solution as well as different restrictions inside ICEs between ATPases and mitochondria. The model is flexible and allows us to test various hypotheses regarding different compartmentalization of ATPases in the cell. This feature also makes it possible to develop the model into being able to assess a set of diffusion restrictions of more complicated systems.

1240-Pos Board B84
Control and Regulation of Mitochondrial Energetics in an Integrated Model of Cardiomyocyte Function
Sonia Cortassa, Brian O’Rourke, Raimond L. Winslow, Miguel A. Aon. Johns Hopkins University, Baltimore, MD, USA.

In heart there is currently no consensus about the mechanism(s) and relative importance of the processes involved in matching energy supply with demand. This is due to mitochondrial energetics modulating and being modulated by the network of meso-electrical processes existing in cardiomyocytes. A computational model integrating mitochondrial energetics and EC coupling provides an important analytical tool to understand the regulation and control of the global organ function. Here, we apply a generalized matrix method of control analysis to calculate flux and concentration control coefficients, as well as response coefficients, in an integrated model of Excitation-Contraction coupling and Mitochondrial Energetics in the cardiac ventricular myocyte. Control and regulation of oxygen consumption (VO2) was first assessed in a mito-

1241-Pos Board B85
Computational Model Of Citric Acid Cycle And Oxidative Phosphoryla-
Ardo Illaste, Marko Vendelin.
Tallinn University of Technology, Tallinn, Estonia.

Mitochondria are responsible for providing red muscle cells with ATP, the chemical energy form in which work is converted to mechanical work by sarcomeres. Just as the organism needs to cope with different levels of activity, energy pro-

1242-Pos Board B86
Application of Proportional Activation Approach to oxidative phos-
Bernard Korzeniewski.
Jagiellonian University, Krakow, Poland.

Proportional Activation Approach (PAA) [1] is a simple quantitative method allowing to determine the proportional activation of the producer (P) and consumer (C) of some intermediate metabolite M by some external factor X. M can be e.g. ATP, ΔΨ or NADH, while X can be e.g. a hormone or neural/electrical stimulation of muscle. The proportional activation of C and P (ΔC/M or ΔP/M) is quantified by the proportional activation coefficient. Application of PAA to the oxidative phosphorylation demonstrates clearly that: 1. ΔΨ production and consumption during stimulation of isolated hepatocytes by vasopressin [2]; 2. ΔΨ production and consumption during electrical stimula-

1243-Pos Board B87
Cardiolipin’s Structure, ATP Synthesis & Barth’S Syndrome
Thomas H. Haines.
Rockefeller University, Box 187, New York, NY, USA.

Resonance stabilizes two phosphate high energy H-bonds with the free hy-

droxyl of cardiolipin (CL) rendering a bicyclic conformation, but only in bilayers. Thus it is symmetrical, displaying 2 pK2’s. The pK2 varies with the length of its fatty acid chains. With 4 C16:0 chains the pK2 is >8.0. Thus the headgroup section together with a buffer at neutral pH, CL is on both sides of the IMM. The high pK2 implies that ATP synthesis is driven by membrane potential rather than by delta pH, lowering the energy demand for ATP synthesis. Nearly all membranes that contain CL also contain F1F0, Mammalian mitochondrial CL is generally tetra-

1244-Pos Board B88
Quinine Causes Mitochondrial Uncoupling Independent Of K+//H+ Exchange Inhibition
Mohammed Aldakkak, Timothy Trichler, Amadou K.S. Camara, Johan Haumann, David F. Stowe.
Medical College of Wisconsin, Milwaukee, WI, USA.

Introduction: K+ influx into the respiring mitochondrial matrix is balanced by K+ efflux via K+/H+ exchange (KHE). Quinine (QN) is a reversible inhibitor of KHE. We have shown that QN blocks matrix K+ efflux when the K+ ionophore valinomycin is given to increase matrix [K+]. However QN may have other effects on mitochondria. Here we tested the effects of QN on mitochondrial respiration. Methods: Guinea pig heart mitochondria were isolated by differ-

1245-Pos Board B89
Mitochondrial Redox Responses To Increased Work Intensity In Rabbit Ventricular Myocytes
Ifath A. Ghouri, Ole J. Kemi, Godfrey L. Smith.
University of Glasgow, Glasgow, United Kingdom.

