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a b s t r a c t

We survey some recent results on long-standing conjectures re-
garding Hamilton cycles in directed graphs, oriented graphs and
tournaments. We also combine some of these to prove the fol-
lowing approximate result towards Kelly’s conjecture on Hamilton
decompositions of regular tournaments: the edges of every regular
tournament can be covered by a set of Hamilton cycles which are
‘almost’ edge-disjoint. We also highlight the role that the notion of
‘robust expansion’ plays in several of the proofs. New and old open
problems are discussed.
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1. Introduction

The decision problem ofwhether a graph has a Hamilton cycle is NP-complete and so a satisfactory
characterization of Hamiltonian graphs seems unlikely. Thus it makes sense to ask for degree
conditions which ensure that a graph has a Hamilton cycle. One such result is Dirac’s theorem [21],
which states that every graphonn ≥ 3 verticeswithminimumdegree at leastn/2 contains aHamilton
cycle. This is strengthened by Ore’s theorem [56]: if G is a graph with n ≥ 3 vertices such that every
pair x ≠ y of non-adjacent vertices satisfies d(x) + d(y) ≥ n, then G has a Hamilton cycle. Dirac’s
theorem can also be strengthened considerably by allowingmany of the vertices to have small degree:
Pósa’s theorem [57] states that a graph on n ≥ 3 vertices has a Hamilton cycle if its degree sequence
d1 ≤ · · · ≤ dn satisfies di ≥ i + 1 for all i < (n − 1)/2 and if additionally d⌈n/2⌉ ≥ ⌈n/2⌉ when n is
odd. Again, this is best possible — none of the degree conditions can be relaxed. Chvátal’s theorem [14]
is a further generalization. It characterizes all those degree sequences which ensure the existence of
a Hamilton cycle in a graph: suppose that the degrees of the graph G are d1 ≤ · · · ≤ dn. If n ≥ 3
and di ≥ i + 1 or dn−i ≥ n − i for all i < n/2 then G is Hamiltonian. This condition on the degree
sequence is best possible in the sense that for any degree sequence d1 ≤ · · · ≤ dn violating this
condition there is a corresponding graphH with no Hamilton cycle whose degree sequence d′

1, . . . , d
′
n
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dominates d1, . . . , dn (i.e. the d′

i ≥ di for every i = 1, . . . , n). These four results are among the most
general and well-known Hamiltonicity conditions. There are manymore — often involving additional
structural conditions like planarity. The survey [26] gives an extensive overview (which concentrates
on undirected graphs).

In this survey, we concentrate on recent progress for directed graphs. Though the problems
are equally natural for directed graphs, it is usually much more difficult to obtain satisfactory
results. Additional results beyond those discussed here can be found in the corresponding chapter
of the monograph [4]. In Section 2, we discuss digraph analogues and generalizations of the above
four results. The next section is devoted to oriented graphs — these are obtained from undirected
graphs by orienting the edges (and thus are digraphs without 2-cycles). Section 4 is concerned
with tournaments. Section 5 is devoted to several generalizations of the notion of a Hamilton cycle,
e.g. pancyclicity and k-ordered Hamilton cycles. The final section is devoted to the concept of ‘robust
expansion’. This has been useful in provingmany of the recent results discussed in this survey.Wewill
give a brief sketch of how it can be used. In this paper, we also use this notion (and several results from
this survey) to obtain a new result (Theorem 18) which gives further support to Kelly’s conjecture on
Hamilton decompositions of regular tournaments. In a similar vein, we use a result of [16] to deduce
that the edges of every sufficiently dense regular (undirected) graph canbe coveredbyHamilton cycles
which are almost edge-disjoint (Theorem 21).

2. Hamilton cycles in directed graphs

2.1. Minimum degree conditions

For an analogue of Dirac’s theorem in directed graphs it is natural to consider the minimum
semidegree δ0(G) of a digraph G, which is the minimum of its minimum outdegree δ+(G) and its
minimum indegree δ−(G). (Here a directed graph may have two edges between a pair of vertices,
but in this case their directions must be opposite.) The corresponding result is a theorem of Ghouila-
Houri [25].

Theorem 1 (Ghouila-Houri [25]). Every strongly connected digraph on n verticeswith δ+(G)+δ−(G) ≥ n
contains a Hamilton cycle. In particular, every digraph with δ0(G) ≥ n/2 contains a Hamilton cycle.

(When referring to paths and cycles in directed graphs we usually mean that these are directed,
without mentioning this explicitly.)

For undirected regular graphs, Jackson [35] showed that one can reduce the degree condition in
Dirac’s theorem considerably if we also impose a connectivity condition, i.e. every 2-connected d-
regular graph on n vertices with d ≥ n/3 contains a Hamilton cycle. Hilbig [33] and Zhu et al. [71]
improved the degree condition to n/3 − 1 unless G is the Petersen graph. The example in Fig. 1
shows that the degree condition cannot be reduced any further. Clearly, the connectivity condition
is necessary. We believe that a similar result should hold for directed graphs too.

Conjecture 2. Every strongly 2-connected d-regular digraph on n vertices with d ≥ n/3 contains a
Hamilton cycle.

Replacing each edge in Fig. 1 with two oppositely oriented edges shows that the degree condition
cannot be reduced. Moreover, it is not hard to see that the strong 2-connectivity cannot be replaced
by just strong connectivity. For undirected graphs, analogous questions have also been studied for
3-connected graphs.

2.2. Ore-type conditions

Woodall proved the following digraph version of Ore’s theorem,which generalizes Ghouila-Houri’s
theorem. d+(x) denotes the outdegree of a vertex x, and d−(x) its indegree.

Theorem 3 (Woodall [68]). Let G be a strongly connected digraph on n ≥ 2 vertices. If d+(x)+d−(y) ≥ n
for every pair x ≠ y of vertices for which there is no edge from x to y, then G has a Hamilton cycle.
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Fig. 1. A (3s − 1)-regular 2-connected graph G on n = 9s + 2 vertices with no Hamilton cycle. To construct G, start with 3
disjoint cliques on 3s vertices each. In the ith clique choose disjoint sets Ai and Bi with |Ai| = |Bi| and |A1| = |A2| = s and
|A3| = s − 1. Remove a perfect matching between Ai and Bi for each i. Add 2 new vertices a and b, where a is connected to all
vertices in the sets Ai and b is connected to all vertices in all the sets Bi .

Fig. 2. An extremal example for Conjecture 5: let F be the digraph obtained from the complete digraph K on n−3 vertices and
a complete digraph on 3 other vertices x, y, z as follows: remove the edge from x to z, add all edges in both directions between
x and K and all edges from y to K .

Woodall’s theorem in turn is generalized by Meyniel’s theorem, where the degree condition is
formulated in terms of the total degree of a vertex. Here the total degree d(x) of x is defined as
d(x) := d+(x) + d−(x).

