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We propose a limited class of models, describing interacting chiral multiplets with a non-minimal 
coupling to a vector multiplet, in curved superspace of N = 1 supergravity. Those models are suitable 
for the inflationary model building in supergravity with inflaton assigned to a massive vector multiplet 
and spontaneous SUSY breaking in Minkowski vacuum after inflation, for any values of the inflationary 
parameters ns and r, and any scale of SUSY breaking.
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1. Introduction

Success of the inflationary scenario for early Universe is, on the 
one hand, due to overcoming the theoretical problems (horizon, 
flatness, structure formation) of the standard (Einstein–Friedmann) 
cosmology and, on the other hand, due to its remarkable agree-
ment with the CMB observational data (COBE, WMAP, PLANCK). 
For instance, the observed breaking of CMB scale invariance is 
measured by the scalar tilt, ns − 0.9666 = ±0.0062 [1,2], and the 
relative magnitude of primordial gravity waves is parametrized by 
the tensor-to-scalar ratio r < 0.07 [3]. Those observations favour 
chaotic slow-roll inflation in its single-field realization, i.e. the 
large-field inflation driven by a single scalar called inflaton with 
an approximately flat scalar potential.

Embedding a single-field inflation into N = 1 four-dimensional 
supergravity is needed to connect inflationary models to particle 
physics beyond the Standard Model, and towards their ultimate 
embedding into string theory. It requires inflaton to belong to 
a massive N = 1 multiplet that can be either a chiral multiplet 
(of the highest spin 1/2) or a real vector multiplet (of the high-
est spin 1). Most of the literature about inflation in supergravity 
uses the first option — see e.g., the reviews [4,5] — since it is 
usually assumed that vector fields do not play any role during 
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inflation.1 However, assuming inflaton to be in a chiral multiplet 
also causes some problems. First, the scalar component of a chiral 
multiplet is complex, which implies the need to stabilize another 
(non-inflaton) scalar during inflation. Second, there is also the so-
called η-problem caused by the presence of the exponential factor 
eK in the scalar potential of supergravity with chiral superfields, 
which generically prevents slow roll. Third, there are problems also 
with ensuring the inflaton scalar potential to be bounded from be-
low, and with getting SUSY breaking in a Minkowski vacuum after 
inflation too. Of course, the inflationary model building in super-
gravity now has many models that overcome some of those prob-
lems — see e.g., [6–10] and references therein. However, it often 
comes at the price of having more matter superfields together with 
a need to invent the dynamics for them. The minimal inflationary 
models with a single inflaton chiral superfield, with or without 
SUSY breaking after inflation, are also possible [11–13] but require 
tuning both Kähler potential and a superpotential. Yet another ap-
proach, based on the use of non-linear realizations of SUSY and 
nilpotent chiral superfields, was introduced to the supergravity-
based inflationary model building in [14].

When inflaton is assigned to a massive vector multiplet, there 
is no need of its complexification, because the scalar field compo-
nent of a real massive N = 1 vector multiplet is real. Accordingly, 
there is no need for other scalars and their stabilization during 

1 Taking into account vector fields is believed to be important after inflation, dur-
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inflation, in the minimal supergravity setup. The η-problem also 
does not arise because the scalar potential of a vector multiplet in 
supergravity has a different structure (of the D-type instead of the 
F -type). Actually, the corresponding minimal inflationary models 
were already constructed by Ferrara, Kallosh, Linde and Porrati in 
[15] by exploiting the non-minimal self-coupling of a vector mul-
tiplet to supergravity, found by Van Proeyen in [16].

The supergravity inflationary models of [15] have the single-
field scalar potential given by an arbitrary real function squared. 
Those scalar potentials are always bounded from below and al-
low any desired values of ns and r. However, the minima of the 
scalar potentials of [15] have the vanishing cosmological constant 
and the vanishing VEV of the auxiliary field D , so that they only 
have Minkowski vacua where supersymmetry is always restored 
after inflation. It is desirable to have more theoretical flexibility, as 
regards SUSY breaking, for phenomenological purposes.

In this paper we propose a simple extension of the inflationary 
models [15] by adding a Polonyi (chiral) superfield [17]. Our mod-
els also can accommodate arbitrary values of ns and r, but have a 
Minkowski vacuum after inflation, with spontaneously broken su-
persymmetry (SUSY).

Our paper is organized as follows. In Sec. 2 we propose a new 
class of supergravity models in curved superspace of N = 1 old-
minimal supergravity. Our models can be considered as the exten-
sions of those in [15] via adding a chiral superfield and its coupling 
to a vector (inflaton) superfield in supergravity. We also compute 
the bosonic kinetic terms and the scalar potential in our models. In 
Sect. 3 we identify the chiral sector with the Polonyi model, and 
find a Minkowski vacuum with spontaneously broken supersym-
metry after inflation that is not affected by the Polonyi superfield. 
Sect. 4 is our Conclusion.

