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1. Introduction

In this paper, we are going to study the non-blowup criteria of solutions of a type of incompress-
ible non-Newtonian fluid flows described by the Oldroyd-B model in the whole 2-D space:

⎧⎨⎩
∂t v + v · ∇v + ∇p = ν�v + μ1∇ · τ ,

∂tτ + v · ∇τ + aτ = Q (τ ,∇v) + μ2 D(v),

∇ · v = 0,

(1.1)

where v is the velocity field, τ is the non-Newtonian part of the stress tensor and p is the pressure.
The constants ν (the viscosity of the fluid), a (the reciprocal of the relaxation time), μ1 and μ2
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(determined by the dynamical viscosity of the fluid, the retardation time and a) are assumed to be
non-negative. The bilinear term Q has the following form:

Q (τ ,∇v) = W (v)τ − τ W (v) + b
(

D(v)τ + τ D(v)
)
. (1.2)

Here b ∈ [−1,1] is a constant, D(v) = ∇v+(∇v)t

2 is the deformation tensor and W (v) = ∇v−(∇v)t

2 is
the vorticity tensor. Fluids of this type have both elastic properties and viscous properties. More
discussions and the derivation of Oldroyd-B model (1.1) can be found in Oldroyd [22] or Chemin and
Masmoudi [5].

There has been a lot of work on the existence theory of Oldroyd model [5,8–10,14,17]. In particular,
the following theorem is established by Chemin and Masmoudi in [5]:

Theorem (Chemin and Masmoudi). In two space dimensions, the solutions to the Oldroyd model (1.1) with
smooth initial data do not develop singularities for t � T provided that

T∫
0

∥∥τ (t, ·)∥∥L∞ + |b|∥∥τ (t, ·)∥∥2
L2 dt < ∞. (1.3)

To establish the blowup criterion (1.3), the authors in [5] use a losing a priori estimate for solutions
of transport equations which was developed by Bahouri and Chemin [1] and used later on by a lot
of authors (for example, see [5–7,16,18,19,21] and the references therein). Our purpose of this paper
is to provide a simple method which avoids using the complicated losing a priori estimate and to
improve the blowup criterion (1.3) for Oldroyd model (1.1) established by Chemin and Masmoudi [5].
To best illustrate our ideas and for simplicity, we will take a = 0 and ν = μ1 = μ2 = b = 1 throughout
this paper. More precisely, we study the following system⎧⎨⎩

∂t v + v · ∇v + ∇p = �v + ∇ · τ ,

∂tτ + v · ∇τ = ∇vτ + τ (∇v)t + D(v),

∇ · v = 0.

(1.4)

We point out here that the results in this paper are obviously true for general constants a,μ1,μ2 � 0,
ν,b > 0 from our proofs.

Our main result concerning system (1.4) is:

Theorem 1.1. Assume that (v, τ ) is a local smooth solution to the Oldroyd model (1.4) on [0, T ) and
‖v(0, ·)‖L2∩Ċ1+α(R2) + ‖τ (0, ·)‖L1∩Ċα(R2) < ∞ for some α ∈ (0,1). Then one has

∥∥v(t, ·)∥∥Ċ1+α + ∥∥τ (t, ·)∥∥Ċα < ∞

for all 0 � t � T provided that

∥∥τ (t, ·)∥∥L1
T (BMO)

< ∞ and ‖τ‖L∞
T (L1) < ∞. (1.5)

Remark 1.2. This result is in the spirit of the Beale–Kato–Majda [2] non-blowup criterion for 3-D Euler
equations. There were many subsequent results improving the criterion, see for instance [12,13,23].
In particular our result still holds if we replace BMO with the Besov space B0∞,∞ used in H. Kozono,
T. Ogawa, and Y. Taniuchi [12] or if we replace the condition by the one introduced in Planchon [23].
In other words, the first condition in (1.5) in the above theorem can be weakened to
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T∫
0

‖τ‖B0∞,∞ =
T∫

0

sup
q

∥∥�qτ (t, ·)∥∥L∞ dt < ∞,

or to

lim
δ→0

sup
q

T∫
T −δ

∥∥�qτ (t, ·)∥∥L∞ dt < ε

for some sufficiently small ε > 0. The second condition in (1.5) can be replaced by

‖τ‖L2
T (L2) < ∞,

which was used in [5].

