Existence, multiplicity, and nonexistence of positive solutions to a differential equation on a measure chain

Lynn Erbe ${ }^{\text {a }}$, Allan Peterson ${ }^{\text {a, * }}$, Ronald Mathsen ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, NE 68588-0323, USA
${ }^{\mathrm{b}}$ Mathematics Department, North Dakota State University, Fargo, ND 58105-5075, USA

Received 15 April 1999

Abstract

We are concerned with proving existence of one or more than one positive solution of a general two point boundary value problem for the nonlinear equation $L x(t):=-\left[p(t) x^{4}(t)\right]^{4}+q(t) x^{\sigma}(t)=\lambda a(t) f\left(t, x^{\sigma}(t)\right)$. We shall also obtain criteria which leads to nonexistence of positive solutions. Here the independent variable t is in a "measure chain". We will use fixed point theorems for operators on a Banach space. © 2000 Elsevier Science B.V. All rights reserved.

MSC: 34B10; 39A10
Keywords: Measure chains

1. Introduction

We are concerned with proving the existence, nonexistence, and multiplicity results for positive solutions to the boundary value problem

$$
\begin{align*}
& L x(t):=-\left[p(t) x^{4}(t)\right]^{4}+q(t) x^{\sigma}(t)=\lambda a(t) f\left(t, x^{\sigma}(t)\right), \tag{1}\\
& \alpha x(a)-\beta x^{4}(a)=0, \tag{2}\\
& \gamma x\left(\sigma^{2}(b)\right)+\delta x^{4}(\sigma(b))=0 . \tag{3}
\end{align*}
$$

To understand this so-called differential equation (1) on a measure chain (time scale) \mathbb{T} we need some preliminary definitions.

[^0]Definition. Let \mathbb{T} be a nonempty closed subset of the real numbers \mathbb{R} and define the forward jump operator $\sigma(t)$ at t for $t<\sup \mathbb{T}$ by

$$
\sigma(t):=\inf \{\tau>t: \tau \in \mathbb{T}\}
$$

and the backward jump operator $\rho(t)$ at t for $t>\inf \mathbb{T}$ by

$$
\rho(t):=\sup \{\tau<t: \tau \in \mathbb{T}\}
$$

for all $t \in \mathbb{T}$. We assume throughout that \mathbb{T} has the topology that it inherits from the standard topology on the real numbers \mathbb{R}. If $\sigma(t)>t$, we say t is right scattered, while if $\rho(t)<t$ we say t is left scattered. If $\sigma(t)=t$ we say t is right dense, while if $\rho(t)=t$ we say t is left dense.

Throughout this paper we make the blanket assumption that $a \leqslant b$ are points in \mathbb{T}.
Definition. Define the interval in \mathbb{T}

$$
[a, b]:=\{t \in \mathbb{T} \text { such that } a \leqslant t \leqslant b\} .
$$

Other types of intervals are defined similarly.
We are concerned with calculus on measure chains which is a unified approach to continuous and discrete calculus. An excellent introduction is given by Hilger [17]. Agarwal and Bohner [1] refer to it as calculus on time scales. Other papers in this area include Agarwal and Bohner [3], Agarwal, Bohner, and Wong [4], Hilger and Erbe [9], and Erbe and Peterson [11,12] and the book [18].

Definition. Assume $x: \mathbb{T} \rightarrow \mathbb{R}$ and fix $t \in \mathbb{T}$ such that $t<\sup \mathbb{\mathbb { C }}$, then we define $x^{\Delta}(t)$ to be the number (provided it exists) with the property that given any $\varepsilon>0$, there is a neighborhood U of t such that

$$
\left|[x(\sigma(t))-x(s)]-x^{\Delta}(t)[\sigma(t)-s]\right| \leqslant \varepsilon|\sigma(t)-s|
$$

for all $s \in U$. We call $x^{\Delta}(t)$ the delta derivative of $x(t)$.
It can be shown that if $x: \mathbb{T} \rightarrow \mathbb{R}$ is continuous at $t \in \mathbb{T}, t<\sup \mathbb{T}$, and t is right scattered, then

$$
x^{\Delta}(t)=\frac{x(\sigma(t))-x(t)}{\sigma(t)-t}
$$

Note that if $\mathbb{T}=\mathbb{Z}$, where \mathbb{Z} is the set of integers, then

$$
x^{\Delta}(t)=\Delta x(t):=x(t+1)-x(t)
$$

In particular if $\mathbb{T}=\mathbb{Z}$, then the equation $L x(t)=0$ is the self-adjoint difference equation

$$
L x(t)=-\Delta[p(t) \Delta x(t)]+q(t) x(t+1)=0
$$

See the books $[2,19]$ and the references there for results concerning this self-adjoint difference equation. Of course if $T=\mathbb{R}$, then the equation $L x(t)=0$ reduces to the self-adjoint differential equation

$$
L x(t)=-\left[p(t) x^{\prime}(t)\right]^{\prime}+q(t) x(t)=0
$$

which has been studied extensively over the years. See Coppel [6] for a good presentation of results for this differential equation.

Definition. If $F^{\Delta}(t)=f(t)$, then we define an integral by

$$
\int_{a}^{t} f(\tau) \Delta \tau=F(t)-F(a)
$$

In this paper we will use elementary properties of this integral that either are in Refs. [2-6] or are easy to verify.