Theorem 4 (Meyniel [52]). Let G be a strongly connected digraph on n ≥ 2 vertices. If d(x) + d(y) ≥

2n − 1 for all pairs of non-adjacent vertices in G, then G has a Hamilton cycle.

The following conjecture of Bang-Jensen et al. [5]would strengthenMeyniel’s theoremby requiring
the degree condition only for dominated pairs of vertices (a pair of vertices is dominated if there is a
vertex which sends an edge to both of them).

Conjecture 5 (Bang-Jensen et al. [5]). Let G be a strongly connected digraph on n ≥ 2 vertices. If d(x) +

d(y) ≥ 2n − 1 for all dominated pairs of non-adjacent vertices in G, then G has a Hamilton cycle.

An extremal example F can be constructed as in Fig. 2. To see that F has no Hamilton cycle, note
that every Hamilton path in F − x has to start at z. Also, note that the only non-adjacent (dominated)
pairs of vertices are z together with a vertex u in K and these satisfy d(z) + d(u) = 2n − 2.

Some support for the conjecture is given e.g. by the following result of Bang-Jensen et al. [6]: if
we also assume the degree condition for all pairs of non-adjacent vertices which have a common
outneighbour, then G has a 1-factor, i.e. a union of vertex-disjoint cycles covering all the vertices of G.

There are also a number of degree conditions which involve triples or 4-sets of vertices, see e.g. the
corresponding chapter in [4].

2.3. Degree sequences forcing Hamilton cycles in directed graphs

Nash-Williams [55] raised the question of a digraph analogue of Chvátal’s theorem quite soon after
the latter was proved: for a digraph G it is natural to consider both its outdegree sequence d+

1 , . . . , d+
n
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and its indegree sequence d−

1 , . . . , d−
n . Throughout, we take the convention that d+

1 ≤ · · · ≤ d+
n and

d−

1 ≤ · · · ≤ d−
n without mentioning this explicitly. Note that the terms d+

i and d−

i do not necessarily
correspond to the degree of the same vertex of G.

Conjecture 6 (Nash-Williams [55]). Suppose that G is a strongly connected digraph on n ≥ 3 vertices
such that for all i < n/2
(i) d+

i ≥ i + 1 or d−

n−i ≥ n − i,
(ii) d−

i ≥ i + 1 or d+

n−i ≥ n − i.
Then G contains a Hamilton cycle.

It is even an openproblemwhether the conditions imply the existence of a cycle through anypair of
given vertices (see [8]). The following example shows that the degree condition in Conjecture 6would
be best possible in the sense that for all n ≥ 3 and all k < n/2 there is a non-Hamiltonian strongly
connected digraph G on n vertices which satisfies the degree conditions except that d+

k , d−

k ≥ k + 1
are replaced by d+

k , d−

k ≥ k in the kth pair of conditions. To see this, take an independent set I of size
k < n/2 and a complete digraph K of order n − k. Pick a set X of k vertices of K and add all possible
edges (in both directions) between I and X . The digraph G thus obtained is strongly connected, not
Hamiltonian and

k, . . . , k  
k times

, n − 1 − k, . . . , n − 1 − k  
n−2k times

, n − 1, . . . , n − 1  
k times

is both the out- and indegree sequence of G. In contrast to the undirected case there exist examples
with a similar degree sequence to the above but whose structure is quite different (see [49,17]). This
is one of the reasons whichmakes the directed case much harder than the undirected one. In [17], the
following approximate version of Conjecture 6 for large digraphs was proved.

Theorem 7 (Christofides et al. [17]). For every β > 0 there exists an integer n0 = n0(β) such that the
following holds. Suppose that G is a digraph on n ≥ n0 vertices such that for all i < n/2
(i) d+

i ≥ min{i + βn, n/2} or d−

n−i−βn ≥ n − i;
(ii) d−

i ≥ min{i + βn, n/2} or d+

n−i−βn ≥ n − i.
Then G contains a Hamilton cycle.

This improved a recent result in [49], where the degrees in the first parts of these conditions were
not ‘capped’ at n/2. The earlier result in [49] was derived from a result in [39] on the existence of
a Hamilton cycle in an oriented graph satisfying a certain expansion property. Capping the degrees
at n/2 makes the proof far more difficult: the conditions of Theorem 7 only imply a rather weak
expansion property and there are many types of digraphs which almost satisfy the conditions but
are not Hamiltonian.

The following weakening of Conjecture 6 was posed earlier by Nash-Williams [54]. It would yield
a digraph analogue of Pósa’s theorem.

Conjecture 8 (Nash-Williams [54]). Let G be a digraph on n ≥ 3 vertices such that d+

i , d−

i ≥ i + 1 for
all i < (n − 1)/2 and such that additionally d+

⌈n/2⌉, d
−

⌈n/2⌉ ≥ ⌈n/2⌉ when n is odd. Then G contains a
Hamilton cycle.

The previous example shows the degree condition would be best possible in the same sense as
described there. The assumption of strong connectivity is not necessary in Conjecture 8, as it follows
from the degree conditions. Theorem 7 immediately implies a corresponding approximate version of
Conjecture 8. In particular, for half of the vertex degrees (namely those whose value is n/2), the result
matches the conjectured value.

2.4. Chvátal–Erdős type conditions

Another sufficient condition for Hamiltonicity in undirected graphs which is just as fundamental
as those listed in the introduction is the Chvátal–Erdős theorem [15]: suppose that G is an undirected
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graph with n ≥ 3 vertices, for which the vertex-connectivity number κ(G) and the independence
numberα(G) satisfy κ(G) ≥ α(G), thenGhas aHamilton cycle. Currently, there is no digraph analogue
of this. Given a digraph G, let α0(G) denote the size of the largest set S so that S induces no edge and
let α2(G) be the size of the largest set S so that S induces no cycle of length 2. So α0(G) ≤ α2(G). α0(G)
is probably the more natural extension of the independence number to digraphs. However, even the
following basic question (already discussed e.g. in [38]) is still open.

Question 9. Is there a function f0(k) so that every digraph with κ(G) ≥ f0(k) and α0(G) ≤ k contains a
Hamilton cycle?

Here the connectivity κ(G) of a digraph is defined to be the size of the smallest set of vertices S so
that G − S is either not strongly connected or consists of a single vertex. The following result shows
that the analogous function for α2(G) does exist.

Theorem 10 (Jackson [37]). If G is a digraph with

κ(G) ≥ 2α2(G)(α2(G) + 2)!,

then G has a Hamilton cycle.