Remark 1.3. It is easy to check that smooth solutions to (1.4) enjoy the following energy law:

∫
R2

∣∣v(t, ·)∣∣2 + trτ (t, ·)dx +
t∫

0

∫
R2

|∇v|2 dx ds =
∫
R2

∣∣v(0, ·)∣∣2 + trτ (0, ·)dx, (1.6)

which means that

v ∈ L∞
T

(
L2) ∩ L2

T

(
Ḣ1) (1.7)

for all T > 0 under the second condition of (1.5). The a priori estimate (1.7) will be important to apply
Lemma 3.1.

Finally, it is well known that if A = 2τ + I is a positive definite symmetric matrix at t = 0 (which
is actually the physical case), then this property is conserved for later times. Indeed, A satisfies the
equation

∂t A + v · ∇ A = ∇v A + A(∇v)t .

Also, if at t = 0, we have det(A(0)) > 1 and A is positive definite, then this will also hold for later
times (see [11]). In particular this implies that tr(τ ) > 0 (or one has −1 < tr(τ ) � 0, which contradicts
with det(A) > 1). Hence, we have the following corollary where we also use the improved criterion
of Planchon.

Corollary 1.4. There exists an ε > 0, such that if (v, τ ) is a local smooth solution to the Oldroyd model (1.4)
on [0, T ), ‖v(0, ·)‖L2∩Ċ1+α(R2) + ‖τ (0, ·)‖L1∩Ċα(R2) < ∞ for some α ∈ (0,1) and that det(I + 2τ (0)) > 1,
A = I + 2τ (0) is positive definite symmetric, then one has∥∥v(t, ·)∥∥Ċ1+α + ∥∥τ (t, ·)∥∥Ċα < ∞
for all 0 � t � T provided that

lim
δ→0

sup
q

T∫
T −δ

∥∥�qτ (t, ·)∥∥L∞ dt < ε. (1.8)
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Our proof is based on careful Hölder estimates of heat and transport equations and the standard
Littlewood–Paley theory, which is much easier than the extensively used losing a priori estimates (for
example, see [1,5–7,16]). In fact, the main innovation of this paper is that our analysis may be viewed
as a replacement of the losing a priori estimate. Our method is expected to be easily adopted to other
problems via the losing a priori estimate. Moreover, our criterion slightly improves the one established
by Chemin and Masmoudi (see [5]).

Finally, let us make a remark on MHD:

⎧⎨⎩
∂t v + v · ∇v + ∇p = ν�v + ∇ · (H × H),

∂t H + v · ∇H = H · ∇v,

∇ · v = ∇ · H = 0,

(1.9)

where H denotes the magnetic field. A direct corollary of Theorem 1.1 for MHD (1.9) is the following:

Corollary 1.5. Assume that (v, H) is a local smooth solution to MHD (1.9) on [0, T ) and ‖v(0, ·)‖L2∩Ċ1+α +
‖H(0, ·)‖L2∩Ċα < ∞ for some α ∈ (0,1). Then one has

∥∥v(t, ·)∥∥Ċ1+α + ∥∥H(t, ·)∥∥Ċα < ∞

for all 0 � t � T provided that

T∫
0

∥∥(H × H)(t, ·)∥∥BMO dt < ∞. (1.10)

The proof of this corollary is given in Section 4. Unfortunately, at present we are not able to
improve (1.10) as

T∫
0

∥∥H(t, ·)∥∥2
BMO dt < ∞,

and this is still an open problem.
The paper is organized as follows: Section 2 is devoted to recalling some basic properties of

Littlewood–Paley theory and proving two interpolation inequalities. The proof of Theorem 1.1 is given
in Section 3. In the last section we sketch the proof of Corollary 1.5.