2. Main results

Throughout the rest of this paper we make the following assumptions: $p(t)>0$ is delta differentiable on $\left[a, \sigma^{2}(b)\right], q(t) \geqslant 0$ is right-dense continuous on $[a, b], a(t) \geqslant 0$ is right-dense continuous on $[a, b], f: \mathbb{T} \times \mathbb{R} \rightarrow[0, \infty)$, is continuous, and

$$
\alpha, \beta, \gamma, \quad \delta \geqslant 0, \quad \alpha^{2}+\beta^{2}>0, \quad \gamma^{2}+\delta^{2}>0
$$

Let $\mathbb{D}:=\left\{x:\left[a, \sigma^{2}(b)\right] \rightarrow \mathbb{R}: x^{\Delta}(t)\right.$ is continuous on $\left[a, \sigma^{2}(b)\right]$ and $\left[p(t) x^{\Delta}(t)\right]^{\Delta}$ is right-dense continuous on $[a, b]\}$. By a solution $x(t)$ of (1) on $\left[a, \sigma^{2}(b)\right]$ we mean $x \in \mathbb{D}$ and Eq. (1) holds for $t \in[a, b]$. Before we define the cone we will be working with we need some preliminary results.

Fix $\tau \in\left[a, \sigma^{2}(b)\right]$. For $a<\tau \leqslant \sigma^{2}(b)$, define $g_{\tau}(t)$ to be the solution of the boundary value problem

$$
\begin{aligned}
& L g_{\tau}(t)=0 \\
& g_{\tau}(a)=0, \quad g_{\tau}(\tau)=1
\end{aligned}
$$

(It can be shown that $L x(t)=0$ is disconjugate on $\left[a, \sigma^{2}(b)\right]$ and hence the above boundary value problem has a unique solution.) Similarly if $a \leqslant \tau<\sigma^{2}(b)$, then we let $h_{\tau}(t)$ be the unique solution of the boundary value problem

$$
\begin{aligned}
& L h_{\tau}(t)=0 \\
& h_{\tau}(a)=0, \quad h_{\tau}(\tau)=1
\end{aligned}
$$

Then we define $\omega(t, \tau)=g_{\tau}(t)$, if $\tau=\sigma^{2}(b), \omega(t, \tau)=h_{\tau}(t)$, if $\tau=a$, and if $a<\tau<\sigma^{2}(b)$,

$$
\omega(t, \tau)= \begin{cases}g_{\tau}(t), & a \leqslant t \leqslant \tau \\ h_{\tau}(t), & \tau \leqslant t \leqslant \sigma^{2}(b)\end{cases}
$$

In the proof of the next lemma we will use the following maximum principle which appears in [13].

Theorem 1 (Maximum principle). Assume $p(t)>0$ is delta differentiable on $[a, \sigma(b)]$ and $q(t) \geqslant 0$ on $[a, b]$. If $z \in \mathbb{D}$ is a solution of the differential inequality

$$
L z(t) \leqslant 0
$$

for $t \in[a, b]$ such that $z(t)$ has a nonnegative maximum on $\left[a, \sigma^{2}(b)\right]$, then the maximum of $z(t)$ occurs at a or $\sigma^{2}(b)$.

Lemma 2. If $u \in E, u(t) \geqslant 0$ for $t \in\left[a, \sigma^{2}(b)\right], L u(t) \geqslant 0$ for $t \in[a, b]$ and we choose $\tau_{0} \in\left[a, \sigma^{2}(b)\right]$ so that $u\left(\tau_{0}\right)=\|u\|$, then

$$
u(t) \geqslant \omega\left(t, \tau_{0}\right)\|u\| \geqslant \min \left\{g_{\tau_{0}}(t), h_{\tau_{0}}(t)\right\}\|u\| \geqslant k(t)\|u\|,
$$

where

$$
\begin{equation*}
k(t):=g_{\sigma^{2}(b)}(t) h_{a}(t) \tag{4}
\end{equation*}
$$

for $t \in\left[a, \sigma^{2}(b)\right]$.
Proof. First assume $a<\tau_{0} \leqslant \sigma^{2}(b)$. Then for $t \in\left[a, \tau_{0}\right]$, let

$$
z_{1}(t):=\omega\left(t, \tau_{0}\right)\|u\|-u(t)=g_{\tau_{0}}(t)\|u\|-u(t)
$$

Note that

$$
L z_{1}(t)=\|u\| L g_{\tau_{0}}(t)-L u(t)=-L u(t) \leqslant 0, \quad t \in\left[a, \rho^{2}\left(\tau_{0}\right)\right]
$$

Also,

$$
z_{1}(a)=g_{\tau_{0}}(a)\|u\|-u(a)=-u(a) \leqslant 0
$$

and

$$
z_{1}\left(\tau_{0}\right)=g_{\tau_{0}}\left(\tau_{0}\right)\|u\|-u\left(\tau_{0}\right)=\|u\|-u\left(\tau_{0}\right)=0
$$

Hence $z_{1}(t)$ has a nonnegative maximum in $\left[a, \tau_{0}\right]$. By the maximum principle $z_{1}(t)$ has a maximum at the end point τ_{0}. Therefore $z_{1}(t) \leqslant 0$ on $\left[a, \tau_{0}\right]$ which gives us the desired result

$$
u(t) \geqslant \omega\left(t, \tau_{0}\right), \quad t \in\left[a, \tau_{0}\right]
$$

Next assume that $a \leqslant \tau_{0}<\sigma^{2}(b)$. Then for $t \in\left[\tau_{0}, \sigma^{2}(b)\right]$, let

$$
z_{2}(t):=\omega\left(t, \tau_{0}\right)(t)\|u\|-u(t)=h_{\tau_{0}}(t)\|u\|-u(t)
$$

Note that

$$
L z_{2}(t)=\|u\| L h_{\tau_{0}}(t)-L u(t)=-L u(t) \leqslant 0, \quad t \in\left[\tau_{0}, b\right]
$$

Also,

$$
z_{2}\left(\tau_{0}\right)=h_{\tau_{0}}\left(\tau_{0}\right)\|u\|-u\left(\tau_{0}\right)=\|u\|-u\left(\tau_{0}\right)=0
$$

and

$$
z_{2}\left(\sigma^{2}(b)\right)=h_{\tau_{0}}\left(\sigma^{2}(b)\right)\|u\|-u\left(\sigma^{2}(b)\right)=-u\left(\sigma^{2}(b)\right) \leqslant 0
$$