Simultaneous measurement of the intrinsically fluorescent metabolic coenzymes NAD(P)H (reduced) and FAD (oxidised) enabled assessment of the
mitochondrial redox response to increased work. Isolated cardiomyocytes were field stimulated and fractional shortening simultaneously recorded with epifluorescence measurements of NAD(P)H and FAD. Cells were paced at 0.5Hz and the stimulation frequency step increased to 1Hz, 2Hz and 3Hz in order to increase work intensity. NAD(P)H was excited at 340nm (fluorescence collected 455-480nm) and FAD was excited at 430nm (fluorescence collected 505-600nm).

Increasing the stimulation frequency from 0.5Hz to 2Hz and 3Hz, but not 1Hz, resulted in a decrease in NAD(P)H fluorescence and an increase in FAD fluorescence, indicating oxidation of the cell environment. Reducing work intensity back to 0.5Hz pacing led to immediate recovery of metabolite fluorescence. Addition of 2mM NaCN established a completely reduced mitochondrial environment, leading to NAD(P)H fluorescence increasing to a maximum and FAD fluorescence decreasing to a minimum. Subsequent step increase in stimulation to 3Hz caused no change in NAD(P)H or FAD fluorescence. Treatment with 2mM NaCN reached a completely oxidised state, resulting in NAD(P)H fluorescence falling to a minimum and FAD fluorescence increasing to a maximum. Pacing at 3Hz in this state again led to no change in metabolite fluorescence, confirming the response to increased work was mitochondrial in origin.

In conclusion, the response to increased work intensity in cardiomyocytes is oxidation of the cell, suggesting that the mitochondria are initially unable to maintain NAD(P)H/FADH$_2$ supply in order to cope with increased metabolic demand.

1246-Pos Board B90

Trimetazidine Effects On The Mitochondrial Metabolism During Rabbit Heart Failure

Elena N. Dedkova, Lothar A. Blatter.
Rush Medical College, Chicago, IL, USA.

Background: We have previously shown that the anti-ischemic agent trimetazidine (TMZ) rescued [Ca$^{2+}$], transient and mechanical alternans in ventricular myocytes from rabbits with non-ischemic heart failure (HF), induced by combined aortic insufficiency and stenosis. The cardioprotective action of TMZ has been linked to the inhibition of free fatty acid (FFA) oxidation, however the underlying mechanism remains poorly defined. The aim of this study was to determine whether the plasma levels of FFA (total [FFA]$_{tot}$) and unbound to albumin ([(FFA]$_{u}$)) are elevated in rabbit HF and whether TMZ affects mitochondrial metabolism.

Methods and Results: We found that both [FFA]$_{tot}$ and [FFA]$_{u}$ were significantly elevated in HF rabbits. [FFA]$_{u}$ increased 4-times during HF (from 13 ± 4 to 53 ± 7 nM) while the [FFA]$_{tot}$ increased only two-fold (from 58 ± 16 to 121 ± 29 μM), demonstrating that [FFA]$_{u}$ is a reliable biomarker of HF. Furthermore, using TMRM fluorescence confocal microscopy and a volume precision perfusion system, we determined that mitochondrial complex II activity was significantly elevated (+72%) during HF, while complex I activity was decreased (-90%). Cell treatment with TMZ had no effects on the complex I activity in control (+6%), while it increased (+26%) the activity of complex I under HF conditions. Moreover, TMZ reversed complex II activity in HF myocytes (-55%), while it had no effect on complex II activity in control cells (-10%). The oxidation of palmitoyl-carnitine, the upstream substrate for FFA oxidation, was decreased 32% by TMZ, while TMZ had no effect on complex IV activity. Furthermore, FADH$_2$-mediated auto-fluorescence levels were significantly elevated in HF myocytes treated with TMZ.

Conclusion: TMZ suppresses the elevated activity of mitochondrial complex II while it increases the decreased activity of complex I in rabbit HF, and therefore it preserves metabolic reserve of the cell.