2. Preliminaries

Let S(R2) be the Schwartz class of rapidly decreasing functions. Given f ∈ S(R2), its Fourier
transform F f = f̂ (inverse Fourier transform F −1 g = ğ , respectively) is defined by f̂ (ξ) =∫

e−ix·ξ f (x)dx ( ğ(x) = ∫
eix·ξ g(ξ)dξ , respectively). Now let us recall the Littlewood–Paley decom-

position (see [3,4]). Choose two non-negative radial functions ψ,φ ∈ S(R2), supported respectively in
B = {ξ ∈ R

2: |ξ | � 4
3 } and C = {ξ ∈ R

2: 3
4 � |ξ | � 8

3 } such that

ψ(ξ) +
∑
j�0

φ

(
ξ

2 j

)
= 1 for ξ ∈ R2,

∑
−∞� j�∞

φ

(
ξ

2 j

)
= 1 for ξ ∈ R2 \ {0}.
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The frequency localization operator is defined by

�q f =
∫
R2

φ̌(y) f
(
x − 2−q y

)
dy, Sq f =

∫
R2

ψ̌(y) f
(
x − 2−q y

)
dy. (2.1)

The following lemma is well known (for example, see [4]).

Lemma 2.1. For s ∈ R, 1 � p � ∞ and integer q, one has⎧⎪⎪⎨⎪⎪⎩
c2qs‖�q f ‖L p �

∥∥∇s�q f
∥∥

L p � C2qs‖�q f ‖L p ,∥∥|∇|s Sq f
∥∥

L p � C2qs‖ f ‖L p ,

ce−C22qt‖�q f ‖L∞ �
∥∥et��q f

∥∥
L∞ � Ce−c22qt‖�q f ‖L∞ .

(2.2)

Here C and c are positive constants independent of s, p and q.

We also need the following lemma (see also [20,21] where similar estimates were used).

Lemma 2.2. Assume that β > 0. Then there exists a positive constant C > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ f ‖L∞ � C
(
1 + ‖ f ‖L2 + ‖ f ‖BMO ln

(
e + ‖ f ‖Ċβ

))
,

T∫
0

∥∥∇g(s, ·)∥∥L∞ ds � C

(
1 +

T∫
0

∥∥g(s, ·)∥∥L2 ds

+ sup
q

T∫
0

∥∥�q∇g(s, ·)∥∥L∞ ds ln

(
e +

T∫
0

∥∥∇g(s, ·)∥∥Ċβ ds

))
.

(2.3)

Proof. The first inequality is well known. For example, see [2,13,15]. To prove the second inequality,
we use the Littlewood–Paley theory to compute that

T∫
0

∥∥∇g(s, ·)∥∥L∞ ds � C

T∫
0

∥∥∥∥∑
q�0

∇�q g(s, ·)
∥∥∥∥

L∞
ds + C N max

1�q�N

T∫
0

∥∥�q∇g(s, ·)∥∥L∞ ds

+
T∫

0

∑
q�N+1

2−βq2βq
∥∥�q∇g(s, ·)∥∥L∞ ds

� C

( T∫
0

∥∥g(s, ·)∥∥L2 ds + sup
1�q�N

T∫
0

N
∥∥�q∇g(s, ·)∥∥L∞ ds

+ 2−βN

T∫
0

∥∥∇g(s, ·)∥∥Ċβ ds

)
.

Then the second inequality in Lemma 2.2 follows by choosing

N = 1

β
log2

(
e +

T∫ ∥∥∇g(s, ·)∥∥Ċβ

)
� C ln

(
e +

T∫ ∥∥∇g(s, ·)∥∥Ċβ ds

)
. �
0 0
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3. Blowup criteria for Oldroyd-B model

This section is devoted to establishing the blowup criterion for the Oldroyd-B model (1.1) and
proving Theorem 1.1. Our analysis is based on careful Hölder estimates of heat and transport equa-
tions and the standard Littlewood–Paley theory, which is much easier than the extensively used losing
a priori estimates (for example, see [1,5–7,16]). Moreover, our criterion slightly improves the one es-
tablished by Chemin and Masmoudi (see [5]). We divide our proof into two steps. The first step is
focused on establishing some a priori estimates for 2-D Navier–Stokes equations. Then we establish
Hölder estimates for the velocity field v and the stress tensor τ in the second step.