The proof involves a ‘reduction’ of the problem to the undirected case. As observed by Thomassen
and Chakroun (see [38] again), there are non-Hamiltonian digraphs with κ(G) = α2(G) = 2 and
κ(G) = α2(G) = 3. But it could well be that every digraph satisfying κ(G) ≥ α2(G) ≥ 4 has a
Hamilton cycle. Even the following weaker conjecture is still wide open.

Conjecture 11 (Jackson and Ordaz [38]). If G is a digraph with κ(G) ≥ α2(G) + 1, then G contains a
Hamilton cycle.

(In fact, they even conjectured that G as above is pancyclic.) Since the problem seems very difficult,
even (say) a bound on κ which is polynomial in α2 in Theorem 10 would be interesting.

3. Hamilton cycles in oriented graphs

Recall that an oriented graph is a directed graph with no 2-cycles. Results on oriented graphs seem
even more difficult to obtain than results for the digraph case (the Caccetta–Häggkvist conjecture
on the girth of oriented graphs of large minimum outdegree is a notorious example of this kind). In
particular, most problems regarding Hamiltonicity of such graphs were open until recently and many
open questions still remain.

3.1. Minimum degree conditions

Thomassen [64] raised the natural question of determining the minimum semidegree that forces
a Hamilton cycle in an oriented graph. Thomassen initially believed that the correct minimum
semidegree bound should be n/3 (this bound is obtained by considering a ‘blow-up’ of an oriented
triangle). However, Häggkvist [27] later gave a construction which gives a lower bound of ⌈(3n −

4)/8⌉−1: for n of the form n = 4m+3 wherem is odd, we construct G on n vertices as in Fig. 3. Since
every path which joins two vertices in D has to pass through B, it follows that every cycle contains
at least as many vertices from B as it contains from D. As |D| > |B| this means that one cannot cover
all the vertices of G by disjoint cycles. This construction can be extended to arbitrary n (see [39]).
The following result exactly matches this bound and improves earlier ones of several authors, e.g.
[27,29,65]. In particular, the proof builds on an approximate version which was proved in [42].

Theorem 12 (Keevash et al. [39]). There exists an integer n0 so that any oriented graph G on n ≥ n0
vertices with minimum semidegree δ0(G) ≥

3n−4
8 contains a Hamilton cycle.

Jackson conjectured that for regular oriented graphs one can significantly reduce the degree
condition.

Conjecture 13 (Jackson [36]). For each d > 2, every d-regular oriented graph G on n ≤ 4d + 1 vertices
has a Hamilton cycle.
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Fig. 3. An extremal example for Theorem 12: partition the vertices into 4 parts A, B, C,D, with |A| = |C | = m, |B| = m + 1
and |D| = m + 2. Each of A and C spans a regular tournament, B and D are joined by a bipartite tournament (i.e. an orientation
of the complete bipartite graph) which is as regular as possible. We also add all edges from A to B, from B to C , from C to D and
from D to A.

The disjoint union of two regular tournaments on n/2 vertices shows that this would be best
possible. Note that the degree condition is smaller than the one in Conjecture 2. We believe that it
may actually be possible to reduce the degree condition even further if we assume that G is strongly
2-connected: is it true that for each d > 2, every d-regular strongly 2-connected oriented graph G on
n ≤ 6d vertices has a Hamilton cycle? A suitable orientation of the example in Fig. 1 shows that this
would be best possible.

3.2. Ore-type conditions

Häggkvist [27] also made the following conjecture which is closely related to Theorem 12. Given
an oriented graph G, let δ(G) denote the minimum degree of G (i.e. the minimum number of edges
incident to a vertex) and set δ∗(G) := δ(G) + δ+(G) + δ−(G).

Conjecture 14 (Häggkvist [27]). Every oriented graph G on n vertices with δ∗(G) > (3n−3)/2 contains
a Hamilton cycle.

(Note that this conjecture does not quite imply Theorem 12 as it results in a marginally greater
minimum semidegree condition.) In [42], Conjecture 14 was verified approximately, i.e. if δ∗(G) ≥

(3/2+ o(1))n, then G has a Hamilton cycle (note this implies an approximate version of Theorem 12).
The same methods also yield an approximate version of Ore’s theorem for oriented graphs.

Theorem 15 (Kelly et al. [42]). For every α > 0 there exists an integer n0 = n0(α) such that every ori-
ented graphG of order n ≥ n0 with d+(x)+d−(y) ≥ (3/4+α)nwhenever G does not contain an edge from
x to y contains a Hamilton cycle.

The construction in Fig. 3 shows that the bound is best possible up to the term αn. It would be
interesting to obtain an exact version of this result.

Song [59] proved that every oriented graph on n ≥ 9 vertices with δ(G) ≥ n − 2 and d+(x) +

d−(y) ≥ n − 3 whenever G does not contain an edge from x to y is pancyclic (i.e. G contains cycles
of all possible lengths). In [59] he also claims (without proof) that the condition is best possible for
infinitely many n as G may fail to contain a Hamilton cycle otherwise. Note that Theorem 15 implies
that this claim is false.

3.3. Degree sequence conditions and Chvátal–Erdős type conditions

In [49] a construction was described which showed that there is no satisfactory analogue of Pósa’s
theorem for oriented graphs: as soon as we allow a few vertices to have a degree somewhat below
3n/8, then one cannot guarantee a Hamilton cycle. The question of exactly determining all those
degree sequences which guarantee a Hamilton cycle remains open though.
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It is also not clear whether there may be a version of the Chvátal–Erdős theorem for oriented
graphs.

4. Tournaments

A tournament is an orientation of a complete graph. It has long been known that tournaments
enjoy particularly strong Hamiltonicity properties: Camion [12] showed that we only need to assume
strong connectivity to ensure that a tournament has a Hamilton cycle. Moon [53] strengthened this by
proving that every strongly connected tournament is even pancyclic. It is easy to see that a minimum
semidegree of n/4 forces a tournament on n vertices to be strongly connected, leading to a better
degree condition for Hamiltonicity than that of (3n − 4)/8 for the class of all oriented graphs.

4.1. Edge-disjoint Hamilton cycles and decompositions

A Hamilton decomposition of a graph or digraph G is a set of edge-disjoint Hamilton cycles which
together cover all the edges of G. Not many examples of graphs with such decompositions are known.
One can construct a Hamilton decomposition of a complete graph if and only if its order is odd (this
was first observed byWalecki in the late 19th century). Tillson [61] proved that a complete digraph G
on n vertices has a Hamilton decomposition if and only if n ≠ 4, 6. The following conjecture of Kelly
from 1968 (see [53]) would be a far-reaching generalization of Walecki’s result.

Conjecture 16 (Kelly). Every regular tournament on n vertices can be decomposed into (n − 1)/2 edge-
disjoint Hamilton cycles.

