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ABSTRACT
Allogeneic HSCT is the most reliable, robust, and effective cell-based biotherapy currently available to
pediatric and adult patients with hematologic malignancies. The central role of donor-derived lymphocytes in
mediating an effective antitumor effect, preventing and controlling opportunistic infections, and causing
GVHD is well documented in animal experiments and human trials. The profound lymphopenia after condi-
tioning regimens coupled with molecular tools to distinguish host versus donor cells provides investigators a
window into immune recovery after allogeneic HSCT. Serial analyses of T cell subsets linking immunophe-
notype with function have revealed the kinetics of donor-derived T cell recovery after allografting and provided
insights into ways the immune system can be manipulated to augment the graft-versus-tumor (GVT) effect
without inducing GVHD. As this review demonstrates, investigators are not limited to being passive observers
of this immune reconstitution; rather, we have an opportunity to shape the allografted T cells repertoire to
selectively augment immune function.
© 2007 American Society for Blood and Marrow Transplantation
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MMUNE-BASED THERAPIES TO SUPPLEMENT
LLOGENEIC HSCT, AN EXAMPLE OF COMBINATION
MMUNOTHERAPY

Recipients of allogeneic HSCT benefit from a
VT effect in general and a graft-versus-leukemia

GVL) effect in particular, due to donor-derived T
ells targeting miHAs selectively expressed by cells or
ell subsets of a recipient’s hematopoietic system [1].
his observation supports the rationale of infusing
iHA-specific T cells after allogeneic HSCT to aug-
ent the GVL-effect. If the tissue distribution of the
iHA is confined to the malignant cells, then this

doptive immunotherapy should not cause aGVHD.
owever, the development of cellular immunotherapy
ith effector cells of defined specificity and function is

hallenging and is not yet widely available. In contrast,
ntibody and cytokine therapies have already been
uccessfully tested and used in treatment regimens for
range of human malignancies.

It is routine practice for patients with hypogam-

aglobulinemia to receive intravenous Ig after allo- T
eneic HSCT. As antigen-specific mAb therapy has
een incorporated into chemotherapy regimens, so
oo have oncologists incorporated these passive im-
unotherapy approaches into transplantation condi-

ioning regimens. For example, rituximab is employed
n conditioning regimens not just to cytoreduce ma-
ignant B cell burden [2] but also to deplete normal B
ells leading to a reduction in the risk for GVHD [3].
uilding on the potential of CD20-directed mAb

herapy to selectively cytoreduce patients before
SCT, investigators have successfully used iodine 131

ositumomab and ytterbium 90 ibritumomab in my-
loablative doses in blood and BM transplantation
rotocols for high-risk patients [4-8].

Cytokine therapy has also been used widely to
upport allogeneic HSCT. For example, supraphysi-
logic dosing of G-CSF is used to mobilize donor
SCs and as prophylaxis in an attempt to improve
yeloid engraftment, although the latter may signif-

cantly add to the economic burden of HSCT [9,10].

he infusion of low doses of recombinant human IL-2
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s tolerated after successful allografting, but has a
heckered history when used as an immunomodulator
ecause it has not been associated with an improve-
ent in rates of relapse [11,12]. However, there is a

esurgence of the use of this cytokine, especially at low
oses. In particular, recombinant human IL-2 is being
sed in vitro to help propagate clinical-grade T cells
nd NK cells for adoptive immunotherapy and in vivo
s a surrogate for a deficient endogenous Th response
o help sustain proliferation of adoptively transferred
D8� T cells and to improve the survival of infused
K cells.

AY 0—NOT JUST ONE DAY

Allogeneic HSCT is evolving from a field where
ll cell therapy was provided on “day 0” (the day
arking infusion of HSCs) to that where a continuum

f therapies is applied to meet patient needs and min-
mize attendant toxicities. The period after comple-
ion of conditioning therapy to engraftment of func-
ional lymphocytes is a unique opportunity for
mmunotherapists. Thus, although day 0 and infusion
f the allograft is a signature event, there are addi-
ional day 0s signifying infusion of immune cell-based
roducts, such as antigen-experienced lymphocytes,
K cells, and APCs.

CELL DEPLETION—ARE WE THROWING OUT
HE GOOD WITH THE BAD?

Allografts from BM and G-CSF-mobilized periph-
ral blood have been ex vivo depleted of T cells to
roaden the donor pool and application of allogeneic
SCT. Profound T cell depletion (TCD) regimens can

e used to safely engraft HSCs from haploidentical do-
ors, but the loss of allogeneic T cells renders the recip-

ents severely immunocompromised and thus vulnerable
o infection and relapse. The relative risk-versus-benefit
f TCD versus T cell-replete allogeneic HSCT must be
eighed for individual patients (Figure 1).