Step 1. The a priori estimates for 2-D Navier–Stokes equations. We need the following lemma which
is basically established by Chemin and Masmoudi in [5]. For completeness, the proof will be also
sketched here.

Lemma 3.1 (Chemin–Masmoudi). Let v be a solution of the Navier–Stokes equations with initial data in L2

and an external force f ∈ L̃1
T (C−1) ∩ L2

T (H−1):

⎧⎨⎩
∂t v + v · ∇v + ∇p = �v + f ,

∇ · v = 0,

v(0, x) = v0(x).

(3.1)

Then we have the following a priori estimate:

‖v‖̃L1
T (C1) � C

(
sup

q
‖�q v0‖L2

(
1 − exp

{−c22q T
}) + (‖v0‖L2 + ‖ f ‖L2

T (Ḣ−1)

)‖∇v‖2
L2

T (L2)

+ sup
q

T∫
0

∥∥2−q�q f (s)
∥∥

L∞ ds

)
. (3.2)

Proof. First of all, applying the operator �q to the 2-D Navier–Stokes equations (3.1) and then using
Lemma 2.1 and the standard energy estimate, we deduce that

1

2

d

dt
‖�q v‖2

L2 + c22q‖�q v‖2
L2 �

∥∥2q�q v
∥∥

L2

(∥∥2−q�q f
∥∥

L2 + ∥∥�q(v ⊗ v)
∥∥

L2

)
� c22q‖�q v‖2

L2 + C
(∥∥2−q�q f

∥∥2
L2 + ∥∥�q(v ⊗ v)

∥∥2
L2

)
.

Integrating with respect to time and summing over q, we get

∑
q

‖�q v‖2
L∞

T (L2)
� ‖v0‖2

L2 + C
(‖ f ‖2

L2
T (Ḣ−1)

+ ‖v ⊗ v‖2
L2

T (L2)

)
� ‖v0‖2

L2 + C
(‖ f ‖2

L2
T (Ḣ−1)

+ ‖v‖2
L∞

T (L2)
‖∇v‖2

L2
T (L2)

)
,

where we used the standard interpolation inequality ‖v‖2
L4 � C‖v‖L2‖∇v‖L2 . Recalling the basic en-

ergy estimate

‖v‖2
L∞

T (L2)
+ ‖∇v‖2

L2
T (L2)

� ‖v0‖2
L2 + ‖ f ‖2

L2
T (Ḣ−1)

, (3.3)
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one has

∑
q

‖�q v‖2
L∞

T (L2)
� C

(‖v0‖2
L2 + ‖ f ‖2

L2
T (Ḣ−1)

)(
1 + ‖v0‖2

L2 + ‖ f ‖2
L2

T (Ḣ−1)

)
. (3.4)

Next, let us apply �q to (3.1) and use Lemma 2.1 to estimate

∥∥�q v(t)
∥∥

L∞ � C‖�q v0‖L∞e−c22qt +
t∫

0

(∥∥�q f (s)
∥∥

L∞ + ∥∥�q∇ · (v ⊗ v)(s)
∥∥

L∞
)
e−c22q(t−s) ds,

which yields

‖v‖̃L1
T (C1) � C sup

q

T∫
0

‖�q v0‖L∞ 2qe−c22qt dt

+ C sup
q

T∫
0

t∫
0

∥∥�q f (s)
∥∥

L∞ 2qe−c22q(t−s) ds dt

+ C sup
q

T∫
0

t∫
0

∥∥�q∇ · (v ⊗ v)(s)
∥∥

L∞ 2qe−c22q(t−s) ds dt

� C sup
q

‖�q v0‖L2

(
1 − e−c22q T )

+ C sup
q

T∫
0

∥∥�q(v ⊗ v)(s)
∥∥

L∞ ds + ‖ f ‖̃L1
T (C−1). (3.5)

Using the Bony’s decomposition, one can write

∥∥�q(v ⊗ v)(s)
∥∥

L∞ =
∑

|p−r|�1

∥∥�q(�p v ⊗ �r v)(s)
∥∥

L∞ +
∑

p−r�2

∥∥�q(�p v ⊗ �r v)(s)
∥∥

L∞

+
∑

r−p�2

∥∥�q(�p v ⊗ �r v)(s)
∥∥

L∞ .