In [50] we proved an approximate version of Kelly’s conjecture. Moreover, the result holds even for
oriented graphs G which are not quite regular and whose ‘underlying’ undirected graph is not quite
complete.

Theorem 17 (Kühn et al. [50]). For every η1 > 0 there exist n0 = n0(η1) and η2 = η2(η1) > 0 such that
the following holds. Suppose that G is an oriented graph on n ≥ n0 vertices such that δ0(G) ≥ (1/2−η2)n.
Then G contains at least (1/2 − η1)n edge-disjoint Hamilton cycles.

We also proved that the condition on the minimum semidegree can be relaxed to δ0(G) ≥

(3/8 + η2)n. This is asymptotically best possible since the construction described in Fig. 3 is almost
regular.

Some earlier support for Kelly’s conjecture was provided by Thomassen [66], who showed that the
edges of every regular tournament can be covered by at most 12n Hamilton cycles. In this paper,
we improve this to an asymptotically best possible result. We will give a proof (which relies on
Theorem 17) in Section 6.1.

Theorem 18. For every ξ > 0 there exists an integer n0 = n0(ξ) so that every regular tournament G on
n ≥ n0 vertices contains a set of (1/2 + ξ)n Hamilton cycles which together cover all the edges of G.

Kelly’s conjecture has been generalized in several ways, e.g. Bang-Jensen and Yeo [7] conjectured
that every k-edge-connected tournament has a decomposition into k spanning strong digraphs. A
bipartite version of Kelly’s conjecture was also formulated by Jackson [36]. Thomassen made the
following conjecture which replaces the assumption of regularity by high connectivity.

Conjecture 19 (Thomassen [65]). For every k ≥ 2 there is an integer f (k) so that every strongly f (k)-
connected tournament has k edge-disjoint Hamilton cycles.

A conjecture of Erdős (see [65]) which is also related to Kelly’s conjecture states that almost all
tournaments G have at least δ0(G) edge-disjoint Hamilton cycles.

Similar techniques as in the proof of the approximate version of Kelly’s conjecture were used
at the same time in [16] to prove approximate versions of two long-standing conjectures of Nash-
Williams on edge-disjoint Hamilton cycles in (undirected) graphs. One of these results states that one
can almost decompose any dense regular graph into Hamilton cycles.
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Theorem 20 (Christofides et al. [16]). For every η > 0 there is an integer n0 = n0(η) so that every d-
regular graph on n ≥ n0 vertices with d ≥ (1/2+η)n contains at least (d−ηn)/2 edge-disjoint Hamilton
cycles.

In Section 6.1 we deduce the following analogue of Theorem 18:

Theorem 21. For every ξ > 0 there is an integer n0 = n0(ξ) so that every d-regular graph G on n ≥ n0
vertices with d ≥ (1/2 + ξ)n contains a set of at most (d + ξn)/2 Hamilton cycles which together cover
all the edges of G.

4.2. Counting Hamilton cycles in tournaments

One of the earliest results on tournaments (and the probabilistic method), was obtained by
Szele [60], who showed that the maximum number P(n) of Hamilton paths in a tournament on n
vertices satisfies P(n) = O(n!/23n/4) and P(n) ≥ n!/2n−1

=: f (n). The lower bound is obtained
by considering a random tournament. The best upper bound is due to Friedgut and Kahn [23] who
showed that P(n) = O(nc f (n)), where c is slightly less than 5/4. The best current lower bound is due
to Wormald [69], who showed that P(n) ≥ (2.855 + o(1))f (n). So in particular, P(n) is not attained
for random tournaments. Also, he conjectured that this bound is very close to the correct value.

Similarly, one can define the maximum number C(n) of Hamilton cycles in a tournament on n
vertices. Note that by considering a random tournament again, we obtain C(n) ≥ (n−1)!/2n

=: g(n).
Unsurprisingly, C(n) and P(n) are very closely related, e.g. we have P(n) ≥ nC(n). In particular, the
main result in [23] states that C(n) = O(ncg(n)), where c is the same as above. This implies the above
bound on P(n), since Alon [2] observed that P(n) ≤ 4C(n + 1). Also, Wormald [69] showed that
C(n) ≥ (2.855 + o(1))g(n). (Note this also follows by combining Alon’s observation with the lower
bound on P(n) in [69].)

Of course, in general it does not make sense to ask for the minimum number of Hamilton paths or
cycles in a tournament. However, the question doesmake sense for regular tournaments. Friedgut and
Kahn [23] asked whether the number of Hamilton cycles in a regular tournament is always at least
Ω(g(n)). The best result towards this was recently obtained by Cuckler [20], who showed that every
regular tournament on n vertices contains at least n!/(2+o(1))n Hamilton cycles. This also answers an
earlier question of Thomassen. Asking for the minimum number of Hamilton paths in a tournament
T also makes sense if we assume that T is strongly connected. Busch [11] determined this number
exactly by showing that an earlier construction of Moon is best possible. The related question on the
minimum number of Hamilton cycles in a strongly 2-connected tournament is still open (see [11]).

4.3. Sumner’s universal tournament conjecture

Sumner’s universal tournament conjecture states that every tournament on 2n − 2 vertices
contains every tree on n vertices. In [47] an approximate version of this conjecture was proved and
subsequently in [48], the conjecture was proved for all large trees (see e.g. [47] for a discussion of
numerous previous results). The proof in [48] builds on several structural results proved in [47].

Theorem 22 (Kühn et al. [47,48]). There is an integer n0 such that for all n ≥ n0 every tournament G on
2n − 2 vertices contains any directed tree T on n vertices.

While this result is not directly related to the main topic of the survey (i.e. Hamilton cycles), there
are several connections. Firstly, just as withmany of the new results in the other sections, the concept
of a robust expander is crucial in the proof of Theorem 22. Secondly, the proof of Theorem 22 also
makes direct use of the fact that a robust expander contains a Hamilton cycle (Theorem 30). Suitable
parts of the tree T are embedded by considering a random walk on (the blow-up of) such a Hamilton
cycle.

In [47], we also proved that if T has bounded maximum degree, then it suffices if the tournament
G has (1+α)n vertices. This is best possible in the sense that the ‘error term’ αn cannot be completely
omitted in general. But it seemspossible that it can be reduced to a constantwhichdepends only on the
maximum degree of T . If T is an orientation of a path, then the error term can be omitted completely:
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a result of Thomason [62] implies that every sufficiently large tournament contains every possible
orientation of a Hamilton path. Havet and Thomassé [31] showed that this even holds for tournaments
whose number of vertices is not 3, 5 or 7 (for arbitrary orientations of Hamilton cycles, see Section 5.2).

5. Generalizations

In this section, we discuss several natural ways of strengthening the notion of a Hamilton cycle.