To decrease the threat of TCD, investigators are
xperimenting with the timely add-back of donor-de-
ived T cells that have been stripped of potential un-
anted allogeneic reactivity [13-18]. However, there is a
ew appreciation that inducing transient lymphopenia
ay be worth the risk, because the T cell depleted

nvironment may provide a special instance to manipu-
ate the recipient’s immune system. This moment comes
bout due to loss of Treg cells, freeing up of lymphoid
space,” and availability of limiting amounts of endoge-
ous cytokines (eg, IL-15 and IL-7). In this environ-
ent, adoptively transferred T cells and NK cells can

ndergo proliferation by taking advantage of the homeo-
tatic control mechanisms that may restore the periph-

ral pool of lymphocytes [19,20]. m
This approach has been exploited at the National
ancer Institute for treatment of melanoma using adop-

ive transfer of autologous melanoma-specific T cells
xpressing endogenous or introduced melanoma-specific
/� TCRs. These T cells, which have been numerically
xpanded ex vivo, have successfully treated melanoma
umor deposits when infused after a lymphocyte-deplet-
ng regimen of cyclophosphamide and fludarabine
21,22]. The antitumor effect is dependent on (1) po-
ency (using tumor-specific T cells with a defined �/�
CR) and (2) T cell “area under the curve” (measure-
ent of the number of infused antigen-specific T cells

ver time). Recent data suggest that the recovery of
D8� T cell response in the setting of lymphopenia

equires CD4� T cells, which may be one reason why
doptive transfer of melanoma-specific CD8� T cell
lones failed to proliferate in vivo [23,24].

Extrapolating these data to allogeneic HSCT, we
ypothesize that lymphocyte-depleting preparative
egimens may facilitate the therapeutic potential of
mmunotherapies employing adoptive T cell transfer.
ympho-depletion may also benefit the efficacy for

umor-specific vaccines. This is based on the premise
hat (1) dose-intensive chemotherapy can lengthen the
eriod of progression-free survival, thus allowing time
or a slow-acting therapy such as vaccination to
e effective, (2) maximally decreasing the recipient’s
umor burden may increase the effectiveness of im-

igure 1. Risk and benefit of inducing lymphopenia after allogeneic
SCT.
unotherapy by mechanisms including decreases
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n tumor-induced immunosuppressive effects, and
3) providing tumor antigen exposure after immune
epletion in the form of repeat immunizations may
ake advantage of the antigen-driven peripheral T cell
xpansion that characterizes immune reconstitution at
arly time points. The T cell repertoire is then biased
oward tumor antigens and antitumor responses at
ater time points [25].

Investigators have also combined vaccine therapy
ith adoptive immunotherapy to improve T cell ef-

ector function. This has particular appeal to augment
ellular immunity after autologous HSCT. Pre-che-
otherapy T cells, especially if primed, are very ef-

ective for adoptive immunotherapy in conjunction
ith repeat tumor antigen exposure, when adminis-

ered after lymphocyte-depleting chemotherapy [26].

MMUNE RECONSTITUTION AFTER ALLOGENEIC
SCT—RIGHTING THE WRONG

Allogeneic HSCT cures many patients with a history
f relapsed or high-risk hematologic malignancies. To
roaden the application of allogeneic HSCT, alternative
onsibling donors are often recruited; but preparing the
ost and/or allograft from these donors typically causes
isturbances to the recipient’s immune system and the
ewly allografted recipient is profoundly immunocom-
romised. Thus, despite reduction in intensity of condi-
ioning regimens and improvements in supportive care,
nfection remains an important cause of morbidity and

ortality after allogeneic HSCT and delayed T cell
mmune recovery is typically a primary risk factor for
eath due to infection. When GVHD occurs, the risk of
eath due to infection is further increased due to direct
ffects of GVHD on the recovering immune system and
he consequences of application of immunosuppressive
gents.

Prospective analyses of immune reconstitution pa-
ameters reveal a hierarchy of disturbances that are
ssociated with (a) selection of a donor and source of
donor’s HSCs, (b) number of infused donor-derived
SCs, (c) ex vivo manipulation of donor-derived
SCs to reduce T cells in general or alloreactive T

ells in particular, and (d) use of immunosuppressive
edications such as corticosteroids. For example,
CD of the allograft or use of an umbilical cord blood

UCB), particularly a small UCB unit relative to re-
ipient weight, leads to profound delay in recovery of
ymphocyte number and disruption of function after
llogeneic HSCT. Some maneuvers may shorten this
eriod of functional and numerical lymphopenia, such
s (a) infusion of megadoses of donor-derived TCD
SCs, (b) combining two UCB units or ex vivo-

xpanded UCB units, (c) enhancing thymic function
as proposed by administration of leuprolide), or

d) infusion of donor-derived T cells (in some cases C
xpressing a conditional suicide gene to eliminate in-
used T cells in the event of severe toxicity) [27-29].