A straightforward computation gives

T∫
0

∑
|p−r|�1

∥∥�q(�p v ⊗ �r v)(s)
∥∥

L∞ ds

� C

T∫ ∑
|p−r|�1

2q
∥∥�q(�p v ⊗ �r v)(s)

∥∥
L2 ds
0
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� C

T∫
0

∑
|p−r|�1, p�q−3

2q− p+r
2

∥∥2p�p v
∥∥ 1

2
L∞‖�r v‖

1
2
L2‖�p v‖

1
2
L∞

∥∥2r�r v
∥∥ 1

2
L2 ds

� C

T∫
0

∑
|p−r|�1, p�q−3

2q− p+r
2

∥∥2p�p v
∥∥ 1

2
L∞‖�r v‖

1
2
L2

∥∥2p�p v
∥∥ 1

2
L2

∥∥2r�r v
∥∥ 1

2
L2 ds

� C‖v‖
1
2
L∞

T (L2)
‖∇v‖L2

T (L2)‖v‖
1
2

L̃1
T (C1)

.

Similarly, one has

T∫
0

( ∑
p−r�2

∥∥�q(�p v ⊗ �r v)(s)
∥∥

L∞ +
∑

r−p�2

∥∥�q(�p v ⊗ �r v)(s)
∥∥

L∞

)
ds

� C

T∫
0

∑
p−r�2, |p−q|�2

‖�p v‖L∞‖�r v‖L∞ ds

� C

T∫
0

∑
p−r�2, |p−q|�2

∥∥2p�p v
∥∥ 1

2
L∞

∥∥2p�p v
∥∥ 1

2
L2 2r− p

2 ‖�r v‖L2 ds

� C‖v‖
1
2
L∞

T (L2)
‖∇v‖L2

T (L2)‖v‖
1
2

L̃1
T (C1)

.

Using the above two estimates, one can improve (3.5) as

‖v‖̃L1
T (C1) � C

(
sup

q
‖�q v0‖L2

(
1 − e−c22q T ) + ‖v‖L∞

T (L2)‖∇v‖2
L2

T (L2)
+ ‖ f ‖̃L1

T (C−1)

)
.

Consequently, one can deduce (3.2) from the basic energy estimate (3.3) and the above inequality. �
Now let us assume that f ∈ L1

T (Ċ−1) ∩ L2
T (H−1). By Lemma 3.1, it is easy to see that

‖v‖̃L1[t0,T ](C1) � C

(
sup

q

∥∥�q v(t0)
∥∥

L2

(
1 − exp

{−c22q(T − t0)
}) +

T∫
t0

sup
q

∥∥2−q�q f (s)
∥∥

L∞ ds

+ (∥∥v(t0)
∥∥

L2 + ‖ f ‖L2[t0,T ](Ḣ−1)

)‖∇v‖2
L2[t0,T ](L2)

)
(3.6)

holds for any t0 ∈ [0, T ). By (3.4), one can choose some q0 such that

sup
q>q0

‖�q v‖2
L∞[t0,T ](L2)

� ε

4C
.

Furthermore, by the basic energy estimate (3.3), one can choose some t1 ∈ [t0, T ) such that
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sup
t1�t�T

sup
q�q0

∥∥�q v(t)
∥∥

L2

(
1 − exp

{−c22q(T − t)
})

� sup
t1�t�T

∥∥v(t)
∥∥

L2 2c22q0(T − t1)

� C22q0
(‖v0‖L2 + ‖ f ‖L2[0,T ](Ḣ−1)

)
(T − t1) � ε

4C
.

