�1a

ð1þ aÞð2þ aÞ t þ 2C
ð1� aÞta

ð1þ aÞð2þ aÞ:

The slope of this line provides an estimate for the diffusion

coefficient that varies as a function of the observation time,
t. Explicitly,

DðtÞ ¼ 3Cta�1a

ð1þ aÞð2þ aÞ: (24)

This is shown schematically in Fig. 2. In this figure we show
plots of hx2ðtÞi versus t for simulated subdiffusion data cor-
responding to Da ¼ 0:006ðmm=saÞ and a ¼ 0:3. The value
chosen for Da in this plot is consistent with the value of
G ¼ 0:023ðmm=saÞ measured in Boukari et al. (12) for
slowly diffusing virions following the scaling relation
hMSDi ¼ Gta þ v2t2. The sublinear power law, 2Dat

a

(red curve), provides an excellent fit to all data over this
time. The two straight lines of best fit to this power law,
based on the data from the first 5 s (orange line) and the first
25 s (green line), have slopes 2D ¼ 0:001 and 2D ¼ 0:0004,
respectively. Note that fitting data from shorter observation
times will result in a larger slope and faster apparent diffu-
sion than fitting data from longer observation times.
Biophysical Journal 109(1) 164–172
Some experimental studies attempt best fits to a power-law
scaling and then use this to infer a time-dependent diffusion
coefficient (19,25,29). The identification of a time-dependent
diffusion coefficient in this manner implicitly assumes a
time-scaled diffusion model (29). Fractional subdiffusion
and time-scaled diffusion are not ergodic processes, i.e.,
time averages are not equivalent to ensemble averages. One
important consequence of this for experimental analysis is
that it would be inappropriate to infer time-dependent diffu-
sion coefficients based on experimental measurements of
time-averaged mean-square displacements.

In the following, to make comparisons between the
different models, we assume the same diffusion constant,
Da ¼ 0:006ðmm=saÞ, for time-scaled diffusion and frac-
tional diffusion. This value is within the range of reported
values from experimental observations of HIV virions in
both acidic and neutralized cervicovaginal mucus. The con-
clusions that we draw from our results are not sensitive to
the particular choice of Da, which justifies our simplifica-
tion to use the same Da for different scaling exponents a.
Experimental results show considerable individual variation
in a, which is also dependent on the pH of cervicovaginal
mucus (35). We use a lower bound of a ¼ 0:3 in acidic
mucus (10,12) and an upper bound of a ¼ 0:9 in neutralized
cervicovaginal mucus (10). The mucus thickness has been
taken to be the approximate thickness of vaginal fluid
in vivo, reported as varying greatly around a mean of
50mm (4,36,37). The geometry for the calculations is shown
schematically in Fig. 1. The calculations that we present
here are important for determining the time it takes an infec-
tious agent to cross a mucus layer, thus providing informa-
tion on a lower bound for infection times. Traversal times
may also be used to provide rough estimates of the period
over which any antiviral protection, such as a microbicide,
would need to be effective.
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Median first traversal times

The survival functions and first-traversal-time distributions
differ greatly depending on the underlying physical process
and the associated diffusion model (see Fig. 3). In this
figure, we have shown plots of the first-traversal-time distri-
bution and the survival probability function for two different
values of a; and for standard diffusion, time-scaled diffu-
sion, and fractional subdiffusion. In the case of standard
diffusion, results are shown for two values of the diffusion
coefficient, one based on 5 s data and one based on 25 s
data, using Eq. 24. These plots reveal that predictions of
the traversal-time statistics based on standard diffusion,
with effective-diffusion-coefficient approximations, could
be orders of magnitude different from those based on
time-scaled diffusion and fractional subdiffusion. The re-
sults, which are shown for a ¼ 0:9 (Fig. 3, A and C) and
a ¼ 0:8 (Fig. 3, B and D), are characteristic of weak subdif-
fusion, as observed in neutralized cervicovaginal mucus.