Prolonged and profound lymphopenia renders the
ransplanted recipient at high risk for opportunistic
nfection. Studies of opportunistic viral infections
ave improved our understanding of the central role
cells have in control of CMV, EBV, varicella zoster

irus, adenovirus, and BK virus infections. To prevent
nd treat these viral infections, investigators have har-
ested virus-specific memory T cells from donors,
xpanded them ex vivo, and infused them after allo-
eneic HSCT [30-34]. As ex vivo cell propagation
echnology has evolved and our understanding has
eepened of what subpopulations of T cells might be
he most effective in vivo, investigators have used
doptive immunotherapy of viral disease to advance
ethods to (a) infuse T cells soon after day 0, (b) adop-

ively transfer both CD4� and CD8� populations of
ntigen-specific T cells versus CD8� clones, and
c) exploit selection methods (eg, using paramagnetic
eads) for rapid acquisition of minimally manipulated
ntigen-specific T cells (identified by tetramer bind-
ng or Tc1 cytokine secretion). Such lymphocytes in-
lude cells that are likely less polarized in their ex vivo
ifferentiation into effector T cells and less likely to
ndergo replicative senescence compared with T cells
arvested from ex vivo cultures that have undergone
ultiple repetitive cycles of stimulation to achieve

umeric expansion (and possibly selection of an intro-
uced transgene) [35,36]. These adoptive transfer studies
ely on the premise that antigen-specific T cells can be
dentified in the donor. In the event that the donor is
eronegative, then vaccination may be undertaken, pri-
ary T cells may be genetically manipulated to achieve

edirected specificity, or in vitro priming of antigen-
nexperienced T cells may be attempted.

CELL REGENERATION—IT’S NOT JUST ABOUT
UMBERS

Characterizing the kinetics of the emerging al-
ografted immune system has defined two main path-
ays of T cell regeneration. In the absence of thymic

unction, appreciable populations of immunecompe-
ent T cells are generated by peripheral expansion of
ature T cells. This peripheral expansion pathway is

nfluenced by antigen and therefore prone to skewing
y vaccination. Recovery of thymic function, the route
f T cell regeneration after allografting, may be im-
ortant for the long-term health of the immune sys-
em, because thymopoiesis is sufficient to contribute
ffectively to reconstitution of lost T cell populations.

To understand engrafted T cell function, investi-
ators have employed quantitative tools to show how
he TCR repertoire recovers after allogeneic HSCT.

ytokine flow cytometry can assess the number and
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unction of CD4� and CD8� T cells at a single-cell
evel. This approach can demonstrate how the num-
er, function, and maturation status of antigen-spe-
ific T cells correlate with protective immunity to
ndividual pathogens capable of causing disease in re-
ipients (eg, CMV) [37,38]. In addition, we have
earned that the thymus, known to be the primary site
f lymphopoiesis in childhood, but assumed to be
ormant in adults, still functions after HSCT and
ontributes to T cell immune recovery, even in some
dult recipients (Figure 2) [39-41].

Studies correlating T cell function (assessed by
ytokine flow cytometry) with TCR repertoire (as-
essed by binding of tetramer) have led to an under-
tanding that there are discrepancies in recovering T
ell populations (eg, after UCB transplantation) be-
ween the number of antigen-specific T cells and their
unction [42]. Thymic function plays a central role in
egenerating naive T cell function and most patients
an recover thymic function in the weeks to months
fter allogeneic HSCT. These data support the use of
ost-thymic interventions (eg, androgen blockade, ad-
inistration of desired cytokines such as IL-7) to

ugment immunity after allogeneic HSCT and in-
rease the number and diversity of naive T cells ca-
able of responding to (vaccine) antigens. However,
or those patients with impaired thymic function, eg,
ecipients of UCB transplantation, the delay in thymic
ecovery may be associated with functional “holes” in
he T cell repertoire and increased risk of opportu-
istic infection. This understanding of immune re-
onstitution has repercussions for vaccination and
here are three potential strategies for optimizing or
xaggerating T cell response to tumor-antigens in the

Figure 2. Routes of T cell recover
etting of allogeneic HSCT: (a) early vaccination after c
essation of lymphodepleting chemotherapy to take
dvantage of antigen-driven T cell reconstitution by
eripheral expansion, (b) adoptive transfer during a
eriod of lymphopenia of T cells presensitized to
pecific antigens of choice or rendered specific to a
esired antigen, and (c) late vaccination to take advan-
age of a new, repaired T cell repertoire that appears
ith thymic recovery in a subset of patients.