Hence $z_{2}(t)$ has a nonnegative maximum in $\left[\tau_{0}, \sigma^{2}(b)\right]$. By the maximum principle $z(t)$ has a maximum at the end point τ_{0}, Therefore $z_{2}(t) \leqslant 0$ on $\left[a, \tau_{0}\right]$ which gives us the desired result

$$
u(t) \geqslant \omega\left(t, \tau_{0}\right)\|u\|, \quad t \in\left[\tau_{0}, \sigma^{2}(b)\right] .
$$

Putting these two cases together we have

$$
u(t) \geqslant \omega\left(t, \tau_{0}\right)\|u\|, \quad t \in\left[a, \sigma^{2}(b)\right]
$$

which is the first inequality in the statement of the theorem that we wanted to prove. Using elementary arguments one can prove that for each fixed $\tau \in\left(a, \sigma^{2}(b)\right], g_{\tau}(t)$ is a strictly increasing
function of t for $t \in\left[a, \sigma^{2}(b)\right]$ and for each fixed $\tau \in\left[a, \sigma^{2}(b)\right), h_{\tau_{0}}(t)$ is a strictly decreasing function of t for $t \in\left[a, \sigma^{2}(b)\right]$. It follows that we get the second inequality in the statement of the theorem

$$
u(t) \geqslant \min \left\{g_{\tau_{0}}(t), h_{\tau_{0}}(t)\right\}\|u\| .
$$

Since $L x(t)=0$ is disconjugate on $\left[a, \sigma^{2}(b)\right]$, we get that if $a \leqslant \tau_{1}<\tau_{2} \leqslant \sigma^{2}(b)$, then

$$
g_{\tau_{1}}(t)<g_{\tau_{2}}(t)
$$

for $t \in\left(a, \sigma^{2}(b)\right]$ and

$$
h_{\tau_{1}}(t)>h_{\tau_{2}}(t)
$$

for $t \in\left[a, \sigma^{2}(b)\right)$. Using this we get that

$$
u(t) \geqslant \min \left\{g_{\tau_{0}}(t), h_{\tau_{0}}(t)\right\}\|u\| \geqslant g_{\sigma^{2}(b)}(t) h_{a}(t)\|u\|=k(t)\|u\|
$$

for $t \in\left[a, \sigma^{2}(b)\right]$, which is the last inequality in the statement of this theorem.
Define E to be the Banach space

$$
E=C\left[a, \sigma^{2}(b)\right],
$$

where the norm on E is the sup norm. We then define a cone P in E in terms of the function $k(t)$ given by (4) that appears in the above lemma by

$$
P=\left\{x \in E: x(t) \geqslant k(t)\|x\|, t \in\left[a, \sigma^{2}(b)\right]\right\} .
$$

Let $G(t, s)$ be the Green's function for the boundary value problem (BVP) $L x(t)=0$, (2), (3). Under the above assumptions it can be shown (see [11]) that this Green's function is of the form

$$
G(t, s)= \begin{cases}\frac{1}{c} \phi(t) \psi(\sigma(s)), & t \leqslant s \\ \frac{1}{c} \phi(\sigma(s)) \psi(t), & \sigma(s) \leqslant t\end{cases}
$$

where $\phi(t)$ and $\psi(t)$ are the solutions of the "initial value problems"

$$
\begin{array}{ll}
L \phi(t)=0, & \phi(a)=\beta, \quad \phi^{\Delta}(a)=\alpha, \\
L \psi(t)=0, & \psi\left(\sigma^{2}(b)\right)=\delta, \quad \psi^{\Delta}(\sigma(b))=-\gamma, \tag{6}
\end{array}
$$

respectively, and

$$
\begin{equation*}
c:=p(t)\left[\psi(t) \phi^{\Delta}(t)-\psi^{\Delta}(t) \phi(t)\right] . \tag{7}
\end{equation*}
$$

It can be shown that $\phi(t) \geqslant 0$ on $\left[a, \sigma^{2}(b)\right]$ and is nondecreasing on $\left[a, \sigma^{2}(b)\right]$ and that $\psi(t) \geqslant 0$ on [$a, \sigma^{2}(b)$] and is nonincreasing on $\left[a, \sigma^{2}(b)\right)$. This and the assumption that 0 is not an eigenvalue of $L x(t)=\lambda x^{\sigma}(t),(2),(3)$ implies that c is a positive constant and

$$
\begin{equation*}
0 \leqslant G(t, s) \leqslant G(\sigma(s), s) \tag{8}
\end{equation*}
$$

for $a \leqslant t \leqslant \sigma^{2}(b), a \leqslant s \leqslant b$.

It is not difficult to show that the eigenvalue problem (1)-(3) having a solution is equivalent to the fixed point equation

$$
\begin{equation*}
u=A u, \quad u \in E:=C\left[a, \sigma^{2}(b)\right] \tag{9}
\end{equation*}
$$

having a solution, where the operator A is defined by

$$
\begin{equation*}
A u(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s \tag{10}
\end{equation*}
$$

$t \in\left[a, \sigma^{2}(b)\right]$.
Also define, for r a positive number, P_{r} by

$$
P_{r}=\{x \in P:\|x\| \leqslant r\}
$$

We refer to $[7,20]$ for a discussion of the fixed point index that we use below. In particular, we will make frequent use of the following lemma.