Consequently, one has

sup
t1�t�T

sup
q

∥∥�q v(t)
∥∥

L2

(
1 − exp

{−c22q(T − t)
})

� ε

2C
. (3.7)

On the other hand, it is obvious that one can choose some t2 ∈ [t1, T ) such that

(
sup

t2�t�T

∥∥v(t)
∥∥

L2 + ‖ f ‖L2[t2,T ](Ḣ−1)

)
‖∇v‖2

L2[t2,T ](L2)
+

T∫
t2

sup
q

∥∥2−q�q f (s)
∥∥

L∞ ds � ε

2C
. (3.8)

Combining (3.7) and (3.8) with (3.6), one arrives at

‖v‖̃L1[t2,T ](C1) � ε. (3.9)

Step 2. Hölder estimate for v and τ . First of all, by (3.9) and the assumption (1.5), one can choose
t ∈ [t2, T ) such that

‖v‖̃L1[t,T ](C1) � ε, ‖τ‖L1[t,T ](BMO) � ε. (3.10)

For 0 � t < T , define

A(t) = sup
0�s<t

∥∥v(t, ·)∥∥Ċ1+α , B(t) = sup
0�s<t

∥∥τ (t, ·)∥∥Ċα .

We are about to estimate A(t) and B(t) for 0 � t < T . For this purpose, let us apply �q to the
Oldroyd-B system (1.4) to get

{
∂t�q v − ��q v + ∇�q p = ∇ · �q(τ − v ⊗ v),

∂t�qτ + v · ∇�qτ = �q
(∇vτ + τ (∇v)t + D(v)

) + [v · ∇,�q]τ .
(3.11)

Let us first estimate ‖v(t, ·)‖Ċ1+α . By the first equation in (3.11) and Lemma 2.1, one has

‖�q v‖L∞ � Ce−c22qt
∥∥�q v(0)

∥∥
L∞ +

t∫
0

e−c22q(t−s)
∥∥∇ · �q(τ − v ⊗ v)

∥∥
L∞(s)ds. (3.12)

Multiplying 2q(1+α) to both sides of (3.12), we have
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∥∥�q v(t, ·)∥∥Ċ1+α � C
∥∥v(0, ·)∥∥Ċ1+α + C

t∫
0

22qe−c22q(t−s)‖�qτ‖Ċα ds

+ C

t∫
0

2
3
2 qe−c22q(t−s)

∥∥(v ⊗ v)(s, ·)∥∥Ċ1/2+α ds

� C
(∥∥v(0, ·)∥∥Ċ1+α + B(t)

) + C

( t∫
0

‖v‖4
L4‖v‖4

Ċ1+α ds

) 1
4

,

where we have used Hölder inequality and the fact that ‖v ⊗ v‖Ċ1/2+α � C‖v‖L4‖v‖Ċ1+α . Consequently,
there holds

∥∥v(t, ·)∥∥4
Ċ1+α � C

(∥∥v(0, ·)∥∥Ċ1+α + B(t)
)4 + C

t∫
0

‖v‖4
L4‖v‖4

Ċ1+α ds

� C
(∥∥v(0, ·)∥∥Ċ1+α + B(t̃)

)4 + C

t∫
0

∥∥v(s, ·)∥∥2
L2

∥∥∇v(s, ·)∥∥2
L2

∥∥v(s, ·)∥∥4
Ċ1+α ds

for any fixed t̃: 0 � t̃ < T and t � t̃ < T . Here we used the fact that B(t) is nondecreasing. Conse-
quently, Gronwall’s inequality gives that

A(t̃)4 = sup
0�t<t̃

∥∥v(t, ·)∥∥4
Ċ1+α

� C
(∥∥v(0, ·)∥∥Ċ1+α + B(t̃)

)4
exp

{
C

t∫
0

∥∥v(s, ·)∥∥2
L2

∥∥∇v(s, ·)∥∥2
L2 ds

}
.