5.1. Pancyclicity

Recall that a graph (or digraph) is pancyclic if it contains a cycle of every possible length. Dirac’s
theorem implies that a graph on n ≥ 3 vertices is pancyclic if it has minimum degree greater than
n/2. (To see this, remove a vertex x and apply Dirac’s theorem to the remaining subgraph to obtain a
cycle of length n−1. Then consider the neighbourhood of x on this cycle to obtain cycles of all possible
lengths through x.) Similarly, one can use Ghouila-Houri’s theorem to deduce that every digraph on n
verticeswithminimum semidegree greater than n/2 is pancyclic. In both cases, the complete bipartite
(di-)graphwhose vertex class sizes are as equal as possible shows that the bound is best possible.More
generally, the same trick also works for Meyniel’s theorem: let G be a strongly connected digraph on
n ≥ 2 vertices. If d(x) + d(y) ≥ 2n + 1 for all pairs of non-adjacent vertices x ≠ y in G, then G is
pancyclic. (Indeed, the conditions imply that either G contains a strongly connected tournament or
contains a vertex xwith d(x) > n, inwhich casewe can proceed as above.) If n is even, the bound 2n+1
is best possible. For n is odd, it follows from a result of Thomassen [63] that one can improve it to 2n.

For oriented graphs the minimum semidegree threshold which guarantees pancyclicity turns out
to be (3n − 4)/8, i.e. the same threshold as for Hamiltonicity (see [43]). The above trick of removing
a vertex does not work here. Instead, to obtain ‘long’ cycles one can modify the proof of Theorem 12.
A triangle is guaranteed by results on the Caccetta–Häggkvist conjecture — e.g. a very recent result of
Hladký et al. [34] states that every oriented graph on n vertices with minimum semidegree at least
0.347n contains a 3-cycle. Short cycles of length ℓ ≥ 4 can be guaranteed by a result in [43] which
states that for all n ≥ 1010ℓ every oriented graph G on n vertices with δ0(G) ≥ ⌊n/3⌋ + 1 contains
an ℓ-cycle. This is best possible for all those ℓ ≥ 4 which are not divisible by 3. Surprisingly, for some
other values of ℓ, an ℓ-cycle is forced by a much weaker minimum degree condition. In particular, the
following conjecture was made in [43].

Conjecture 23 (Kelly et al. [43]). Let ℓ ≥ 4 be a positive integer and let k be the smallest integer that
is greater than 2 and does not divide ℓ. Then there exists an integer n0 = n0(ℓ) such that every oriented
graph G on n ≥ n0 vertices with minimum semidegree δ0(G) ≥ ⌊n/k⌋ + 1 contains an ℓ-cycle.

The extremal examples for this conjecture are always ‘blow-ups’ of cycles of length k. Possibly one
can even weaken the condition by requiring only the outdegree of G to be large. It is easy to see that
the only values of k that can appear in Conjecture 23 are of the form k = ps with k ≥ 3, where p is a
prime and s a positive integer.

5.2. Arbitrary orientations

As mentioned earlier, the most natural notion of a cycle in a digraph is to have all edges directed
consistently. But it also makes sense to ask for Hamilton cycles where the edges are oriented in some
prescribedway, e.g. to ask for an ‘antidirected’ Hamilton cycle where consecutive edges have opposite
directions. Surprisingly, it turns out that both for digraphs and oriented graphs the minimum degree
threshold which guarantees a ‘consistent’ Hamilton cycle is approximately the same as that which
guarantees an arbitrary orientation of a Hamilton cycle.

Theorem 24 (Häggkvist and Thomason [28]). There exists an n0 so that every digraph G on n ≥ n0
vertices with minimum semidegree δ0(G) ≥ n/2 + n5/6 contains every orientation of a Hamilton cycle.

In [29], they conjectured an analogue of this for oriented graphs, which was recently proved by
Kelly.
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Theorem 25 (Kelly [41]). For every α > 0 there exists an integer n0 = n0(α) such that every oriented
graph G on n ≥ n0 vertices with minimum semidegree δ0(G) ≥ (3/8+ α)n contains every orientation of
a Hamilton cycle.

The proof of this result uses Theorem 12 as the well as the notion of expanding digraphs.
Interestingly, Kelly observed that the thresholds for various orientations do not coincide exactly: for
instance, ifwemodify the example in Fig. 3 so that all classes have the sameodd size, then the resulting
oriented graph has minimum semidegree (3n − 4)/8 but no antidirected Hamilton cycle.

Thomason [62] showed that for large tournaments strong connectivity ensures every possible
orientation of a Hamilton cycle. More precisely, he showed that for n ≥ 2128, every tournament on
n vertices contains all possible orientations of a Hamilton cycle, except possibly the ‘consistently
oriented’ one. (Note that this implies that every large tournament contains every orientation of a
Hamilton path.) The bound on n was later reduced to 68 by Havet [30]. Thomason conjectured that
the correct bound is n ≥ 9.

5.3. k-ordered Hamilton cycles

Suppose that we require our (Hamilton) cycle to visit several vertices in a specific order. More
formally, we say that a graph G is k-ordered if for every sequence s1, . . . , sk of distinct vertices of G
there is a cycle which encounters s1, . . . , sk in this order. G is k-ordered Hamiltonian if it contains a
Hamilton cycle with this property. Kierstead et al. [44] determined theminimum degree which forces
an (undirected) graph to be k-ordered Hamiltonian.

Theorem 26 (Kierstead et al. [44]). For all k ≥ 2, every graph on n ≥ 11k−3 vertices of minimum degree
at least ⌈n/2⌉ + ⌊k/2⌋ − 1 is k-ordered Hamiltonian.

The extremal example consists of two cliques intersecting in k − 1 vertices if k is even and two
cliques intersecting in k − 2 vertices if k is odd. The case when n is not too large compared to k is
still open. The corresponding Ore-type problem was solved in [22]. Here the Ore-type result does not
imply the Dirac-type result above. Many variations and stronger notions have been investigated (see
e.g. [26] again).

Directed graphs form a particularly natural setting for this kind of question. The following result
gives a directed analogue of Theorem 26.

Theorem 27 (Kühn et al. [51]). For every k ≥ 3 there is an integer n0 = n0(k) such that every digraph G
on n ≥ n0 vertices with minimum semidegree δ0(G) ≥ ⌈(n + k)/2⌉ − 1 is k-ordered Hamiltonian.

Note that if n is even and k is odd the bound on the minimum semidegree is slightly larger than
in the undirected case. However, it is best possible in all cases. In fact, if the minimum semidegree is
smaller, it turns out that G need not even be k-ordered. Again, the family of extremal examples turns
out to be much richer than in the undirected case. Note that every Hamiltonian digraph is 2-ordered
Hamiltonian, so the case when k ≤ 2 in Theorem 27 is covered by Ghouila-Houri’s theorem. It would
be interesting to obtain an Ore-type or an oriented version of Theorem 27.