Lemma 3. Let E be a Banach space, $P \subset E$ a cone in E. Assume $r>0$ and that $A: P_{r} \rightarrow P$ is a compact operator such that $A x \neq x$ for $x \in \partial P_{r}:=\{x \in P:\|x\|=r\}$.
(a) If $\|x\| \leqslant\|A x\|$ for $x \in \partial K_{r}$, then

$$
i\left(A, P_{r}, P\right)=0
$$

(b) If $\|x\| \geqslant\|A x\|$ for $x \in \partial K_{r}$, then

$$
i\left(A, P_{r}, P\right)=1
$$

As a consequence of this lemma it follows that if there exist distinct $r_{1}, r_{2}>0$ such that condition (a) holds for $x \in \partial K_{r_{1}}$ and (b) holds for $x \in \partial K_{r_{2}}$, then A has a fixed point (nonzero) whose norm is between r_{1} and r_{2}.

Define the nonnegative extended real numbers f_{0}, f^{0}, f_{∞}, and f^{∞} by

$$
\begin{aligned}
f_{0} & :=\liminf _{u \rightarrow 0+} \min _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \\
f^{0} & :=\limsup _{u \rightarrow 0+} \max _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \\
f_{\infty} & :=\liminf _{u \rightarrow \infty} \min _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \\
f^{\infty} & :=\limsup _{u \rightarrow \infty} \max _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u}
\end{aligned}
$$

respectively.
These numbers can be regarded as generalized super or sublinear conditions on the function $f(t, u)$ at $u=0$ and $u=\infty$. Thus, if $f_{0}=f^{0}=0(+\infty)$, then $f(t, u)$ is superlinear (sublinear) at $u=0$ and if $f_{\infty}=f^{\infty}=0(+\infty)$, then $f(t, u)$ is sublinear (superlinear) at $u=+\infty$. Theorem 4 below applies to the case when these numbers may be finite. In addition, Theorem 5 applies when one (or more
than one) of the numbers $f_{0}, f^{0}, f_{\infty}, f^{\infty}$ is 0 or ∞. (See also the remark following the proof of Theorem 5.)

Let

$$
A_{1}:=\max _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)} G(t, s) a(s) \Delta s
$$

We assume that \mathbb{T} is a measure chain so that we can pick $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ such that

$$
a+\varepsilon_{1}<\sigma^{2}(b)-\varepsilon_{2}
$$

are in \mathbb{T}. Let

$$
I:=\left[a+\varepsilon_{1}, d\right]
$$

where d is a point in \mathbb{T} such that $\sigma(d)=\sigma^{2}(b)-\varepsilon_{2}$. Then let

$$
K(t):=K\left(t, \varepsilon_{1}, \varepsilon_{2}\right)=\int_{I} G(t, s) a(s) k^{\sigma}(s) \Delta s
$$

where $k(t)$ is given by (4). We now define

$$
A_{2}:=\min \{K(t): t \in I\}
$$

Theorem 4. If $a(t)>0$ on I and either
(a) $\frac{1}{A_{2} f_{\infty}}<\lambda<\frac{1}{A_{1} f^{0}}$
or
(b) $\frac{1}{A_{2} f_{0}}<\lambda<\frac{1}{A_{1} f^{\infty}}$,
then the eigenvalue problem (1)-(3) has a positive solution.
Proof. Assume (a) holds. Since

$$
\lambda<\frac{1}{A_{1} f^{0}}
$$

there is an $\varepsilon>0$ so that

$$
A_{1}\left(f^{0}+\varepsilon\right) \lambda \leqslant 1
$$

Using the definition of f^{0}, there is a $\delta_{0}>0$, sufficiently small, so that

$$
\max \left\{\frac{f(t, u)}{u}: t \in[a, \sigma(b)]\right\}<f^{0}+\varepsilon
$$

for $0<u \leqslant \delta_{0}$. It follows that

$$
\begin{equation*}
f(t, u) \leqslant\left(f^{0}+\varepsilon\right) u \tag{11}
\end{equation*}
$$

for $0 \leqslant u \leqslant \delta_{0}, t \in[a, \sigma(b)]$.

Assume $u \in P_{\delta_{0}}$, then

$$
\begin{aligned}
A u(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, u^{\sigma}(s)\right) \Delta s \\
& \leqslant \lambda\left(f^{0}+\varepsilon\right)\|u\| \int_{a}^{\sigma(b)} G(t, s) a(s) \Delta s \leqslant \lambda\left(f^{0}+\varepsilon\right)\|u\| A_{1} \\
& \leqslant\|u\|
\end{aligned}
$$

Hence we have shown that if $u \in P_{\delta_{0}}$, then

$$
\|A u\| \leqslant\|u\| .
$$

Next, we use the assumption

$$
\frac{1}{A_{2} f_{\infty}}<\lambda
$$

First, we consider the case when $f_{\infty}<\infty$. In this case pick an $\varepsilon_{0}>0$ so that

$$
\lambda A_{2}\left(f_{\infty}-\varepsilon_{0}\right) \geqslant 1
$$

Using the definition of f_{∞} there is a $\delta_{1}>\delta_{0}$, sufficiently large, so that

$$
\min _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \geqslant f_{\infty}-\varepsilon_{0}
$$

for $u \geqslant \delta_{1}$. It follows that

$$
\begin{equation*}
f(t, u) \geqslant\left(f_{\infty}-\varepsilon_{0}\right) u \tag{12}
\end{equation*}
$$

for $u \geqslant \delta_{1}, t \in[a, \sigma(b)]$. We now show there is a $\delta_{2} \geqslant \delta_{1}$ such that if $u \in P_{\delta_{2}}$ then

$$
\|A u\| \geqslant\|u\|
$$

Assume $u \in P$. By Lemma 2

$$
u(t) \geqslant k(t)\|u\|
$$

for $t \in\left[a, \sigma^{2}(b)\right]$. Hence,

$$
u^{\sigma}(t) \geqslant k^{\sigma}(t)\|u\|
$$

for $t \in[a, \sigma(b)]$. It follows that

$$
u^{\sigma}(t) \geqslant D\|u\|
$$

for $t \in I$, where

$$
D:=h_{a}^{\sigma}\left(a+\varepsilon_{1}\right) g_{\sigma^{2}(b)}\left(\sigma^{2}(b)-\varepsilon_{2}\right) \leqslant 1
$$

