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Recent studies in mice using genetic approaches have

shed new light on the physiological effects of

1,25-dihydroxyvitamin D (1,25(OH)2D) and the vitamin D

receptor (VDR) in skeletal and mineral homeostasis, and on

their interaction with calcium. These studies in mice with

targeted deletion of the 25-hydroxyvitamin D-1a-hydroxylase

(1a(OH)ase), and of the VDR or of double mutants, have

shown the discrete effects of calcium in inhibiting

parathyroid hormone secretion and in enhancing bone

mineralization, but overlapping effects of calcium and

1,25(OH)2D on inhibiting parathyroid growth and on normal

development of the cartilaginous growth plate. The

1,25(OH)2D/VDR system is essential, however, in enhancing

intestinal calcium absorption and in optimally increasing

osteoclastic activation. In addition, the 1,25(OH)2D/VDR

system has important anabolic effects on bone, thus defining

a dual role for this system in bone turnover. These studies are

revealing functions of the vitamin D/VDR system which have

relevance for new concepts of the pathophysiology of renal

bone disease and, in particular, of the adynamic bone

disorder, and for the development of new analogs of the

active form of vitamin D, which have less calcemic activity

and greater skeletal anabolic effects.

Kidney International (2006) 69, 218–223. doi:10.1038/sj.ki.5000091

KEYWORDS: 25-hydroxyvitamin D-1a-hydroxylase; knockout mice; vitamin D

receptor; vitamin D and bone; vitamin D analogs; adynamic bone disease

Circulating concentrations of the active metabolite of vitamin
D, 1,25-dihydroxyvitamin D (1,25(OH)2D), derive from 1a-
hydroxylation of 25-hydroxyvitamin D (25(OH)D) by the
renal mitochondrial enzyme, 25(OH)D-1a-hydroxylase
(1a(OH)ase).1–3 1,25(OH)2D circulates bound to the vitamin
D binding protein. After being taken up by target cells and
bound to intracellular binding proteins, the sterol interacts
with the vitamin D receptor (VDR), a member of the nuclear
receptor superfamily.4 In the nucleus of target cells, the
ligand-activated VDR heterodimerizes with the retinoid X
receptor and the dimer binds to response elements on target
genes.5 Coregulators are recruited to link the dimer to the
basal transcriptional machinery and thereby modulate gene
transcription. Differential interactions with the binding
proteins involved in transport or intracellular chaperoning
of 1,25(OH)2D3, mobilization of discrete VDR coregulators,
differential effects on VDR turnover, or distinct rates or
pathways of elimination of vitamin D analogs are among the
mechanisms which contribute to the specific actions of newer
vitamin D analogs. In addition to the canonical pathway of
action described above, a number of pathways involving
rapid, nongenomic effects have been described. These include
interaction of the ligand with a membrane receptor, either a
novel receptor or the known VDR, thereby activating cell
signaling pathways.6,7 Both the VDR and extrarenal
1a(OH)ases have been described in a variety of tissues,
beyond those related to skeletal and mineral homeostasis,
implicating vitamin D action in a broad range of physiologic
functions.

RENAL OSTEODYSTROPHY

Circulating concentrations of 1,25(OH)2D have profound
effects on parathyroid function, mineral metabolism, and
skeletal function, which are severely disordered in chronic
kidney disease (CKD). 1,25(OH)2D synthesis is impaired in
CKD in part due to suppression of the 1a(OH)ase by
retained phosphate and in part because of loss of renal
parenchyma. As a result, low levels of calcitriol develop in
stage 3 CKD. This results in reduced calcium absorption,
which, with hyperphosphatemia due to impaired renal
tubular function and decreased bone formation, leads to
hypocalcemia. Hypocalcemia, low 1,25(OH)2D, and phos-
phate retention can lead to the development of secondary
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hyperparathyroidism and disordered skeletal remodeling,
which may be accentuated by decreased levels of VDR and
diminished levels of the calcium sensing receptor in
hyperplastic parathyroid tissue. The skeletal consequence of
secondary hyperparathyroidism is a disorder of bone
remodeling referred to as osteitis fibrosa. Secondary hyper-
parathyroidism also contributes to the reduced longitudinal
bone growth that occurs in CKD, affecting the pediatric
population due to effects of the derangements of Ca, Pi, and
vitamin D on the cartilaginous growth plate.