5.4. Factors with prescribed cycle lengths

Another natural way of generalizing Dirac’s theorem is to ask for a certain set of vertex-
disjoint cycles in G which together cover all the vertices of G (note this also generalizes the notion
of pancyclicity). For large undirected graphs, Abbasi [1] determined the minimum degree which
guarantees k vertex-disjoint cycles in a graph G whose (given) lengths are n1, . . . , nk, where the ni
sum up to n and where the order n of G is sufficiently large. As in the case of Hamilton cycles, the
corresponding questions for directed and oriented graphs appear much harder than in the undirected
case and again much less is known. Keevash and Sudakov [40] recently obtained the following result.

Theorem 28 (Keevash and Sudakov [40]). There exist positive constants c, C and an integer n0 so that
whenever G is an oriented graph on n ≥ n0 vertices with minimum semidegree at least (1/2 − c)n
and whenever n1, . . . , nt are so that

t
i=1 ni ≤ n − C, then G contains vertex-disjoint cycles of length

n1, . . . , nt .
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Fig. 4. An extremal example for Conjecture 29: the set sizes are |A| = m, |B| = m − 1, |C | = 2m + 1, |D| = m − 1 and
|E| = m + 1, where m is even. B, C and D induce regular tournaments, while A and E induce independent sets. A single arrow
(e.g. from B to C) indicates an orientation of the complete bipartite graph from the initial set towards the final set. A double edge
(e.g. between B and E) indicates an orientation of the complete bipartite graph so that within each set, the in- and outdegrees
of the vertices differ by at most one.

In general, one cannot take C = 0. In the case of triangles (i.e. when all the ni = 3), they show that
one can choose C = 3. This comes very close to proving a recent conjecture formulated independently
by [70], which states that every regular tournament on n = 6k + 3 vertices contains vertex-disjoint
triangles covering all the vertices of the tournament. Similar questions were also raised earlier by
Song [58]. For instance, given t , he asked for the smallest integer f (t) so that all but a finite number of
strongly f (t)-connected tournaments T satisfy the following: let n be the number of vertices of T and
let

t
i=1 ni = n. Then T contains vertex-disjoint cycles of length n1, . . . , nt . Chen et al. [13] proved

the weaker result that every sufficiently large t-connected tournament G contains t vertex-disjoint
cycles which together cover all the vertices of G. This proved a conjecture of Bollobás.

5.5. Powers of Hamilton cycles

Komlós et al. [45] showed that every sufficiently large graph G on n vertices withminimum degree
at least kn/(k+1) contains the kth power of aHamilton cycle. Extremal examples are complete (k+1)-
partite graphs with classes of almost equal size. It appears likely that the situation for digraphs is
similar. However, just as for ordinary Hamilton cycles, it seems that for oriented graphs the picture is
rather different. (Both for digraphs and oriented graphs, the most natural definition of the kth power
of a cycle is a cyclically ordered set of vertices so that every vertex sends an edge to the next k vertices
in the ordering.)

Conjecture 29 (Treglown [67]). For every ε > 0 there is an integer n0 = n0(ε) so that every oriented
graph G on n ≥ n0 vertices with minimum semidegree at least (5/12 + ε)n contains the square of a
Hamilton cycle.

A constructionwhich shows that the constant 5/12 cannot be improved is given in Fig. 4.We claim
that the square of any Hamilton cycle would have to visit a vertex of B in between two visits of E. Since
|B| < |E|, this shows that the graph does not contain the square of a Hamilton cycle. To prove the
claim, suppose that F is a squared Hamilton cycle and consider a vertex e of F which lies in E. Then the
predecessor of e lies in C or B, so without loss of generality we may assume that it is a vertex c1 ∈ C .
Again, the predecessor of c1 lies in C or B (since it must lie in the common inneighbourhood of C and
E), so without loss of generality we may assume that it is a vertex c2 ∈ C . The predecessor of c2 can
now lie in A, B or C . If it lies in Bwe are done again, if it is a vertex c3 ∈ C , we consider its predecessor,
which can again only lie in A, B or C . Since F must visit all vertices, it follows that we eventually arrive
at a predecessor a ∈ Awhose successor on F is some vertex c ∈ C . The predecessor of a on F must lie
in the common inneighbourhood of a and c , so it must lie in B, as required.
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For the case of tournaments, the problemwas solved asymptotically by Bollobás and Häggkvist [9].
Given a tournament T of large order nwith minimum semidegree at least n/4 + εn, they proved that
(for fixed k) T contains the kth power of a Hamilton cycle. So asymptotically, the semidegree threshold
for an ordinary Hamilton cycle in a tournament is the same as that for the kth power of a Hamilton
cycle.

6. Robustly expanding digraphs

Roughly speaking, a graph is an expander if for every set S of vertices the neighbourhood N(S) of
S is significantly larger than S itself. A number of papers have recently demonstrated that there is a
remarkably close connection betweenHamiltonicity and expansion (see e.g. [10,32,46]). The following
notion of robustly expanding (dense) digraphs was introduced in [49].

Let 0 < ν ≤ τ < 1. Given any digraphG on n vertices and S ⊆ V (G), the ν-robust outneighbourhood
RN+

ν,G(S) of S is the set of all those vertices x of Gwhich have at least νn inneighbours in S. G is called
a robust (ν, τ )-outexpander if |RN+

ν,G(S)| ≥ |S| + νn for all S ⊆ V (G) with τn < |S| < (1 − τ)n. As
the name suggests, this notion has the advantage that it is preserved even if we delete some vertices
and edges from G. We will also use the more traditional (and weaker) notion of a (ν, τ )-outexpander,
which means |N+(S)| ≥ |S| + νn for all S ⊆ V (G) with τn < |S| < (1 − τ)n.

Theorem 30 (Kühn et al. [49]). Let n0 be a positive integer and ν, τ , η be positive constants such that
1/n0 ≪ ν ≤ τ ≪ η < 1. Let G be a digraph on n ≥ n0 vertices with δ0(G) ≥ ηn which is a robust
(ν, τ )-outexpander. Then G contains a Hamilton cycle.

Theorem 30 is used in [49] to give a weaker version of Theorem 7 (i.e. without the degrees capped
at n/2). In the same paper it is also applied to prove a conjecture of Thomassen regarding a weak
version of Conjecture 16 (Kelly’s conjecture). One can also use it to prove e.g. Theorem 15 and thus an
approximate version of Theorem 12. (Indeed, as proved in [42], the degree conditions of Theorem 15
imply expansion, the proof for robust expansion is similar.) As mentioned earlier, it is also used as a
tool in the proof of Theorem 22. Finally, wewill also use it in the next subsection to prove Theorem 18.