2. A vector multiplet non-minimally coupled to a chiral 
multiplet in supergravity

Let us consider some chiral superfields �i with arbitrary Kähler 
potential K = K (�i,�i) and a chiral superpotential W = W(�i), 
interacting with a real superfield V whose arbitrary potential is 
described by a real function J = J (V ). The real vector superfield V
is supposed to describe a massive vector multiplet, while the chiral 
superfields are supposed to be (gauge) singlets in our construction.

We employ the curved superspace formalism of N = 1 super-
gravity [18]. Our notation and conventions coincide with the stan-
dard ones in [18], including the spacetime signature (−, +, +, +).2

Our models are defined by the Lagrangian (MPl = 1)

L =
∫

d2θ2E
{

3
8 (DD − 8R)e− 1

3 (K+2 J ) + 1
4 W αWα +W

}

+ h.c. , (1)

where we have introduced the chiral density superfield 2E , the 
chiral scalar curvature superfield R, and the chiral vector super-
field strength Wα ≡ − 1

4 (DD − 8R)Dα V .
In order to calculate the bosonic part of our models, we set all 

fermions to zero, and define the bosonic field components of the 
relevant superfields. As regards the supergravity multiplet, we have

2E| = e, DD(2E)| = 4M ,

R| = − 1
6 M, DDR| = − 1

3 R + 4
9 MM + 2

9 bmbm − 2
3 iDmbm ,

2 The N = 1 superconformal calculus used in [15,16] is equivalent to the curved 
superspace description [18] of N = 1 Poincaré supergravity after the superconformal 
gauge fixing.
where we have introduced the vierbein determinant e ≡ detea
m , 

the spacetime scalar curvature R , and the old-minimal set of the 
supergravity auxiliary fields, the complex scalar M and the real 
vector bm . The vertical bars denote the leading field components 
of a superfield at θ = θ̄ = 0.

The field components of �i and V are defined by

�i| = Ai DαDβ�i| = −2εαβ Fi , Dα̇Dα�i| = −2σαα̇
m∂m Ai ,

DDDD�i | = 16�Ai + 32
3 iba∂

a Ai + 32
3 Fi M ,

V | = C DαDβ V | = εαβ X , Dα̇Dα V | = σαα̇
m(Bm − i∂mC) ,

DαW β | ≡ − 1
4Dα(DD − 8R)Dβ V

= 1
4σαα̇

mσ α̇βn(Dm∂nC + 2i Fmn) + δα
β D ,

DDDDV | = 16
3 bm(Bm − i∂mC) + 6�C − 16

3 M X + 8D ,

in terms of the physical fields Ai , C , Bm as complex scalars, a real 
scalar, and a real vector respectively, the chiral auxiliary fields Fi

and X as complex scalars, the real auxiliary field D as a real scalar, 
and the vector field strength Fmn =Dm Bn −Dn Bm of Bm .

Using those definitions, we find by a straightforward calculation 
that the kinetic part of our Lagrangian is given by

e−1Lkin. = e− 1
3 (K+2 J )

{
− 1

2 R + 1
2 Ki�Ai + 1

2 Ki∗� Āi

− 1
6 Ki K j∂m Ai∂

m A j − 1
6 Ki∗ K j∗∂m Āi∂

m Ā j

−
(

1
3 J ′ 2 − 1

2 J ′′
)

∂mC∂mC +
(

1
3 J ′ 2 − 1

2 J ′′
)

Bm Bm

+ 3
4 J ′�C + i

3 J ′Bm(Ki∗∂
m Āi − Ki∂

m Ai)

− 1
3 J ′∂mC(Ki∗∂

m Āi + Ki∂
m Ai)

}
− 1

4 Fmn F mn , (2)

while its auxiliary part reads

e−1Laux. = e− 1
3 (K+2 J )

{
1
3 bmbm + i

3 bm(Ki∗∂
m Āi − Ki∂

m Ai)

+ 2
3 J ′bm Bm + J ′D + Kij∗ Fi F j −

(
1
3 J ′ 2 − 1

2 J ′′
)

X X

− 1
3 (MM + Ki K j∗ Fi F j − J ′Ki∗ F i X − J ′Ki Fi X

+ Ki∗ F i M + Ki Fi M − J ′M X − J ′M X)

}
− 1

4 D�C

+ 1
2 D2 + FiWi + F iW i − MW − MW . (3)

In our equations above, the K , J and W now represent the low-
est components of the corresponding superfields, being functions 
of the scalar fields Ai and C . As regards their derivatives, we 
have used the notation Ki ≡ ∂ K

∂ Ai
, Ki∗ ≡ ∂ K

∂ Ai
, Kij∗ ≡ ∂2 K

∂ Ai∂ A j
, J ′ ≡ ∂ J

∂C , 

Wi ≡ ∂W
∂ Ai

, W i ≡ ∂W
∂ Ai

.