GENETIC ANALYSIS OF THE 1,25(OH)2D/VDR SYSTEM AS A
PROBE FOR FUNCTIONALITY

Several ‘knockout’ mouse models, with targeted disruption of
either the 1a(OH)ase8,9 or the VDR10–12 gene have been
generated (1a(OH)ase�/� and VDR�/� mice, respectively).
These represent murine models of the inherited human
disorders, vitamin D-dependent rickets type I and type II,
respectively.13,14 We have used these models and double null
mutants (1a(OH)ase�/�VDR�/�) to examine the effects of
the 1,25(OH)2D/VDR system on mineral, parathyroid, and
skeletal homeostasis.15 The study of the mechanisms under-
lying the 1,25(OH)2D- and VDR-deficient phenotypes in
these mouse mutants has been facilitated by the correction of
the hypocalcemia, which these animals exhibit, by a ‘rescue’
diet containing high concentrations of calcium, phosphorus,
and lactose.16–18 These genetic models and the environmental
manipulations of the models have therefore provided
powerful probes to dissect in vivo the discrete and over-
lapping contributions of vitamin D, calcium, and parathyroid
hormone (PTH) to the endocrine control of skeletal and
mineral metabolism.19

Effects on calcium homeostasis and parathyroid function

Optimal dietary calcium absorption in the 1a(OH)ase�/�

and the VDR�/� mice required an intact 1,25(OH)2D/VDR
system. In more recent studies in young 1a(OH)ase�/� mice
and mice with targeted ablation of the PTH gene (PTH�/�),
we found that both 1,25(OH)2D and PTH could indepen-
dently and co-operatively modulate renal calcium transpor-
ters including the luminal epithelial channel transient
receptor potential-vanilloid-5 (TRPV5), the intracellular
calcium-binding proteins calbindin-D28K and calbindin-
D9K, and the basolateral membrane sodium–calcium ex-
changer, NCX1.20 These results are consistent with the
actions of 1,25(OH)2D reported in other 1a(OH)ase�/�

models.21 In the 1a(OH)ase�/� and VDR�/� models,
secretion of intact PTH was modulated primarily by ambient
serum calcium in that normalization of serum calcium with
the rescue diet normalized circulating PTH even in the
absence of 1,25(OH)2D or the VDR. Nevertheless, the
parathyroid gland hyperplasia, which the mutants exhibited,
persisted when calcium alone was normalized. The combina-
tion of normal extracellular calcium and 1,25(OH)2D
(apparently independently of the VDR) was required for
normalization of parathyroid gland size. The results indicate

that calcium cannot entirely substitute for deficient vitamin
D in maintaining parathyroid homeostasis, and that the two
agents act co-operatively in modulating parathyroid cell
proliferation.

Development of the cartilaginous growth plate

On a normal- or high-calcium lactose-free intake, all three
hypocalcemic mutant mouse models, the 1a(OH)ase�/�,
VDR�/�, and 1a(OH)ase�/�VDR�/� mice, develop charac-
teristic skeletal rachitic changes of enlarged and distorted
cartilaginous long bones with widened hypertrophic
zones.8–10,11,15,18 These abnormalities appear less severe in
VDR�/� mice with elevated endogenous 1,25(OH)2D levels
than in the other two mutants, suggesting that 1,25(OH)2D
may modulate cartilage function independently of the VDR.
Nevertheless, 1,25(OH)2D per se cannot normalize the
growth plate if hypocalcemia is not normalized and,
conversely, elimination of hypocalcemia with the rescue diet
does not completely normalize the growth plate in the mouse
models that have deficient endogenous 1,25(OH)2D. Conse-
quently, both calcium and 1,25(OH)2D together appear
necessary for normal development of the cartilaginous
growth plate, analogous to the effect on parathyroid growth.
Previous studies in double-null mutants of the VDR and of
the retinoid X receptor g have suggested the existence of a
novel VDR in the cartilaginous growth plate with which
1,25(OH)2D may interact.22 In addition, rapid, nongenomic
effects have been reported in cartilage cells.6,7 Our findings
are consistent with one or other or both of these possibilities.