Pick

$$
\delta_{2} \geqslant \frac{\delta_{1}}{D} \geqslant \delta_{1}
$$

Now assume $u \in \partial P_{\delta_{2}}$ and consider

$$
A u(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, u^{\sigma}(s)\right) \Delta s \geqslant \lambda \int_{I} G(t, s) a(s) f\left(s, u^{\sigma}(s)\right) \Delta s .
$$

Since for $t \in I$,

$$
u^{\sigma}(t) \geqslant D\|u\|=D \delta_{2} \geqslant \delta_{1}
$$

we get that

$$
\begin{aligned}
A u(t) & \geqslant \lambda\left(f_{\infty}-\varepsilon_{0}\right) \int_{I} G(t, s) a(s) u^{\sigma}(s) \Delta s \\
& \geqslant \lambda\left(f_{\infty}-\varepsilon_{0}\right)\|u\| \int_{I} G(t, s) a(s) k^{\sigma}(s) \Delta s \geqslant \lambda\left(f_{\infty}-\varepsilon_{0}\right) A_{2}\|u\| \\
& \geqslant\|u\| .
\end{aligned}
$$

Hence if $f_{\infty}<\infty$, and if $u \in \partial P_{\delta_{2}}$, then

$$
\|A u\| \geqslant\|u\| .
$$

Finally, we consider the case $f_{\infty}=\infty$. In this case the hypothesis

$$
\frac{1}{A_{2} f_{\infty}}<\lambda
$$

means $\lambda>0$. So fix $\lambda>0$ and pick $M>0$ sufficiently large so that

$$
\lambda M \int_{I} G(t, s) a(s) k^{\sigma}(s) \Delta s \geqslant 1,
$$

for any $t \in I$. Now define $g:\left[\delta_{0}, \infty\right) \rightarrow \mathbb{R}^{+}$by

$$
g(u)=\inf \left\{\frac{f(t, v)}{v}: t \in[a, \sigma(b)], u \geqslant v\right\} .
$$

Then $g(u)$ is nondecreasing on $\left[\delta_{0}, \infty\right)$ and

$$
\lim _{u \rightarrow \infty} g(u)=\infty .
$$

Hence in this case we can choose $\delta_{1}>\delta_{0}$ so that

$$
g(u) \geqslant M
$$

for $u \geqslant \delta_{1}$. But then by the definition of $g(u)$ we get that

$$
f(t, u) \geqslant M u
$$

for all $t \in[a, \sigma(b)], u \geqslant \delta_{1}$. Now choose δ_{2} as in the first case. Then assume $u \in \partial P_{\delta_{2}}$ and consider
for any $t \in I$

$$
\begin{aligned}
A u(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, u^{\sigma}(s)\right) \Delta s \\
& \geqslant \lambda \int_{I} G(t, s) a(s) f\left(s, u^{\sigma}(s)\right) \Delta s \geqslant \lambda M \int_{I} G(t, s) a(s) u^{\sigma}(s) \Delta s \\
& \geqslant \lambda M\|u\| \int_{I} G(t, s) a(s) k^{\sigma}(s) \Delta s \geqslant\|u\| .
\end{aligned}
$$

Hence again we have for any $u \in \partial P_{\delta_{2}}$,

$$
\|A u\| \geqslant\|u\| .
$$

Therefore by Lemma 3, A has a fixed point u with

$$
\delta_{0}<\|u\|<\delta_{2}
$$

This shows that condition (a) yields the existence of a positive solution of the eigenvalue problem (1)-(3). Similar arguments to these show that condition (b) also gives the existence of a positive solution to the eigenvalue problem (1)-(3). This completes the proof of the theorem.

Our next result gives criteria for the existence of one (or none, or more than one) positive solution of the eigenvalue problem (1)-(3) in terms of the superlinear or sublinear behavior of $f(t, u)$.

Theorem 5. In addition to our earlier assumptions assume $a(t)>0$ on $[a, b]$ and $f(t, u)>0$ on $\left[a, \sigma^{2}(b)\right] \times \mathbb{R}^{+}$.
(a) If $f^{0}=0$ or $f^{\infty}=0$, then there is a $\lambda_{0}>0$ such that for all $\lambda \geqslant \lambda_{0}$ the eigenvalue problem (1)-(3) has a positive solution.
(b) If $f^{0}=f^{\infty}=0$, then there is a $\lambda_{0}>0$ such that for all $\lambda \geqslant \lambda_{0}$ the eigenvalue problem (1)-(3) has two positive solutions.
(c) If $f_{0}=\infty$ or $f_{\infty}=\infty$, then there is a $\lambda_{0}>0$ such that for all $0<\lambda \leqslant \lambda_{0}$ the eigenvalue problem (1)-(3) has a positive solution.
(d) If $f_{0}=f_{\infty}=\infty$, then there is a $\lambda_{0}>0$ such that for all $0<\lambda \leqslant \lambda_{0}$ the eigenvalue problem (1)-(3) has two positive solutions.
(e) If there is a constant $c>0$ such that $f(t, u) \geqslant c u$ for $u \geqslant 0$, then there is a $\lambda_{0}>0$ such that the eigenvalue problem (1)-(3) has no positive solutions for $\lambda \geqslant \lambda_{0}$.
(f) If there is a constant $c>0$ such that $f(t, u) \leqslant c u$ for $u \geqslant 0$, then there is a $\lambda_{0}>0$ such that the eigenvalue problem (1)-(3) has no positive solutions for $0<\lambda \leqslant \lambda_{0}$.

