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Cellular mechanisms of renal osteodystrophy
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Cellular mechanisms of renal osteodystrophy. Renal osteodys- nosed on the basis of bone biopsy examination. Since
trophy affects all patients with end-stage renal failure, resulting the changes occurring in bone cells of patients with renal
in significant skeletal and extra-skeletal morbidity. The pat- failure are the cumulative result of complex interactionsterns of disease seen in bone are the result of changes in

between numerous systemic factors and local factors,calcium, phosphate, parathyroid hormone (PTH), and vitamin
the bone biopsy remains the only unequivocal means ofD metabolism, as well as the effects of uremia. Standard histo-

logical techniques, however, give little insight into the altered evaluating both the type and severity of disease [4, 5].
biological activity or mechanisms of disease at the cellular level. Standard histologic techniques, however, give little in-
In order to examine the cellular abnormalities in renal bone sight into the altered biological activity or mechanismsdisease we have performed a series of in situ hybridization

of disease at the cellular level which are necessary forstudies to examine renal bone cell expression of genes for PTH
understanding the nature of disease processes and forreceptor (PTHR1), transforming growth factor b (TGF-b) and

insulin growth factor 1 (IGF-I). PTHR1 mRNA was expressed developing effective treatments. The recent develop-
predominantly by osteoblasts, but also by resorbing osteoclasts, ment of in situ molecular techniques (for example, in
suggesting that these cells may be stimulated directly by PTH. situ hybridization and in situ reverse transcriptase PCR)Semi-quantitative analysis of gene expression showed down-

has provided an opportunity for greater understandingregulation of PTHR1 mRNA by osteoblasts in renal bone
of the mechanisms regulating bone cell function and thecompared with normal, fracture and Pagetic bone. This may

be important in the pathogenesis of skeletal resistance seen in effect of alteration of these processes in disease.
end-stage renal failure, altering the “threshold” at which PTH
has its effects on bone cells. TGF-b and IGF-I mRNA expres-

BONE REMODELING AND RENALsion was also decreased, suggesting that synthesis of these fac-
tors, postulated to be mediators of PTH, is also downregulated. OSTEODYSTROPHY

Renal osteodystrophy is a disorder of bone remodel-
ing. Bone remodeling is a complex dynamic process con-

Renal osteodystrophy is the term used to describe trolled both temporally and spatially to achieve a balance
the complex metabolic bone disorders that occur as a between the coupled processes of osteoblastic bone for-
complication of renal failure. Abnormalities of bone and mation and osteoclastic bone resorption. It is a multistep
mineral metabolism are responsible for a significant pro- process involving osteoclast activation, bone resorption,
portion of morbidity experienced by individuals with osteoblast activation and finally bone formation. Each
renal failure and occur early in the course of renal failure. step is regulated by the interplay of systemic hormones
As many as 50% of individuals have abnormal bone (parathyroid hormone [PTH], vitamin D, steroid hor-
histology when the glomerular filtration rate (GFR) is mones) and locally produced cytokines and growth fac-
reduced by 50% [1] and almost all individuals have it at tors [6]. The net response of bone cells represents the
the start of dialysis [2]. Bone pain and tenderness are summation of these inputs. However, the exact mecha-
the most common symptoms and may be severe and nism by which the coupled processes of bone resorption
incapacitating. Renal osteodystrophy is the result of pro- and formation are initiated, propagated and terminated
longed and severe metabolic derangement. In bone the at specific sites is not fully understood, partly because
mode of response to this derangement is limited and of the difficulty in studying this process in vivo. Disrup-
manifested by an alteration in the number of remodeling tion at the various stages of the remodeling cycle results
sites and in the effectiveness and duration of each phase in alteration of bone state. Uncoupling of bone formation
of the remodeling cycle [3]. Renal osteodystrophy is diag- can result in either bone loss, as when resorption out-

paces formation (e.g., osteoporosis), or bone gain, as when
formation outpaces bone resorption (e.g., osteopetrosis).Key words: end-stage renal disease, IGF-I, osteoblasts, parathyroid

hormone receptor, TGF-b. Renal osteodystrophy occurs as a consequence of a
disruption of the remodeling cycle. However, it is not 1999 by the International Society of Nephrology
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a uniform bone disorder. Based on histomorphometric lage [24]. Such studies suggest that in renal failure there
is a degree of resistance to the actions of PTH. This hasfindings renal bone disease is classified into two main

groups: high and low turnover bone disease [2, 7]. High been confirmed by recent reports showing that elevated
serum PTH of between 2 and 4 times that of normal areturnover disease includes moderate and severe hyper-

parathyroidism characterized by increases in the num- required to maintain bone cell numbers and parameters
of bone turnover within the normal range [7, 8, 25–29].bers of osteoblasts and osteoclasts with high rates of

bone formation. Typically patients have high levels of The pathogenesis of skeletal resistance remains un-
clear. It has been hypothesized that altered regulationserum PTH [4, 8]. Low turnover disease includes ady-

namic bone characterized by decreased numbers of os- of PTH receptors may occur resulting in downregulation
or desensitization [7, 30]. Receptor regulation may occurteoblasts and osteoclasts together with decreased (fre-

quently zero) rates of bone formation. Patients with at several points, namely transcription, translation, re-
ceptor expression, ligand affinity and second messenger/adynamic bone have relatively low levels of serum PTH

which may be within or just above the normal physiologi- effector activation. With the cloning of the rat PTH1R
gene [31] attention has focused on the transcriptionalcal range [4, 9].