Skeletal mineralization

Mineralization of both cartilage and bone is severely
impaired in all mutants (the 1a(OH)ase�/�, VDR�/�, and
1a(OH)ase�/�, VDR�/� models) that are hypocalcemic on
either a lactose-free-normal or high-calcium intake.15 How-
ever, cartilage mineralization and bone mineralization are
normalized in all models when hypocalcemia is eliminated by
the rescue diet. Administration of exogenous 1,25(OH)2D3

normalizes mineralization only when serum calcium is
normalized, that is, in the 1a(OH)ase�/� model.15 Conse-
quently, the major determinant of skeletal mineralization
appears to be the ambient concentration of extracellular
calcium (and phosphate) and the 1,25(OH)2D/VDR system
appears to play no direct role in this process.

Bone remodeling

Osteoblast numbers, bone formation, and bone volume are
markedly increased in all hypocalcemic animals
(1a(OH)ase�/�, VDR�/�, and 1a(OH)ase�/� VDR�/� mice)
on either a lactose-free, normal-calcium intake,8–10 or a
lactose-free, high-calcium intake.15 This appears to be due to
the anabolic effect of PTH, which is markedly elevated in
association with the severe secondary hyperparathyroidism in
these animals. Increased serum alkaline phosphatase reflects
the increased osteoblastic stimulation by PTH and is
normalized when PTH is normalized by eliminating the
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secondary hyperparathyroidism. The increased bone volume
is largely due to increased unmineralized bone matrix
however, as a result of the ambient hypocalcemia. Interest-
ingly, a sustained elevation of increased PTH is generally
associated with increased osteoclastic bone resorption as well
as increased bone formation. Nevertheless, osteoclast number
and resorbing surface are not appreciably elevated in these
models compared to wild-type, suggesting an inappropriate
response to the increased PTH. Furthermore, in our
studies,15 a decrease in the average osteoclast size was seen
in the 1,25(OH)2D- and/or VDR-deficient mutant animals
with secondary hyperparathyroidism. This suggests that there
is uncoupling of bone turnover in the presence of a defective
1,25(OH)2D/VDR system and the relatively low resorption
may contribute, with increased osteoblast activity, to the
increased bone volume. Indeed, previous studies with
osteoclast-generating models in vitro have shown that
osteoblastic cells from VDR�/� mice in culture with normal
spleen cells could not sustain 1,25(OH)2D-stimulated
osteoclast production, although PTH could.23 Therefore,
although PTH and local modulators of bone resorption may
sustain a normal level of osteoclastic resorption in these
models, an intact 1,25(OH)2D/VDR system is required for an
optimal osteoclastic response to increased PTH.

In view of the fact that osteoclast/chondroclast production
at the chondro-osseous junction may also be defective,
diminished removal of hypertrophic chondrocytes may occur
in this region, leading to altered cartilage growth plate
remodeling. Therefore, the enlargement of the cartilaginous
growth plate, and notably the hypertrophic zone, may also be
in part due to reduced activity of the 1,25(OH)2D/VDR
system on the chondroclast/osteoclast system.17