Proof. Part (a). Let $t_{0} \in I$ and for all $p>0$ define

$$
m(p)=\min \left\{\int_{I} G\left(t_{0}, s\right) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s: x \in \partial P_{p}\right\} .
$$

It can be shown that $m(p)>0$ for all $p>0$. We now show that for any $p_{0}>0$ that for all $\lambda \geqslant \lambda_{0}$, where

$$
\begin{equation*}
\lambda_{0}:=\frac{p_{0}}{m\left(p_{0}\right)}, \tag{13}
\end{equation*}
$$

we have that if $x \in \partial P_{p_{0}}$, then $\|A x\| \geqslant\|x\|$. To prove this let $x \in \partial P_{p_{0}}$. Then for $\lambda \geqslant \lambda_{0}$

$$
\begin{aligned}
A x\left(t_{0}\right) & =\lambda \int_{a}^{\sigma(b)} G\left(t_{0}, s\right) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s \\
& \geqslant \lambda \int_{I} G\left(t_{0}, s\right) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s \geqslant \lambda m\left(p_{0}\right) \\
& \geqslant \lambda_{0} m\left(p_{0}\right)=p_{0}=\|x\| .
\end{aligned}
$$

Hence it follows that $\|A x\| \geqslant\|x\|$ for all $x \in \partial P_{p_{0}}$, for all $\lambda \geqslant \lambda_{0}$.
We now show that the condition $f_{0}=0$ implies that given any $p_{0}>0$ there is an h_{0} such that $0<h_{0}<p_{0}$ and for any $x \in \partial P_{h_{0}}$ it follows that $\|A x\| \leqslant\|x\|$, for all $\lambda \geqslant \lambda_{0}$. To prove this fix $\lambda \geqslant \lambda_{0}$ and pick $\eta_{0}>0$ so that

$$
\begin{equation*}
\eta_{0} \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s \leqslant 1 . \tag{14}
\end{equation*}
$$

Since

$$
f^{0}:=\limsup _{u \rightarrow 0+} \max _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u}=0,
$$

there is an $h_{0}<p_{0}$ such that

$$
\max _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \leqslant \eta_{0}
$$

for $0<u \leqslant h_{0}$. Hence we have that

$$
\begin{equation*}
f(t, u) \leqslant \eta_{0} u \tag{15}
\end{equation*}
$$

for $t \in[a, \sigma(b)], 0 \leqslant u \leqslant h_{0}$.
Let $x \in \partial P_{h_{0}}$ and consider

$$
\begin{aligned}
A x(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s \\
& \leqslant \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s \leqslant \lambda \eta_{0} \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) x^{\sigma}(s) \Delta s \\
& \leqslant \lambda \eta_{0}\|x\| \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s \leqslant\|x\| .
\end{aligned}
$$

It follows that if $x \in \partial P_{h_{0}}$, then $\|A x\| \leqslant\|x\|$, and hence, the eigenvalue problem (1)-(3) has a positive solution and the first part of (a) has been proven.

We now prove the second part of part (a) of this theorem. Fix $\lambda \geqslant \lambda_{0}$ where λ_{0} is given by (13). Pick η_{0} so that (14) holds. Since $f^{\infty}=0$ there is a $H_{0}>p_{0}$ so that

$$
\max _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \leqslant \eta_{0}
$$

for $u \geqslant H_{0}$. Hence we have that

$$
\begin{equation*}
f(t, u) \leqslant \eta_{0} u \tag{16}
\end{equation*}
$$

for $t \in[a, \sigma(b)], u \geqslant H_{0}$.
We consider two cases. The first case is that $f(t, x)$ is bounded on $[a, \sigma(b)] \times \mathbb{R}^{+}$. In this case there is a positive number N such that

$$
|f(t, u)| \leqslant N
$$

for $t \in[a, \sigma(b)], u \in \mathbb{R}^{+}$. Choose $H_{1} \geqslant H_{0}$ so that

$$
N \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s \leqslant H_{1} .
$$

Then for $x \in \partial P_{H_{1}}$ we have

$$
\begin{aligned}
A x(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s \\
& \leqslant \lambda N \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s \leqslant H_{1} .
\end{aligned}
$$

It follows that if $x \in \partial P_{H_{1}}$, then $\|A x\| \leqslant\|x\|$. Since at the beginning of the proof of this theorem we proved that if $x \in \partial P_{p_{0}}$, then $\|A x\| \geqslant\|x\|$, and since $p_{0}<H_{1}$ it follows from Lemma 3 that A has a fixed point and hence the eigenvalue problem (1)-(3) has a positive solution.

Next, we consider the case where $f(t, u)$ is unbounded on $[a, \sigma(b)] \times \mathbb{R}^{+}$. Let

$$
g(h):=\max \{f(t, u): t \in[a, \sigma(b)], 0 \leqslant u \leqslant h\} .
$$

Then $g(h)$ is nondecreasing and

$$
\lim _{h \rightarrow \infty} g(h)=\infty .
$$

Choose $H_{2} \geqslant H_{0}$ so that

$$
g\left(H_{2}\right) \geqslant g(h),
$$

for $0 \leqslant h \leqslant H_{2}$.
Then for $x \in \partial P_{H_{2}}$,

$$
\begin{aligned}
A x(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, x^{\sigma}(s)\right) \Delta s \\
& \leqslant \lambda g\left(H_{2}\right) \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s \leqslant \lambda \eta_{0} H_{2} \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s \\
& \leqslant H_{2}=\|x\| .
\end{aligned}
$$

It follows that the eigenvalue problem (1)-(3) has a positive solution $x_{0}(t)$ satisfying $p_{0} \leqslant\left\|x_{0}\right\| \leqslant H_{2}$ and the proof of part (a) of this theorem is complete.
Part (b). Clearly if $f^{0}=f^{\infty}=0$, then by the proof of part (a) we get for any $p_{0}>0$ that for each fixed $\lambda \geqslant \lambda_{0}:=p_{0} / m\left(p_{0}\right)$ there are numbers $h_{0}<p_{0}<H_{2}$ such that there are two positive solutions
of the eigenvalue problem (1)-(3) satisfying

$$
h_{0}<\left\|x_{1}\right\|<p_{0}<\left\|x_{2}\right\|<H_{2}
$$

The proof of part (c) will be easy to see when we prove part (d) so we will only prove part (d) here.