Specifically, considering the first 24 h, the model choice
makes a large impact on the relative probability of a virion
transiting through the mucus layer. The probability that a vi-
rus has traversed by time t is equal to the cumulative distri-
bution function (CDF) of the first-traversal-time
distribution. This is simply the complement of the survival
function, i.e.,

FðtÞ ¼ 1� SðtÞ: (25)

For example, taking a ¼ 0:9, Da ¼ 0:006, and a mucus
thickness of 50 mm at 12 h, the CDF of the time-scaled
Bm (sBm) process is 3:6� 10�4, in comparison to frac-
tional diffusion, where the CDF is 9:6� 10�4. Thus, a
model based on fractional diffusion will result in almost
three times as many virions crossing the mucus in the first
12 h. Proportionally, this difference decreases with time:
at 24 h, the CDF for the sBm processes is 1:2� 10�2 and,
A B

C D
for fractional diffusion, is 1:7� 10�2. Both of these values
are orders of magnitude smaller than the Brownian motion
values.

A useful measurement that can readily be extracted from
the survival function is the median traversal time, defined as
the time at which the survival function, SðtÞ, reaches the
threshold value of one-half. For the system of virions
crossing a mucus layer, this represents the time at which
one-half of the virions have successfully crossed the mucus
layer. The traversal time will clearly depend on the thickness
of the layer. The thickness of the vaginal mucus layer varies
greatly around 50mm (36,37). It is estimated to be at least
tens of micrometers thick in most areas (3), but can range
from completely absent to a few millimeters (4). Hence, bio-
logically relevant systems and their mathematical descrip-
tions must cover a wide range of a and h values. Here, we
describe how this variation affects predictions of the median
traversal times from the time-scaled diffusion model and the
fractional subdiffusion model.

Fig. 4 explores the impact of the various models on me-
dian and mean first-traversal times. It can be seen that
increasing the exponent a (closer to standard diffusion) re-
sults in a decreased median first-traversal time. The effect
of subdiffusion is dramatic, with variations over several or-
ders of magnitude from low a compared with standard diffu-
sion (a ¼ 1) (Fig. 4 A). Under the assumptions of this
model, merely a micrometer of acidic mucus (a ¼ 0:3)
can trap over half of incoming virions for well over a
week. However, that same layer of mucus, when neutralized
(a ¼ 0:9), traps half of incoming virions for less than 2 min.
The ratio of median first-traversal times for the CTRW and
sBm models is different from 1 for all a<1, with the differ-
ence becoming greater at small a (Fig. 4 B). For example,
this ratio is ~2.5 when a ¼ 0:3. Increasing mucus thickness
also increases both median and mean first-traversal times
(Fig. 4, C and D). These effects are enormous in acidic
FIGURE 3 Plots of first-traversal-time distribu-

tions (A and B) and survival functions (C and D)

over a mucus layer of thickness h ¼ 50 mm. The

plots show standard diffusion for two choices of

D based on time-scaled diffusion, with

Da ¼ 0:006ðmm2=saÞ, and fractional subdiffusion,

with Da ¼ 0:006ðmm2=saÞ, and with diffusion co-

efficients for Bm approximations calculated from

Eq. 31. In (A) and (C), a ¼ 0:9, D5s ¼ 0:005, and

D25s ¼ 0:004, whereas in (B) and (D), a ¼ 0:8,

D5s ¼ 0:004, and D25s ¼ 0:003. To see this figure

in color, go online.
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FIGURE 4 Plots of median first-traversal times

and mean traversal times in hours (in all instances,

D ¼ 0:006ðmm2=saÞ). (A) Log-log plots of the me-

dian first-traversal time as a function of a from the

CTRW model (blue dashed line) and from the

time-scaled diffusion model (red line). The mucus

thickness is taken to be 50 mm. (B) Log-log plot of

the ratio of the median first-traversal time from the

CTRW model to the median first-passage time of

the time-scaled diffusion model as a function of

a. This ratio does not depend on the diffusivity or

the mucus thickness. (C) Log-log plots of the me-

dian first-traversal time from CTRW a ¼ 0:3

(blue dashed line), time-scaled diffusion a ¼ 0:3

(red line), CTRW a ¼ 0:9 (green dashed line),

time-scaled diffusion a ¼ 0:9 (orange dashed

line), and standard diffusion (purple dashed line).