In our studies we also found that in all three mutant
models, that is, in the absence of 1,25(OH)2D, VDR, or both
1,25(OH)2D and VDR, when serum calcium was normalized
by the rescue diet and secondary hyperparathyroidism was
prevented, osteoblast numbers, mineral apposition rate, and
bone volume were suppressed below the levels seen in wild-
type mice.15 This showed that, when the 1,25(OH)2D/VDR
system is deficient in the presence of normal PTH and
normal calcium, a requirement of the 1,25(OH)2D/VDR
system for baseline bone anabolism can be unmasked. The
1,25(OH)2D/VDR system therefore appears to exert an
anabolic effect, which is necessary to sustain basal bone-
forming activity. This inhibition of bone formation was not
previously observed in either VDR�/� or 1a(OH)ase�/� mice
on the rescue diet and may reflect the older age of our mice at
the time of analysis. Furthermore, other studies have also
pointed to an anabolic effect of 1,25(OH)2D,24–26 supporting
the observations in our model. Our studies therefore suggest
that 1,25(OH)2D may exert effects on both bone resorption
and bone formation analogous to those of PTH.

Comparative skeletal effects of 1,25(OH)2D and PTH

To better understand the relative contributions of
1,25(OH)2D and PTH to bone anabolism, we recently

compared 1a(OH)ase�/� mice to PTH�/� mice.20 Reduced
osteoblastic bone formation in the metaphyseal region was
seen in both mutants, confirming our findings of a
requirement for endogenous 1,25(OH)2D as well as for
endogenous PTH for bone anabolism. PTH deficiency
however caused only a slight reduction in long bone length
but a more marked reduction in trabecular bone volume in
these models, whereas 1a(OH)ase ablation caused a smaller
reduction in trabecular bone volume but a significant
decrease in bone length. Therefore, although both
1,25(OH)2D and PTH can affect long bone growth and
trabecular bone growth, PTH plays a predominant role in
appositional bone growth, whereas 1,25(OH)2D acts pre-
dominantly on endochondral bone formation. We subse-
quently confirmed these findings by administering exogenous
1,25(OH)2D3 (calcitriol) and PTH to these animals.27

Consequently, both 1,25(OH)2D and PTH exert anabolic
effects that are discrete but complementary.

Overall therefore, these genetic models have provided
important new insights into the role of the active form of
vitamin D in mineral and skeletal homeostasis (Table 1). The
actions on parathyroid growth, on regulating the develop-
ment of the epiphyseal growth plate, and on regulating bone
formation seem of particular relevance for the mineral and
skeletal alterations which occur in both pediatric and adult
kidney disease, and improved knowledge of the physiology of
the vitamin D system may lead to improved design and use of
vitamin D analogs in CKD.

VITAMIN D ANALOG THERAPY IN CKD
Calcitriol and adynamic bone disorder

In patients with CKD, placebo-controlled trials have
demonstrated that administration of daily oral calcitriol

Table 1 | Effects of 1,25(OH)2D, calcium, and PTH on selected
parameters of mineral and skeletal metabolism based on in
vivo studies in genetic models

Effectorsa

Parameters
1,25(OH)2

D/VDR Ca
1,25(OH)2

D+Ca PTH

Calcium absorption +
Renal calcium transporters + +
Parathyroid secretion �
Parathyroid growth �
Cartilaginous growth plate
development

+

Endochondral bone formation ++
Bone mineralization +
Appositional bone formation + ++
Bone volume +
Bone resorption – osteoclastic
activity

+ +

Bone formation – osteoblastic
activity

+ +

1a-(OH)ase activity � � +
24-(OH)ase activity + + �
a+, stimulatory effect; �inhibitory effect; no symbol indicates no effect or effect not
examined.
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reduced PTH levels and improved bone biopsy findings.28,29

Concerns regarding the safety of such therapy related to
deterioration of kidney function were addressed, demonstrat-
ing that the rate of decline in glomerular filtration rate did
not differ between placebo- and vitamin D-treated pa-
tients.28,30 Nevertheless, despite oral daily regimens of
calcitriol or alfacalcidol, secondary hyperparathyroidism
remained the predominant bone lesion observed, especially
in dialysis patients and the younger age groups.31–33