Part (d). Assume $f_{0}=f_{\infty}=\infty$ and $0<r_{1}<r_{2}$ are given numbers. Let

$$
M_{i}:=\max \left\{f(t, u): \quad(t, u) \in[a, \sigma(b)] \times\left[0, r_{i}\right]\right\}
$$

for $i=1,2$. Then if $u \in \partial P_{r_{i}}$, it follows that

$$
A u(t) \leqslant M_{i} \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s
$$

It follows that we can pick $\lambda_{0}>0$ sufficiently small so that for all $0<\lambda \leqslant \lambda_{0}$

$$
\|A u\| \leqslant\|u\| \quad \text { for all } u \in \partial P_{r_{i}}
$$

$i=1,2$.
Fix $\lambda \leqslant \lambda_{0}$. Choose $M>0$ sufficiently large so that

$$
\begin{equation*}
\lambda k_{0} M \int_{I} G\left(t_{0}, s\right) a(s) \Delta s \geqslant 1 \tag{17}
\end{equation*}
$$

where $t_{0} \in I$ and

$$
k_{0}:=g_{\sigma^{2}(b)}\left(\sigma^{2}(b)-\varepsilon_{2}\right) h_{a}\left(a+\varepsilon_{1}\right)
$$

Since $f_{0}=\infty$, there is $u_{1}<r_{1}$ such that

$$
\min _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \geqslant M
$$

for $0<u \leqslant u_{1}$. Hence we have that

$$
f(t, u) \geqslant M u
$$

for $t \in[a, \sigma(b)], 0<u \leqslant u_{1}$. We next show that if $u \in \partial P_{u_{1}}$, then $\|A u\| \geqslant\|u\|$. To show this assume $u \in \partial P_{u_{1}}$. Then

$$
\begin{aligned}
A u\left(t_{0}\right) & =\lambda \int_{a}^{\sigma(b)} G\left(t_{0}, s\right) a(s) f\left(s, u^{\sigma}(s)\right) \Delta s \\
& \geqslant M \lambda \int_{a}^{\sigma(b)} G\left(t_{0}, s\right) a(s) u^{\sigma}(s) \Delta s \geqslant M \lambda \int_{I} G\left(t_{0}, s\right) a(s) u^{\sigma}(s) \Delta s .
\end{aligned}
$$

Since $u \in \partial P_{u_{1}}$, we have by Lemma 2 that

$$
u(t) \geqslant k(t)\|u\|=g_{\sigma^{2}(b)}(t) h_{a}(t)\|u\| \geqslant k_{0}\|u\|
$$

for $t \in\left[a+\varepsilon_{1}, \sigma^{2}(b)-\varepsilon_{2}\right]$. Hence

$$
u^{\sigma}(t) \geqslant k_{0}\|u\|
$$

for $t \in I$. Hence from above we get that

$$
\begin{aligned}
A u\left(t_{0}\right) & \geqslant M\|u\| \lambda \int_{I} G\left(t_{0}, s\right) a(s) \Delta s \\
& \geqslant\|u\|
\end{aligned}
$$

by (17). Hence we have shown that if $u \in \partial P_{u_{1}}$, then $\|A u\| \geqslant\|u\|$.
Next, we use the assumption that $f_{\infty}=\infty$. Since $f_{\infty}=\infty$ there is a $u_{2}>r_{2}$ such that

$$
\min _{t \in[a, \sigma(b)]} \frac{f(t, u)}{u} \geqslant M
$$

for $u \geqslant u_{2}$ and M is chosen so that (17) holds. It follows that

$$
f(t, u) \geqslant M u
$$

for $t \in[a, \sigma(b)], u \geqslant u_{2}$. Let

$$
u_{3}:=\frac{u_{2}}{k_{0}} .
$$

We next show that if $u \in \partial P_{u_{3}}$, then $\|A u\| \geqslant\|u\|$. To show this assume $u \in \partial P_{u_{3}}$. Then by Lemma 2

$$
u(t) \geqslant k(t)\|u\|=g_{\sigma^{2}(b)}(t) h_{a}(t)\|u\| \geqslant k_{0}\|u\|
$$

for $t \in\left[a+\varepsilon_{1}, \sigma^{2}(b)-\varepsilon_{2}\right]$. Hence

$$
u^{\sigma}(t) \geqslant k_{0}\|u\|=k_{0} u_{3}=k_{0} \frac{u_{2}}{k_{0}}=u_{2}
$$

for $t \in I$. Using this we get that

$$
\begin{aligned}
A u\left(t_{0}\right) & =\lambda \int_{a}^{\sigma(b)} G\left(t_{0}, s\right) a(s) f\left(s, u^{\sigma(s)}\right) \Delta s \\
& \geqslant \lambda M \int_{I} G\left(t_{0}, s\right) a(s) u^{\sigma(s)} \Delta s \geqslant \lambda M\|u\| \int_{I} G\left(t_{0}, s\right) a(s) \Delta s \\
& \geqslant\|u\| .
\end{aligned}
$$