(D) Log-log plots of the mean first-traversal time

from time-scaled diffusion a ¼ 0:3 (red line) and

a ¼ 0:9 (orange dashed line) and standard diffu-

sion (purple dashed line). To see this figure in co-

lor, go online.
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mucus (a ¼ 0:3). The anomalous diffusion of mucoadhesive
nanoparticles and viruses like HIV can depend on the chem-
ical properties of the medium (10,16), with HIV moving
considerably faster through neutralized (a ¼ 0:9) than
through acidic (a ¼ 0:3) mucus. Although the vaginal envi-
ronment is naturally acidic, after unprotected coitus and
ejaculation (and the possible introduction of a sexually
transmitted virus), it becomes temporarily neutralized after
the deposition of semen (38,39).
DISCUSSION

There have been many experimental studies of virions in
mucus that have reported anomalous diffusion based on ob-
servations of mean-square displacement as a function of
time. The anomalous diffusion is variously characterized
by a very small effective diffusion coefficient derived
from a linear scaling with time, or by an exponent derived
from a sublinear power law scaling with time. Understand-
ing the ramifications of this anomalous diffusion for other
transport properties is of vital importance for research on
developing preventive measures, i.e., microbicides and vac-
cines, that act in the earliest stages of infection (40,41). With
sufficiently robust particle-tracking data, it would be
possible to determine the most likely source of anomalous
diffusion and the appropriate corresponding mathematical
model. It would also be possible to identify transient anom-
alous diffusion (23,42,43). These mathematical tests that
distinguish between different diffusion models require the
comparison of time-averaged data over long continuous par-
ticle tracks, and ensemble averages over many particle
tracks (44).

The model calculations in this article focus on the rather
idealized situation of virions diffusing through a mucus
layer, and they ignore all complications arising from the
Biophysical Journal 109(1) 164–172
manner in which the virions are delivered to the mucus
layer. For example, semen-mucus interactions could greatly
increase the concentration of virions that could penetrate the
mucus layer.

We have presented first-traversal-time statistics based on
different models of diffusion for HIV virions traversing a
mucus barrier. The mathematical formulae are relevant for
any system of small particles, such as virions or nanopar-
ticles, undergoing trapping-based diffusion across some sur-
face coating, such as mucus or a topical gel. In the
application to HIV virions, we use reported experimental re-
sults to obtain model parameters for the time-scaled diffu-
sion model and the fractional subdiffusion model, and we
assume a mucus layer whose thickness is on the order of mi-
crometers. The median first-traversal time is very sensitive
to the anomalous diffusion exponent in these calculations.
Low values of the exponent (a ¼ 0:3) have been associated
with diffusion in normal acidified cervicovaginal mucus.
Our estimates of the traversal times in this case are on the
order of weeks. Large values of the exponent (a ¼ 0:9)
have been associated with an increase in the pH of the cer-
vicovaginal mucus, which can occur during coitus because
of the alkaline properties of semen (38,39). Our estimates
for traversal times in this case are much lower, on the order
of minutes.

The clearance time for human cervicovaginal mucus from
the female genital tract is on the order of a few hours (3), and
the mucus layer is estimated to be tens of micrometers thick
(3,4). Our results suggest that under the assumptions of the
model, an acidic cervical mucus layer will effectively trap
the vast majority of incoming HIV virions. However, a
nonacidic neutralized cervicovaginal mucus layer, such as
that expected after coitus, will facilitate traversal of the
mucus layer, potentially leading to infection of susceptible
cells accessible from the epithelial surface. Given that the
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explicit model assumptions need to be further experimen-
tally tested, the action of a thin layer of acidic mucus as a
potential diffusion barrier should be addressed by experi-
mental studies.

Given the infrequency of HIV infection (as low as 1 in
1000 (45)), there may be several barriers to the establish-
ment of infection. What prevents infection might simply
be that too few infectious virions are successfully deposited,
that too many are prevented from penetrating the epithelium
and subepithelium, or that there are insufficient numbers of
target cells there. The extent to which the acidity of cervico-
vaginal mucus can be maintained postcoitus may contribute
to this low infection rate by allowing the mucus to act as a
diffusional barrier. The above results are highly sensitive to
model assumptions, which must be further investigated us-
ing more robust models.

A potentially important aspect is the mechanical effect of
coitus on mucus thickness. However, these results are
encouraging for the development of microbicides and vac-
cines designed to block the early events in HIV infection;
neutralizing antibodies and other entry inhibitors binding
to the virions would have the time window set by diffusion
to act before the virus encounters susceptible cells
(40,41,46–49). Mathematical models, such as the time-
scaled diffusion model and the fractional subdiffusion
model, can guide the development of preventative strategies,
but it is vital that experimental data be collected and
analyzed correctly, with an understanding and knowledge
of the model assumptions and limitations.
SUPPORTING MATERIAL

Mathematica code for the calculation of first traversal times is available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00546-9.
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