In [49], Theorem 30 was deduced from a result in [39]. The proof of the result in [39] (and a similar
approach in [42]) in turn relied on Szemerédi’s regularity lemma and a (rather technical) version of
the Blow-up lemma due to Csaba [19]. A (parallel) algorithmic version of Theorem 30was also proved
in [18]. Below, we give a brief sketch of a proof of Theorem 30 which avoids any use of the Blow-up
lemma and is based on an approach in [17].

The density of a bipartite graphGwith vertex classes A and B is defined to be d(A, B) =
e(A,B)
|A||B| , where

e(A, B) denotes the number of edges between A and B. Given ε > 0, we say that G is ε-regular if for all
subsets X ⊆ A and Y ⊆ B with |X | ≥ ε|A| and |Y | ≥ ε|B| we have that |d(X, Y ) − d(A, B)| < ε. We
also say that G is (ε, d)-super-regular if it is ε-regular and furthermore every vertex a ∈ A has degree
at least d|B| and similarly for every b ∈ B. These definitions generalize naturally to non-bipartite (di-
)graphs. In particular, we say that a digraph G on n vertices is ε-regular of density d if e(X,Y )

|X ||Y |
= d±ε for

all (not necessarily disjoint) subsets X, Y of V (G) of size at least εn. Here e(X, Y ) denotes the number
of edges of G from X to Y . We say G is (ε, d)-super-regular if it is ε-regular and δ0(G) ≥ dn.

We also need the result that every super-regular digraph contains a Hamilton cycle.

Lemma 31. Suppose that 1/n0 ≪ ε ≪ d ≪ 1 and G is an (ε, d)-super-regular digraph on n ≥ n0
vertices. Then G contains a Hamilton cycle.

Lemma 31 is a special case e.g. of a result of Frieze and Krivelevich [24], who proved that an (ε, d)-
super-regular digraph on n vertices has at least (d− 4

√
ε)n edge-disjoint Hamilton cycles if n is large

and ε ≪ d. Here we also give a sketch of a direct proof of Lemma 31.
We first prove that G contains a 1-factor. Consider the auxiliary bipartite graph whose vertex

classes A and B are copies of V (G) with an edge between a ∈ A and b ∈ B if there is an edge from a
to b in G. One can show that this bipartite graph has a perfect matching (by Hall’s marriage theorem),
which in turn corresponds to a 1-factor in G.
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It is now not hard to prove the lemma using the ‘rotation–extension’ technique: choose a 1-factor
of G. Now remove an edge of a cycle in this 1-factor and let P be the resulting path. If the final vertex
of P has any outneighbours on another cycle C of the 1-factor, we can extend P into a longer path
which includes the vertices of C (and similarly for the initial vertex of P). We repeat this as long as
possible (and one can always ensure that the extension step can be carried out at least once). So we
may assume that all outneighbours of the final vertex of P lie on P and similarly for the initial vertex
of P . Together with the ε-regularity this can be used to find a cycle with the same vertex set as P .
Eventually, we arrive at a Hamilton cycle.

Sketch proof of Theorem 30. Choose ε, d to satisfy 1/n0 ≪ ε ≪ d ≪ ν. The first step is to apply a
directed version of Szemerédi’s regularity lemma to G (such a version was proved by Alon and
Shapira [3]). This gives us a partition of the vertices of G into clusters V1, . . . , Vk and an exceptional set
V0 so that |V0| ≤ εn and all the clusters have sizem. Now define a ‘reduced’ digraph Rwhose vertices
are the clusters V1, . . . , Vk and with an edge from Vi to Vj if the bipartite graph spanned by the edges
from Vi to Vj is ε-regular and has density at least d. Then one can show (see Lemma 14 in [49]) that R
is still a (ν/2, 2τ)-outexpander (this is the point where we need the robustness of the expansion in
G) with minimum semidegree at least ηk/2. This in turn can be used to show that R has a 1-factor F
(using the same auxiliary bipartite graph as in the proof of Lemma 31). By removing a small number
of vertices from the clusters, we can also assume that the bipartite subgraphs spanned by successive
clusters on each cycle of F are super-regular, i.e. have high minimum degree. For simplicity, assume
that the cluster size is stillm.

Moreover, since G is an expander, we can find a short path in G between clusters of different cycles
of F and also between any pair of exceptional vertices. However, we need to choose such paths
without affecting any of the useful structures that we have found so far. For this, we will consider
paths which ‘wind around’ cycles in F before moving to another cycle. More precisely, a shifted walk
from a cluster A to a cluster B is a walk W (A, B) of the form

W (A, B) = X1C1X−

1 X2C2X−

2 · · · XtCtX−

t Xt+1,

whereX1 = A,Xt+1 = B, Ci is the cycle ofF containingXi, and for each 1 ≤ i ≤ t ,X−

i is the predecessor
of Xi on Ci and the edge X−

i Xi+1 belongs to R. We say thatW as above traverses t cycles (even if some Ci
appears several times in W ). We also say that the clusters X2, . . . , Xt+1 are the entry clusters (as this
is whereW ‘enters’ a cycle Ci) and the clusters X−

1 , . . . , X−

t are the exit clusters ofW . Note that

(i) for any cycle of F , its clusters are visited the same number of times byW (A, B) − B.

Using the expansion of R, it is not hard to see that

(ii) for any clusters A and B there is a shiftedwalk from A to Bwhich does not traverse toomany cycles.

Indeed, the expansion property implies that the number of clusters one can reach by traversing t cycles
is at least tνk/2 as long as this is significantly less than the total number k of clusters.

Nowwewill ‘join up’ the exceptional vertices using shiftedwalks. For this, write V0 = {a1, . . . , aℓ}.
For each exceptional vertex ai choose a cluster Ti so that ai has many outneighbours in Ti. Similarly
choose a cluster Ui so that ai has many inneighbours in Ui and so that

(iii) no cluster appears too often as a Ti or a Ui.

Given a cluster X , let X− be the predecessor of X on the cycle of F which contains X and let X+ be its
successor. Form a ‘walk’ W on V0 ∪ V (R) which starts at a1, then moves to T1, then follows a shifted
walk from T1 to U+

2 , then it winds around the entire cycle ofF containing U+

2 until it reaches U2. Then
W moves to a2, then to a3 using a shifted walk as above until it has visited all the exceptional vertices
(see Fig. 5). Proceeding similarly, we can ensure thatW has the following properties:

(a) W is a closed walk which visits all of V0 and all of V (R).
(b) For any cycle of F , its clusters are visited the same number of times byW .
(c) Every cluster appears at mostm/10 times as an entry or exit cluster.