ONOR-DERIVED NK CELLS—NATURALIZED KILLER
ELLS?

It is now accepted that some patients with myeloid
alignancies who are the recipients of haplo-disparate

rafts develop an improved GVL-effect when the do-
or and recipient killer cell Ig-like receptors (KIRs)
re appropriately mismatched, leading to donor-de-
ived NK cells being released from inhibition [43,44].
K cells are part of the innate immune response, and

s the first lymphocyte subset to engraft, they have
een implicated in contributing to the GVT-effect
nd suppression of GVHD [45,46]. The question for
ncologists is how to (a) reliably predict this NK-
ediated effect, (2) broaden the applicability to ma-

ignancies other than AML, (c) harness the NK-effect
or HLA-matched transplants, and (d) improve the

K cell-versus-tumor effect.
Correlating immunogenetics with NK cell func-

ion in vitro and in vivo has improved our understand-
ng of the receptor-ligand barriers that serve to keep

K cell function quiescent. The relative activation
tate of NK cells is governed as an amalgamation of
ctivating and inhibitory signals that are currently
eing elucidated. The NK cell inhibitory signals in-

ripheral blood after lymphopenia.
lude the inhibitory KIRs, which have specificities for
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Lymphoid Reconstruction and Vaccines 21
LA class I molecules. Thus cells are susceptible to
ysis by activated NK cells if the targets lack expres-
ion of classical HLA class I molecules. Further, if the
arget cells in the recipient lack an HLA class I allele
resent in the donor HLA genotype and the recipi-
nt’s HLA class I is not a ligand for the KIR on donor
K cells, then the allogeneic donor NK cells can be

ctivated for cytolysis and mediate an anti-leukemic
ffect, especially if the target cells are AML blasts.
he activation of NK cells due to this missing KIR

igand effect is possible because the KIR and HLA
enes segregate independently of each other, which
esults in the phenotype of persons who lack KIR
eceptors for their respective HLA ligands and per-
ons who lack HLA ligands for their respective KIR
eceptors. The predictive models of allogeneic NK
ell behavior based on immunogenetics has led to the
reselection of donors for haploidentical HSCT based
n KIR and HLA genotyping. However, these models of
onor-recipient genetics (KIR and HLA typing) and
henotype (NK-mediated killing) remain incomplete
nd this limits the application of NK cell therapy to
ther malignancies and reliably extrapolating the NK
ffects outside the haploidentical HSCT setting [47,48].

Because animal models of allogeneic NK cell im-
unobiology and antitumor effect are generally of

ncertain clinical significance, investigators have pi-
oted phase I/II clinical studies to directly assess the
ole of infused allogeneic NK cells. These trials adop-
ively transfer haploidentical (CD3-depleted and IL-2
ctivated) NK cells into lymphopenic patients with
ematologic and solid tumors and demonstrated that
n antitumor effect is dependent on (a) potency,
chieving the appropriate mismatch between donor
IR and recipient classic HLA molecules, and (b) the
K cell area under the curve, sustaining the persis-

ence of infused NK cells after lymphodepleting che-
otherapy with an associated increase in endogenous

L-15 and accompanied by infusion of exogenous IL-2
49]. Oncologists are currently combining haploiden-
ical HSCT and adoptive transfer of activated NK
ells to infuse NK cells before or after allogeneic
SCT in an effort to limit relapse rates after HSCT.

HE FUTURE OF COMBINATION IMMUNOTHERAPIES

Profound lymphopenia after allogeneic HSCT
an result in death of the recipient from opportunistic
nfection or relapse due to an incomplete GVT-effect.
ut it also represents an opportunity. Oncologists are

amiliar with balancing risk/benefit ratios and recog-
ize the therapeutic power of immunotherapy, and are
onsequently an ideal group of investigators to ad-
ance combination immunotherapies. Investigators
re already combining cellular therapy with lym-

hodepleting chemotherapy and antibody therapy. In
he future other combinations will be realized:
a) immunotherapy with gene therapy to introduce
ew cellular functions or remove impediments to
unction, (b) adoptive immunotherapy with vaccine
herapy to deliver an effector cell population and an
mmune stimulus, (c) cytokines and antibodies (immu-
ocytokines), (d) antibodies (or immunocytokines)
nd T cells, using genetic manipulation to introduce
Ab-derived chimeric antigen receptors to redirect

he specificity of T cells, and (e) antibodies (or immu-
ocytokines) and Fc receptor-expressing NK cells to
chieve tumor-specific NK cell-mediated antibody-
ependent cellular cytotoxicity. It is anticipated that
hese active and passive immune-based therapies will
e individualized for each patient based on an under-
tanding of immune recovery.
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