Understanding the mechanisms by which these changes regulation of the receptor in renal failure in rats. Urena
and colleagues isolated total RNA from bone and kidneyoccur necessitates examining the role of calcitropic hor-

mones, how they exert their effects at cellular levels, the of uremic rats and found a decrease in PTH/PTHrP re-
ceptor mRNA compared to normal rats [32, 33]. Otherresulting modifications in cell function, and the role of

cytokines and growth factors in the renal bone microen- workers have also reported a downregulation of PTH/
PTHrP receptor mRNA in kidney, liver and heart fromvironment. Routine histology and histomorphometry give

little information about these processes. In an attempt uremic rats [34–36]. Several groups investigating the
mechanisms of growth impairment in renal failure haveto address some of these questions we have applied in

situ hybridization to the study of renal osteodystrophy. examined PTH/PTHrP receptor mRNA expression within
the growth plate cartilage of uremic rats [37, 38] where
downregulation of receptor mRNA expression was found

SKELETAL RESISTANCE TO PTH
to occur. Although histomorphometric data suggest that

Many of the factors implicated in the pathogenesis human bone cells exhibit PTH resistance in renal failure,
of renal osteodystrophy, including hyperphosphatemia, there is no explanation for this at the cellular level in
hyperparathyroidism, hypocalcemia, and uremic factors, vivo. Cloning of the human PTH/PTHrP receptor gene
may affect bone cells directly or indirectly and hence [39] and the development of techniques such as in situ
may contribute to disruption of the remodeling cycle. hybridization have made it possible to address this. Using
Perhaps one of the major factors in this context, that in situ hybridization (for methodology see [40]), we have
plays both a key role in bone turnover and renal osteo- examined PTH/PTHrP receptor mRNA expression in
dystrophy, is PTH. PTH is the major stimulant of altered human renal bone compared with normal, Pagetic, and
remodeling in uremic patients. At the same time, how- healing fracture callus and found greatest expression
ever, a well-defined but poorly understood PTH resis- over plump osteoblasts in areas of active bone formation
tance occurs in uremia. (Fig. 1a, b). Although PTH stimulates bone resorption,

Skeletal resistance to the calcemic actions of PTH in in vitro studies have suggested this to be indirect, i.e.,
renal failure was initially described by Evanson in 1966 mediated via osteoblasts. However, in the three high
[10] and was later felt to be important in the development turnover states actively resorbing osteoclasts were posi-
of secondary hyperparathyroidism by Llach [11], who tive for PTH/PTHrP receptor mRNA (Fig. 1c, d) sug-
found a delayed calcemic recovery from ethylenediamine- gesting that osteoclasts may be capable of responding
tetraacetic acid (EDTA)-induced hypocalcemia in pa- directly to PTH. Mean signal density of PTH/PTHrP
tients with mild renal failure, despite the fact that these receptor mRNA signal over osteoblasts in renal high
patients had higher than normal levels of PTH. Massry turnover bone was only 37% of that found in non-renal
et al [12] used a parathyroid extract infusion to study high turnover (P , 0.05) and 49% of that found in normal
the calcemic response to PTH in 105 individuals with bone (P , 0.05). Osteoblast PTH/PTHrP receptor
varying degrees of renal failure. The response was re- mRNA signal in adynamic bone was 25% of normal
duced in all renal subjects compared to normals. These bone (P , 0.05) and 51% of that found in renal high
findings have been confirmed by the demonstration of turnover bone (P , 0.05). These results demonstrate
a diminished calcemic response to PTH stimulation in a downregulation of osteoblast PTH/PTHrP receptor
both uremic dogs [13–16] and rats [17–22], while isolated mRNA in end-stage renal failure, in comparison to nor-
perfused bone from uremic dogs showed a blunted mal and nonrenal high turnover bone, and this may rep-
cAMP response [23]. Resistance to the effect of PTH resent the molecular basis for resistance of skeletal tissue

to PTH in uremic patients (unpublished data). No sig-has also been identified in uremic rat growth plate carti-
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Fig. 1. PTH1R and TGF-b mRNA expression. Expression of PTH1R mRNA by osteoblasts in (a) renal hyperparathyroid bone and (b) in normal
fracture callus. Note the increase in signal seen in nonuremic osteoblasts compared to those in renal bone. (c) PTH1R mRNA expression by
osteoclasts in hyperparathyroid bone. (d ) PTH1R mRNA expression by osteoclasts in pagetic bone. (e) TGF-b mRNA expression in renal
hyperparathyroid bone in osteoblasts. ( f ) TGF-b mRNA expression in renal hyperparathyroid bone in osteoclasts.
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nificant correlations were found between PTH/PTHrP tin, and decorin). The major effect on osteoclasts is inhib-
itory, preventing recruitment and activation of osteo-receptor mRNA and serum PTH, ionized calcium, serum