(b) follows from (i) and (c) follows from (ii) and (iii). The next step towards a Hamilton cycle would
be to find a cycle C in Gwhich corresponds toW (i.e. each occurrence of a cluster inW is replaced by
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Fig. 5. Constructing the walkW .

a distinct vertex of G lying in this cluster). Unfortunately, the fact that V0 may bemuch larger than the
cluster size m implies that there may be clusters which are visited more than m times by W , which
makes it impossible to find such a C . So we will apply a ‘short-cutting’ technique to W which avoids
‘winding around’ the cycles of F too often.

For this, we now fix edges in G corresponding to all those edges ofW that do not lie within a cycle
ofF . These edges ofW are precisely the edges inW at the exceptional vertices as well as all the edges
of the form AB where A is used as an exit cluster by W and B is used as an entrance cluster by W . For
each edge aiTi at an exceptional vertex we choose an edge aix, where x is an outneighbour of ai in Ti.
We similarly choose an edge yai from Ui to ai for each Uiai. We do this in such a way that all these
edges are disjoint outside V0. For each occurrence of AB inW , where A is used as an exit cluster byW
and B is used as an entrance cluster, we choose an edge ab from A to B in G so that all these edges are
disjoint from each other and from the edges chosen for the exceptional vertices (we use (c) here).

Given a cluster A, let Aentry be the set of all those vertices in Awhich are the final vertex of an edge
of G fixed so far and let Aexit be the set of all those vertices in Awhich are the initial vertex of an edge
of G fixed so far. So Aentry ∩ Aexit = ∅. Let GA be the bipartite graph whose vertex classes are A \ Aexit

and A+
\ A+

entry and whose edges are all the edges from A \ Aexit to A+
\ A+

entry in G. SinceW consists of
shifted walks, it is easy to see that the vertex classes of GA have equal size. Moreover, it is possible to
carry out the previous steps in such a way that GA is super-regular (here we use (c) again). This in turn
means that GA has a perfect matching MA. These perfect matchings (for all clusters A) together with
all the edges of G fixed so far form a 1-factor C of G. It remains to transform C into a Hamilton cycle.

We claim that for any cluster A, we can find a perfect matching M ′

A in GA so that if we replace MA
in C withM ′

A, then all vertices of GA will lie on a common cycle in the new 1-factor C.
To prove this claim we proceed as follows. For every a ∈ A+

\ A+

entry, we move along the cycle Ca
of C containing a (starting at a) and let f (a) be the first vertex on Ca in A \ Aexit . Define an auxiliary
digraph J on A+

\A+

entry such thatN+

J (a) := N+

GA
(f (a)). So J is obtained by identifying each pair (a, f (a))

into one vertex with an edge from (a, f (a)) to (b, f (b)) if GA has an edge from f (a) to b (see Fig. 6).
Since GA is super-regular, it follows that J is also super-regular. By Lemma 31, J has a Hamilton cycle,
which clearly corresponds to a perfect matchingM ′

A in GA with the desired property.
We now repeatedly apply the above claim to every cluster. Since Aentry ∩ Aexit = ∅ for each cluster

A, this ensures that all vertices which lie in clusters on the same cycle ofF will lie on the same cycle of
the new 1-factor C. Since by (a) W visits all clusters, this in turn implies that all the non-exceptional
vertices will lie in the same cycle of C. Since the exceptional vertices form an independent set in C, it
follows that C is actually a Hamilton cycle. �

6.1. Covering regular graphs and tournaments with Hamilton cycles

Here we give proofs of Theorems 18 and 21. The proof of Theorem 18 uses Theorems 17 and 30.
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Fig. 6. An illustration of the auxiliary digraph J , where there is an edge from a to b in J .

Proof of Theorem 18. Choose new constants η1, ν, τ such that 1/n0 ≪ η1 ≪ ν ≤ τ ≪ ξ . Consider
any regular tournament G on n ≥ n0 vertices. Apply Theorem 17 to G in order to obtain a collection
C of at least (1/2 − η1)n edge-disjoint Hamilton cycles. Let F be the undirected graph consisting of
all those edges of G which are not covered by the Hamilton cycles in C. Note that F is k-regular for
some k ≤ 2η1n. By Vizing’s theorem the edges of F can be coloured with at most ∆(F) + 1 ≤ 3η1n
colours and thus F can be decomposed into at most 3η1n matchings. Split each of these matchings
into at most 1/η1/2

1 edge-disjoint matchings, each containing at most η
1/2
1 n edges. So altogether this

yields a collection M of at most 3η1/2
1 nmatchings covering all edges of F . It is enough to show that for

eachM ∈ M there exists a Hamilton cycle of Gwhich contains all the edges inM .
So consider anyM ∈ M. As observed in [49] (see the proof of Corollary 16 there), any regular tour-

nament is a robust (ν, τ )-outexpander. Let D be the digraph obtained from G by ‘contracting’ all the
edges in M , i.e. by successively replacing each edge xy ∈ M with a vertex vxy whose inneighbour-
hood is the inneighbourhood of x and whose outneighbourhood is the outneighbourhood of y. Using
that M consists of at most η

1/2
1 n edges and that η1 ≪ ν, τ , it is not hard to check that D is still a ro-

bust (ν/2, 2τ)-outexpander and δ0(D) ≥ (1/2 − 2η1/2
1 )n. So Theorem 30 implies that D contains a

Hamilton cycle, which corresponds to a Hamilton cycle in G containing all edges ofM , as required. �

Note that we cannot simply apply Theorem 12 instead of Theorem 30 at the end of the proof,
becauseDmaynot been an oriented graph. However, instead of using Theorem30, one can also use the
following result of Thomassen [66]: for every set E of n/24 independent edges in a regular tournament
on n vertices, there is a Hamilton cycle which contains all edges in E.

Theorem 21 can be proved in a similar way, using Ghouila-Houri’s theorem instead of Theorem 30.
Proof of Theorem 21. Choose a new constant η such that 1/n0 ≪ η ≪ ξ and apply Theorem 20
to find a collection of at least (d − ηn)/2 edge-disjoint Hamilton cycles. Let F denote the subgraph
of G consisting of all edges not lying in these Hamilton cycles. Then F is k-regular for some k ≤ ηn.
Choose a collection M of matchings covering all edges of F as in the proof of Theorem 18. So each
matching consists of at most η1/2n edges. As before, for each M ∈ M it suffices to find a Hamilton
cycle of G containing all edges of M . Let D′ be the digraph obtained from G by orienting each edge in
M and replacing each edge in E(G) \ M with two edges, one in each direction. Let D be the digraph
obtained from D′ by ‘contracting’ the edges inM as in the proof of Theorem 18. Then D′ has minimum
semidegree at least n/2 and thus contains a Hamilton cycle by Ghouila-Houri’s theorem (Theorem 1).
This Hamilton cycle corresponds to a Hamilton cycle in G containing all edges ofM , as required. �
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