In order to eliminate the auxiliary fields in accordance to their 
algebraic equations of motion, we first separate M , Fi and X from 
each other via a substitution,

M = N + J ′ X − Ki∗ F i , (4)

M = N + J ′ X − Ki Fi . (5)

In terms of the new auxiliary fields N and N , the auxiliary part of 
the Lagrangian takes the form
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e−1Laux. = e− 1
3 (K+2 J )

{
1
3 bmbm + i

3 bm(Ki∗∂
m Āi − Ki∂

m Ai)

+ 2
3 J ′bm Bm + J ′D + Kij∗ Fi F j + 1

2 J ′′ X X − 1
3 N N

}

− 1
4 D�C + 1

2 D2 + FiWi + F iW i

−W(N + J ′ X − Ki Fi) −W(N + J ′ X − Ki∗ F i) , (6)

so that Euler–Lagrange equations of the auxiliary fields are easily 
solved as

bm = − J ′Bm − i
2 (Ki∗∂m Āi − Ki∂m Ai) ,

D = 1
4 �C − J ′e− 1

3 (K+2 J )
, N = −3e

1
3 (K+2 J )W ,

Fi = −e
1
3 (K+2 J )K −1

i j∗ (W j + K j∗W), X = 2 J ′
J ′′ e

1
3 (K+2 J )W .

After a substitution of those solutions back into the Lagrangian, 
we find

e−1L = e− 1
3 (K+2 J )

{
− 1

2 R + 1
2 Ki�Ai + 1

2 Ki∗� Āi

− 1
6 Ki K j∗∂m Ai∂

m Ā j − 1
12 Ki K j∂m Ai∂

m A j

− 1
12 Ki∗ K j∗∂m Āi∂

m Ā j −
(

1

3
J ′ 2 − 1

2
J ′′

)
∂mC∂mC

+ J ′�C − 1
3 J ′∂mC(Ki∗∂

m Āi + Ki∂
m Ai) − 1

2 J ′′Bm Bm
}

− 1
4 Fmn F mn − 1

2 e− 2
3 (K+2 J ) J ′ 2

− e
1
3 (K+2 J )

[
K −1

i j∗ (Wi + KiW)(W j + K j∗W)

−
(

3 − 2
J ′ 2

J ′′

)
WW

]
. (7)

A transition from Jordan to Einstein frame is achieved by Weyl 
rescaling of spacetime metric,

gmn → e�gmn , e → e2�e , with � = 1
3 (K + 2 J ) .

Then the scalar curvature term transforms as

− 1
2 ee− 1

3 (K+2 J )R → − 1
2 eR + 1

12 (∂m K + 2∂m J )2 . (8)

It gives rise to the Lagrangian

e−1L = − 1
2 R + 1

2 Ki�Ai + 1
2 Ki∗� Āi − 1

4 Fmn F mn

− 1
2 J ′′∂mC∂mC − 1

2 J ′′Bm Bm − V, (9)

with the scalar potential

V = 1
2 J ′ 2 + eK+2 J

[
K −1

i j∗ (Wi + KiW)(W j + K j∗W)

−
(

3 − 2
J ′ 2

J ′′

)
WW

]
. (10)

Equations (1), (9) and (10) are our main results in this Sec-
tion. When the real superfield V is dropped ( J = 0), our result 
coincides with the standard Lagrangian and the scalar potential of 
chiral superfields in N = 1 supergravity [19]. When all the chiral 
superfields �i are dropped (K =W = 0), our results coincide with 
those in [15,16].3

As is clear from (9), the absence of ghosts requires J ′′(C) > 0.