Since t̃ ∈ [0, T ) is arbitrary, using the basic energy inequality (1.7), we in fact have

A(t) � C
(∥∥v(0, ·)∥∥Ċ1+α + B(t)

)
, 0 � t < T . (3.13)

Next, by the second equation in (3.11), we have

∥∥�qτ (t, ·)∥∥L∞ �
∥∥�qτ (0, ·)∥∥L∞ +

t∫
0

(
2q

∥∥�q v(s, ·)∥∥L∞ + ∥∥�q
(∇vτ + τ (∇v)t)(s, ·)∥∥L∞

+ ∥∥[v · ∇,�q]τ (s, ·)∥∥L∞
)

ds,

which implies that

∥∥�qτ (t, ·)∥∥Ċα � C
∥∥τ (0, ·)∥∥Ċα +

t∫
0

(‖v‖Ċ1+α + ‖∇v‖L∞‖τ‖Ċα + ‖τ‖L∞‖v‖Ċ1+α

+ 2αq
∥∥[v · ∇,�q]τ (s, ·)∥∥ ∞

)
ds. (3.14)
L
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By Bony’s decomposition, one has

[v · ∇,�q]τ =
∑

|p−q′|�1

[�p v · ∇,�q]�q′τ +
∑

p�q′−2

[�p v · ∇,�q]�q′τ

+
∑

p�q′−2

[�q′ v · ∇,�q]�pτ

=
∑

|q′−q|�2

([Sq′−1 v · ∇,�q]�q′τ + [�q′ v · ∇,�q]Sq′−1τ
)

+
∑

|p−q′|�1

[�p v · ∇,�q]�q′τ .

Noting that

[Sq′−1 v,�q] f =
∫

h(y)
[
(Sq′−1 v)(x) − (Sq′−1 v)

(
x − 2−q y

)]
f
(
x − 2−q y

)
dy,

one has ∥∥[Sq′−1 v,�q] f
∥∥

L∞ � C2−q‖∇ Sq′−1 v‖L∞‖ f ‖L∞ .

Consequently, we have

∑
|q′−q|�2

t∫
0

(
2αq

∥∥[Sq′−1 v · ∇,�q]�q′τ (s, ·)∥∥L∞
)

ds

�
∑

|q′−q|�2

t∫
0

2αq2−q‖∇ Sq′−1 v‖L∞‖�q′∇τ‖L∞(s, ·)ds

� C
∑

|q′−q|�2

t∫
0

‖∇ Sq′−1 v‖L∞
[
2αq′ ‖�q′τ‖L∞

]
(s, ·)ds

� C

t∫
0

‖∇v‖L∞‖τ‖Ċα ds.

Similarly, we have

∑
|q′−q|�2

t∫
0

(
2αq

∥∥[�q′ v · ∇,�q]Sq′−1τ (s, ·)∥∥L∞
)

ds

�
∑

|q′−q|�2

t∫
0

2αq2−q‖�q′∇v‖L∞‖Sq′−1∇τ‖L∞(s, ·)ds

� C

t∫
‖τ‖L∞‖v‖Ċ1+α ds.
0
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At last, one computes that

∑
|p−q′|�1

t∫
0

(
2αq

∥∥[�p v · ∇,�q]�q′τ (s, ·)∥∥L∞
)

ds

�
∑

p,q′�q

t∫
0

(
2(1+α)q

∥∥[�p v,�q]�q′τ (s, ·)∥∥L∞
)

ds

+
∑

p,q′�q+2

t∫
0

(
2(1+α)q

∥∥[�p v,�q]�q′τ (s, ·)∥∥L∞
)

ds

� C

t∫
0

‖τ‖L∞‖v‖Ċ1+α ds.

The above inequalities yield an improvement of (3.14):

∥∥τ (t, ·)∥∥Ċα � C
∥∥τ (0, ·)∥∥Ċα + C

t∫
0

(‖∇v‖L∞ + ‖τ‖L∞
)(∥∥τ (s, ·)∥∥Ċα + ∥∥v(s, ·)∥∥Ċ1+α

)
ds. (3.15)

Now let us insert (3.13) into (3.15) to get

B(t) = sup
0�s<t

∥∥τ (t, ·)∥∥Ċα

� C
∥∥τ (0, ·)∥∥Ċα + C

t∫
0

(‖∇v‖L∞ + ‖τ‖L∞
)(∥∥v(0, ·)∥∥Ċ1+α + B(s)

)
ds.