phosphate, serum vitamin D3, age at time of biopsy, and clasts [45] and inducing apoptosis of mature cells [46].
TGF-b expression is regulated in a complex manner byduration of dialysis, thus making it difficult to draw any

definite conclusions about the role of these factors in several factors including PTH. PTH increases TGF-b
production in cultures of normal human osteoblast-likePTH/PTHrP receptor mRNA modulation. However, the

finding of PTH receptor downregulation in adynamic cells [47]. Various studies have also shown that TGF-b
may modulate the PTH/PTHrP receptor, although thebone despite levels of PTH within or just above the

normal range suggests that PTH per se is not the key exact effect (down or up regulation) appears to vary with
the cell model used and the stage of cell differentiationfactor in downregulation. This is supported by data from

Urena and colleagues who have shown that thyropara- [48–51].
Although the role of TGF-b has been extensively in-thyroidectomy does not prevent renal PTH/PTHrP re-

ceptor mRNA downregulation in uremic rats [33] and vestigated in the development of glomerular disease [52],
little is known about the role of TGF-b in the pathogene-also from the absence of a correlation between serum

PTH level and reduced receptor mRNA of uremic rat sis of renal osteodystrophy. Jiang et al [53] compared
intraplatelet and plasma levels of TGF-b in hemodialysisgrowth plate chondrocytes [38].
patients with normal controls and found that patients
with renal osteodystrophy had significantly higher levels

GROWTH FACTORS, BONE REMODELING,
than in patients without bone disease and concluded that

AND RENAL OSTEODYSTROPHY
renal osteodystrophy may stimulate overproduction of

In studies on the molecular mechanisms, which con- TGF-b in patients undergoing hemodialysis. Our in situ
tribute to changes in bone formation seen in patients hybridization studies revealed that TGF-b mRNA was
with renal failure, investigations have focussed on the predominantly localized to osteoblasts, although some
role of circulating and locally produced cytokines and signal was observed over osteoclasts and osteocytes in
growth factors. Such studies suggest that alterations in renal hyperparathyroid bone (Fig. 1e, f). Semiquantita-
the expression of locally acting growth factors and cyto- tive analysis of hybridization signal showed a decrease
kines may be important in explaining the altered bone in TGF-b mRNA in the renal bone samples. The lowest
remodeling in renal osteodystrophy. Interleukin-6 (IL-6) levels of expression were seen in adynamic osteoblasts
and IL-6 receptor (IL-6R) mRNA is expressed in osteo- with levels that were 56%, 39% and 28% of the expres-
blasts, osteocytes, osteoclasts and bone marrow cells in sion seen in hyperparathyroid, normal and nonrenal high
patients with hyperparathyroidism [41]. Semiquantita- turnover osteoblasts, respectively. TGF-b mRNA ex-
tive analysis of hybridization signal indicated that activity pression by hyperparathyroid osteoblasts was 70% and
of osteoclasts, as assessed by erosion depths of resorbing 50% of that seen in normal and nonrenal high turnover
lacunae, is paralleled by IL-6R mRNA expression, sug- osteoblasts. Significant correlations were found between
gesting that IL-6 and IL-6R are intricately involved in TGF-b mRNA expression and serum PICP (a serum
osteoclastic bone resorption in renal osteodystrophy. Of marker of bone formation) and the histomorphometric
the various bone growth factors produced by osteoblasts indices of bone formation rate, trabecular apposition
and regulated by PTH, transforming growth factor b rate, and mineralizing surfaces. This is consistent with
(TGF-b) and insulin-like growth factors (IGF-I and -II) many in vitro studies showing that TGF-b stimulates
may be important in the altered bone remodeling in synthesis of bone matrix proteins.
renal osteodystrophy.

IGF-I
TGF-b IGF-I and -II are anabolic peptides that are structur-

TGF-b is one of the most abundant growth factors in ally and functionally related to insulin. IGF-I is a media-
bone [42, 43]. Synthesized by osteoblasts and osteoclasts, tor of growth hormone action in various tissues includ-
and stored in the bone matrix, its effects are complex ing bone and is synthesized mainly by the liver but also
but in general appear to promote bone formation and by bone and cartilage cells [54]. IGFs are key regulators
inhibit bone resorption. In vitro studies show that TGF-b of bone formation, decreasing collagen degradation, in-
affects osteoblasts at all stages of the remodeling cycle. creasing bone matrix deposition and increasing osteo-
In general, TGF-b has potent chemotactic properties blastic cell recruitment. The major skeletal hormones
and has been shown to promote osteoblast recruitment appear to be important in regulating the effects of IGF-I.
to sites of new bone formation [44]. The primary effect Both in vitro and in vivo studies suggest that the anabolic
on osteoblasts however, is to promote differentiation to effects of intermittent PTH are mediated through local
mature matrix producing cells stimulating synthesis and increased IGF-I expression [55, 56]. The role of IGFs

in renal osteodystrophy is unclear. However, there issecretion of matrix proteins (type I collagen, osteopon-
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