3 Our notation for J differs by the sign from that of [15,16].
3. Vacuum solution

In this Section we restrict ourselves to a single chiral superfield 
� having the canonical Kähler potential and the superpotential 
given by a sum of a linear term and a constant,

K = �� , W = μ(� + β) . (11)

This particular choice is known in the literature as Polonyi model
[17].4

In accordance to the previous Section, it gives rise to the La-
grangian

e−1L = − 1
2 R − ∂m A∂m Ā − 1

4 Fmn F mn − 1
2 J ′′∂mC∂mC

− 1
2 J ′′Bm Bm − 1

2 J ′ 2 − μ2e A Ā+2 J

×
[
|1 + Aβ + A Ā|2 −

(
3 − 2

J ′ 2

J ′′

)
|A + β|2

]
. (12)

The (Minkowski) vacuum conditions in this model are given by

V = 1
2 J ′ 2 + μ2e A Ā+2 J

×
[
|1 + Aβ + A Ā|2 −

(
3 − 2

J ′ 2

J ′′

)
|A + β|2

]
= 0 , (13)

∂ Ā V = AṼ F + μ2e A Ā+2 J
[

A(1 + Āβ + A Ā) + (A + β)

× (1 + Aβ + A Ā) −
(

3 − 2
J ′ 2

J ′′

)
(A + β)

]
= 0 , (14)

∂C V = J ′
{

J ′′ + 2μ2e A Ā+2 J
[
|1 + Aβ + A Ā|2

−
(

1 − 2
J ′ 2

J ′′ + J ′ J ′′′

J ′′2

)
|A + β|2

]}
= 0 , (15)

where we have introduced Ṽ F as the F-type scalar potential with 
the additional J -dependent term as

Ṽ F = μ2e A Ā+2 J
[
|1 + Aβ + A Ā|2 −

(
3 − 2

J ′ 2

J ′′

)
|A + β|2

]
. (16)

A simple solution to those equations exist when J ′ = 0, which 
separates the Polonyi multiplet from the vector multiplet. The re-
maining vacuum equations allow a solution with the VEV 〈A〉 ≡
α = (

√
3 − 1) and β = 2 − √

3 [17]. This celebrated (Polonyi) so-
lution describes a stable Minkowski vacuum with spontaneously 
broken SUSY since 〈F 〉 = μ. Hence, the parameter μ defines the 
scale of SUSY breaking, which is arbitrary in this model. The re-
lated gravitino mass is given by m3/2 = μe2−√

3. There is also a 
massive scalar of mass 2m3/2 and a massless fermion in the phys-
ical spectrum.

It should be emphasized that the Polonyi field does not affect 
inflation associated with the scalar C as the inflaton belonging to 
the massive vector multiplet, and having the D-type scalar poten-
tial V (C) = 1

2 J ′ 2 with arbitrary real J -function. Of course, the true 
inflaton field should be canonically normalized via the appropriate 
field redefinition of C .

When trying to get other patterns of SUSY breaking after infla-
tion by demanding J ′ 	= 0 and α = β = 0, we get two conditions 
on the J -function,

4 It is worth mentioning that this choice is most natural for a nilpotent (Akulov–
Volkov) superfield, �2 = 0.



118 Y. Aldabergenov, S.V. Ketov / Physics Letters B 761 (2016) 115–118
J ′ 2 = J ′′ , (17)

J ′′ = −2μ2e2 J . (18)

The first equation is solved by J = − log C +const., then the second 
condition yields the consistency relation const. = − 1

2 log(−2μ2). 
Since both J and μ should be real, there is no solution. However, 
when allowing β 	= 0, the second equation (18) gets modified as

J ′′ = −2μ2e2 J (1 − β2) , (19)

so that the reality of J and μ requires β > 1. Then (17) reads 
J ′ 2 = C−2 and is easily solvable. However, such scalar potential 
is not suitable for inflation (no slow roll). More general vacuum 
solutions with J ′ 	= 0 will be investigated elsewhere.

4. Conclusion

Our basic equations (1), (9) and (10) supply new theoretical 
tools for the inflationary model building in supergravity. They can 
be further generalized e.g., by including an extra function g(�) of 
the chiral superfields in front of the vector multiplet kinetic term 
in (1), and/or replacing the Maxwell-type kinetic term of the vec-
tor multiplet by the Born–Infeld-type action, like e.g., in [20].

Our models have three arbitrary (input) potentials K , W and J , 
providing more flexibility to the inflationary model building and, 
perhaps, being derivable from a more fundamental theory, like 
string theory.

Our construction does not have an R-symmetry, and is appar-
ently unrelated to (the dual version of) matter-coupled (R + R2)

supergravity in its ‘new-minimal’ formulation [21].
In particular, as was demonstrated in Sec. 3, our construction 

easily supplies spontaneous SUSY breaking after inflation to the 
supergravity-based inflationary models whose inflaton belongs to 
a massive vector multiplet, via their coupling to Polonyi multiplet. 
Those models are limited in the sense that they provide the mini-
mal extension of the inflationary models proposed in [15] for the 
sake of spontaneous SUSY breaking in Minkowski vacuum after in-
flation. The Polonyi multiplet itself can be assigned to the hidden 
sector needed for SUSY breaking and its gravitational mediation 
to the visible sector in more general field-theoretical models of 
particle physics beyond the Standard Model in the context of su-
pergravity.
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