**The arrangement and movements of mitochondria were quantitatively studied in adult rat cardiomyocytes and in the cultured continuously dividing non beating HL-1 cells. Mitochondria were stained using fluorescent dyes MitoTrackerGreen, a dye associated with inner membrane of mitochondria, and studied by fluorescence confocal microscopy. Imaging during different time intervals made it possible to visualize the 2-dimensional movements and dynamics of cardiac mitochondria. In adult cardiac cells mitochondria were always arranged very regularly in a crystal-like manner and did not show any changes in their position during 30 min of low speed scanning. However, high speed scanning (pixel dwell time 3 ms, time interval between images 400 ms) revealed very rapid fluctuations of the positions of fluorescence centers which followed the pattern of a random walk movement within the limits of the internal space of mitochondria, most probably due to transitions between condensed and orthodox configurational states of matrix and inner membrane as a result of functioning of transport channels. No evidence for mitochondrial fusion or fission was found in adult cardiomyocytes. In contrast, in NB HL-1 cells, mitochondria were arranged as a dense tubular network, in permanent fusion, fission and displacement with high velocity around 90 nm/s.

The differences observed are related to specific structural organization of the cells, and most probably due to differences in mitochondria-cytoskeleton organization. Intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are also different in these cells.**

1248-Pos Board B92

Cgp-37157 Abrogates The Adverse Effect Of Ouabain On Mitochondrial Energetics

Ting Liu, David A. Brown, Brian O’Rourke.
The Johns Hopkins University, Baltimore, MD, USA.

Cardiac glycosides have been used to treat heart failure for more than 200 years and their major effect is to inhibit the Na$^+$/K$^+$ pump. An elevation of the pump on the sarcolemma of cardiac myocytes elevates intracellular Na$^+$ ([Na$^+$]), resulting in a positive inotropic effect by increasing Ca$^{2+}$ load. However, our previous work demonstrated that elevated [Na$^+$]$_i$ impairs mitochondrial energetics by blunting mitochondrial Ca$^{2+}$ ([Ca$^{2+}$]$_{mito}$) accumulation. Moreover, we showed that CGP-37157, an inhibitor of [Ca$^{2+}$]$_{mito}$ efflux, restored [Ca$^{2+}$]$_{mito}$ accumulation and improved mitochondrial energetics. Here, we investigated the effects of ouabain with or without Cgp-37157 on [Na$^+$]$_i$, and NADH production in isolated cardiomyocytes and examined the effects on hemodynamics and Oxygen consumption (mVO$_2$) in whole hearts. Application of ouabain to isolated myocytes elevated [Na$^+$]$_i$ in a dose-dependent way. During 1 Hz stimulation, the NADH/NAD+ redox potential in ouabain treated myocytes was decreased significantly, whereas NADH levels were well maintained in the presence of Cgp-37157. In whole-heart studies, ouabain increased LVEDP, +dP/dt, and -dP/dt, and addition of Cgp-37157 further increased +dP/dt and -dP/dt. When isoproterenol was employed to increase cardiac work, LVDV was not increased, but +dP/dt and -dP/dt were increased by 57% and 52%, respectively, in hearts without concomitant Cgp-37157 treatment. In isoproterenol-treated hearts also exposed to Cgp-37157, LVDV increased by 30%, and +dP/dt and -dP/dt were increased by 73% and 53%, respectively. Whole heart mVO$_2$ increased by 18% after ouabain treatment and by 25% after isoproterenol administration compared to baseline. With concomitant Cgp-37157 treatment, ouabain increased mVO$_2$ by 32% and isoproterenol increased mVO$_2$ by 53%. Our findings revealed an adverse effect of the glycoside on mitochondrial energetics and indicate that Cgp-37157 can prevent this impairment. In addition, inotropic responses to both ouabain and isoproterenol were enhanced in the presence of Cgp-37157.**

1249-Pos Board B93

Mitochondrial Energetics During Transients Following Substrate And Ca$^{2+}$ Additions. Modeling And Experimental Studies

An-Chi Wei1, Miguel A. Aon2, Brian O’Rourke2, Raimond L. Winslow1, Sonia Cortassa1.
1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. 2Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA.

Ionic equilibria are known to be dramatically altered in failing hearts, as well as during and after ischemic injury. Ion transport across the mitochondrial inner membrane has been shown to modulate the energetic performance of mitochondria. Consequently, it is critical to thoroughly understand the interrelationship between ion fluxes and energetics. With this aim in mind, here we continue to develop our computational model of mitochondrial energetics to account for pH regulation, Na$^+/H^+$ cotransport, and the Pi carrier, and study their effects on mitochondrial energy production and Ca$^{2+}$ handling mediated by the Ca$^{2+}$...