Noting that by the inequalities in Lemma 2.2, we can estimate

t∫
0

(‖∇v‖L∞ + ‖τ‖L∞
)

ds

�
t∫

0

(‖∇v‖L∞ + ‖τ‖L∞
)

ds + C

t∫
t

(
1 + ‖v‖L2 + ‖τ‖L2

)
ds

+ C sup
q

t∫
t

‖∇�q v‖L∞ ds ln

(
e +

t∫
0

‖v‖Ċ1+α ds

)
+ C

t∫
t

‖τ‖BMO ln
(
e + ‖τ‖Ċα

)
ds

� C + Cε ln
[
e + Ct

(∥∥v(0, ·)∥∥Ċ1+α + B(t)
)] + Cε ln

(
e + B(t)

)
� C + Cε ln

(
e + ∥∥v(0, ·)∥∥Ċ1+α + B(t)

)
.
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Here C is a positive constant depending on the solution (v, τ ) on [0, t]. Consequently, we have

B(t) � C

(
1 + ∥∥τ (0, ·)∥∥Ċα + ∥∥v(0, ·)∥∥Ċ1+α

) + C

t∫
0

(‖∇v‖L∞ + ‖τ‖L∞
)

B(s)ds.

Then Gronwall’s inequality yields that

e + ∥∥v(0, ·)∥∥Ċ1+α + B(t)

� C

(
e + ∥∥τ (0, ·)∥∥Ċα + ∥∥v(0, ·)∥∥Ċ1+α

)
exp

{
C

t∫
t

(‖∇v‖L∞ + ‖τ‖L∞
)

ds

}

� C

(
e + ∥∥τ (0, ·)∥∥Ċα + ∥∥v(0, ·)∥∥Ċ1+α

)
eC+Cε ln(e+‖v(0,·)‖Ċ1+α +B(t))

� C

(
e + ∥∥τ (0, ·)∥∥Ċα + ∥∥v(0, ·)∥∥Ċ1+α

)(
e + ∥∥v(0, ·)∥∥Ċ1+α + B(t)

)Cε
.

From the above inequalities and (3.13), we have

A(t) + B(t) � C

(
1 + ∥∥τ (0, ·)∥∥Ċα + ∥∥v(0, ·)∥∥Ċ1+α

)2
(3.16)

by choosing ε = 1
2C .

4. Proof of Corollary 1.5

In fact, it is easy to see that the tensor H ⊗ H satisfies the following transport equation:

∂t(H ⊗ H) + v · ∇(H ⊗ H) = ∇v(H ⊗ H) + (H ⊗ H)(∇v)t . (4.1)

Hence, the tensor H ⊗ H − 1
2 I plays the role of τ . (However, it seems not being able to directly apply

Theorem 1.1 to get Corollary 1.5.) The rest part of the proof of Corollary 1.5 is similar as that of
Theorem 1.1.

In fact, by the assumption ‖v(0, ·)‖L2∩Ċ1+α + ‖H(0, ·)‖L2∩Ċα < ∞, one can easily derive that

∥∥v(0, ·)∥∥L2∩Ċ1+α(R2)
+ ∥∥H ⊗ H(0, ·)∥∥L1∩Ċα(R2)

< ∞. (4.2)

Moreover, one has the following energy law

∥∥(v, H)
∥∥

L∞
T (L2)

+ 2‖∇v‖L2
T (L2) = ∥∥(v, H)(0, ·)∥∥L2 , (4.3)

which gives that

‖H ⊗ H‖L∞
T (L1) < ∞. (4.4)

Having (4.2), (4.3) and (4.4) in hand, and noticing the assumption (1.10) and the transport equation
(4.1) for H ⊗ H , one has

∥∥v(t, ·)∥∥ ˙ 1+α + ∥∥H ⊗ H(t, ·)∥∥ ˙ α < ∞
C C
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by exactly the same manner as in Section 3. Coming back to the transport equation for H in (1.9), we
have

‖H‖Ċα < ∞
in a standard manner. This completes the proof of Corollary 1.5.
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