Hence we have shown that if $u \in \partial P_{u_{3}}$, then $\|A u\| \geqslant\|u\|$. It follows from Lemma 3 that the operator A has two fixed points $x_{1}(t)$ and $x_{2}(t)$ satisfying

$$
u_{1}<\left\|x_{1}\right\|<r_{1}<r_{2}<\left\|x_{2}\right\|<u_{3} .
$$

This implies that the eigenvalue problem (1)-(3) has two positive solutions for $0<\lambda \leqslant \lambda_{0}$. Part (e). Assume there is a constant $c>0$ such that $f(t, u) \geqslant c u$ for $u \geqslant 0$. Assume $v(t)$ is a positive solution of the eigenvalue problem (1)-(3). We will show that for λ sufficiently large that this leads to a contradiction. Since $A v(t)=v(t)$ for $t \in\left[a, \sigma^{2}(b)\right]$, we have for $t_{0} \in I$

$$
\begin{aligned}
v\left(t_{0}\right) & =\lambda \int_{a}^{\sigma(b)} G\left(t_{0}, s\right) a(s) f\left(s, v^{\sigma}(s)\right) \Delta s \\
& \geqslant \lambda \int_{I} G\left(t_{0}, s\right) a(s) f\left(s, v^{\sigma}(s)\right) \Delta s \geqslant c \lambda \int_{I} G\left(t_{0}, s\right) a(s) v^{\sigma}(s) \Delta s
\end{aligned}
$$

Similar to arguments we did above we have that

$$
v^{\sigma}(t) \geqslant k_{0}\|v\|
$$

for $t \in I$. Using this we get that

$$
v\left(t_{0}\right) \geqslant c \lambda \int_{I} G\left(t_{0}, s\right) a(s) v^{\sigma}(s) \Delta s \geqslant c \lambda k_{0}\|v\| \int_{I} G\left(t_{0}, s\right) a(s) \Delta s .
$$

If we pick λ_{0} sufficiently large so that

$$
\lambda k_{0} c \int_{I} G\left(t_{0}, s\right) a(s) \Delta s>1
$$

for all $\lambda \geqslant \lambda_{0}$, then we have that

$$
v\left(t_{0}\right)>\|v\|
$$

which is a contradiction.
Part (f). Assume there is a constant $c>0$ such that $f(t, u) \leqslant c u$ for $u \geqslant 0$. Assume $v(t)$ is a positive solution of the eigenvalue problem (1)-(3). We will show that for λ sufficiently small and positive that this leads to a contradiction. Since $A v(t)=v(t)$ for $t \in\left[a, \sigma^{2}(b)\right]$,

$$
\begin{aligned}
v(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) a(s) f\left(s, v^{\sigma}(s)\right) \Delta s \\
& \leqslant c \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) v^{\sigma}(s) \Delta s \\
& \leqslant c \lambda\|v\| \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s
\end{aligned}
$$

for $t \in\left[a, \sigma^{2}(b)\right]$. Pick λ_{0} sufficiently small so that for $0<\lambda \leqslant \lambda_{0}$,

$$
c \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) a(s) \Delta s<1
$$

then we have $v(t)<\|v\|$ for $t \in[a, \sigma(b)]$ which is a contradiction.
We wish to note that Theorem 5 applies in many cases to which Theorem 4 does not apply. For example, if $f_{0}=f^{0}=f_{\infty}=f^{\infty}=0$, then Theorem 4 does not apply but Theorem 5, part (b) yields the existence of two positive solutions for $\lambda \geqslant \lambda_{0} \geqslant 0$. Likewise Theorem 5 part (d) gives the existence of two positive solutions if $f_{0}=f^{0}=f_{\infty}=f^{\infty}=\infty$ and $0<\lambda \leqslant \lambda_{0}$, for some $\lambda_{0}>0$. The other parts of Theorem 5 give existence or nonexistence criteria different from those of Theorem 4 also. Related results may also be found in [8,10,12,14-16,21].

References

[1] R. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, preprint.
[2] C. Ahlbrandt, A. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, Boston, 1996.
[3] R. Agarwal, M. Bohner, Quadratic functionals for second order matrix equations on time scales, preprint.
[4] R. Agarwal, M. Bohner, P. Wong, Sturm-Liouville eigenvalue problems on time scales, preprint.
[5] B. Aulbach, S. Hilger, Linear dynamic processes with inhomogeneous time scale, Non-linear Dynamics and Quantum Dynamical Systems, Akademie Verlag, Berlin, 1990.
[6] W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Springer, New York, 1971.
[7] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
[8] L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems, Math. Comput. Modelling, to appear.
[9] L. Erbe, S. Hilger, Sturmian theory on measure chains, Differential Equations Dyn. Systems 1 (1993) 223-246.
[10] L.H. Erbe, S. Hu, H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994) 640-648.
[11] L.H. Erbe, A. Peterson, Green's functions and comparison theorems for differential equations on measure chains, Dyn. Continuous Discrete Impulsive Systems 6 (1999) 121-137.
[12] L.H. Erbe, A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comput. Modeling, to appear.
[13] L.H. Erbe, A. Peterson, Eigenvalue conditions and positive solutions, J. Difference Equations Appl., to appear.
[14] L.H. Erbe, M. Tang, Positive radial solutions to nonlinear boundary value problems for semilinear elliptic problems, in: Z. Deng et al. (Eds.), Differential Equations and Control Theory, Marcel Dekker, New York, 1995, pp. 45-53.
[15] L.H. Erbe, M. Tang, Existence and Multiplicity of positive solutions to nonlinear boundary value problems, Differential Equations Dyn. Systems 4 (1996) 313-320.
[16] J. Graef, C. Qian, B. Yang, Positive solutions to boundary value problems for nonlinear difference equations, J. Difference Equations, to appear.
[17] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990) 18-56.
[18] B. Kaymakcalan, V. Laksmikantham, S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
[19] W. Kelley, A. Peterson, Difference Equations: An Introduction with Applications, Academic Press, New York, 1991.
[20] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[21] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994) 1-7.

[^0]: * Corresponding author.

 E-mail addresses: lerbe@math.unl.edu (L. Erbe), apeterso@math.unl.edu (A. Peterson), mathsen@plains.nodak.edu (R. Mathsen)