The introduction of intravenous calcitriol was associated
with marked reductions in PTH levels and bone turnover in
hemodialysis patients.34 Oral intermittent regimens were
subsequently shown to be as effective despite the greater
bioavailability of intravenous calcitriol.35–37 Some authors
concluded from their studies of intermittent calcitriol
therapy that the reduction in bone formation rate appeared
to be greater than that of PTH levels.38,39 Such findings led
authors to suggest a direct negative effect of vitamin D on
osteoblastic activity. In patients on peritoneal dialysis, high-
dose intermittent oral or intraperitoneal calcitriol therapy
was associated with a marked decline in bone formation
rates, leading to the development of the adynamic bone
disorder (ABD) in a substantial proportion of the pa-
tients.38,40,41 Calcium-based phosphate binders were given to
all of the patients and the serum calcium levels increased
during the period of the studies. This prompted the
conclusion that both the use of active vitamin D sterols
and the exogenous calcium load played a role in the
pathogenesis of the ABD (Figure 1).41

Alternative pathogenic mechanisms of the ABD have,
however, been recently demonstrated in translational studies,
which are in agreement with the genetic analysis of the
1,25(OH)2D/VDR system functionality in bone remodeling.
Lund et al.42 have shown in mice subjected to renal ablation
and proportional reduction in dietary phosphorus with
maintenance of normal Ca, Pi, PTH, and calcitriol levels that
the ABD resulted. These data strongly indicate that renal
injury directly impairs skeletal anabolism. The data were
confirmed in another animal model with the metabolic
syndrome of obesity, hypertension, dyslipidemia, and type II
diabetes (low-density lipoprotein receptor-deficient mice fed
high-fat/cholesterol diets), where induction of CKD resulted
in the ABD despite secondary hyperparathyroidism.43 Thus,
reinterpretation of the human studies is possible, with the
conclusion that reversal of secondary hyperparathyroidism
uncovers the effect of renal disease on the skeleton. This
produces the concept that secondary hyperparathyroidism is
an adaptation to loss of skeletal anabolism produced by
kidney disease, especially early in CKD before hyperpho-
sphatemia and calcitriol deficiency are uniformly detected.

Calcitriol and extra-skeletal calcification

Calcitriol therapy increases intestinal calcium and phos-
phorus absorption, with the subsequent development of
hypercalcemia and hyperphosphatemia in some patients with
CKD. The increase in calcium–phosphorus product limits

therapy with vitamin D analogs and may play a role in the
development of extraskeletal and vascular calcification.44

Milliner et al.45 found postmortem evidence of soft tissue and
vascular calcification in 60% of 120 children with end-stage
kidney disease.45 The strongest correlation with calcinosis
among the calcium phosphate (Ca-PO4) product, sex, age of
onset of kidney disease, and vitamin D therapy was with the
latter. Current evidence suggests that abnormalities in Ca-
PO4 mineral metabolism, use of calcium-containing phos-
phate binders, and therapy with active vitamin D sterols play
a role in the development of vascular calcification.46,47

Vascular calcification and hyperphosphatemia are indepen-
dent risks for cardiovascular disease and excess mortality in
the end-stage kidney disease (ESKD) population.48–51 Even
among the young ESKD patients, cardiovascular disease is the
leading cause of death and a substantial proportion of such
patients demonstrate evidence of coronary artery calcifica-
tion.52 The role of calcitriol and active vitamin D analogs in
the pathogenesis of vascular calcification is unclear despite
the discussion above. Several epidemiologic studies suggest
that active vitamin D analog therapy is associated with
reduced vascular calcification,53,54 while translational stu-
dies55,56 and studies in vitro57,58 indicate that they may be
causative of vascular calcification.

Vitamin D analogs

New vitamin D analogs have been designed to minimize the
increase in intestinal calcium and phosphorus absorption
while continuing to suppress hyperparathyroidism as effe-
ctively as calcitriol at least in animal studies.59–61 Three
new vitamin D analogs are available for clinical use in CKD:
22-oxacalcitriol (OCT) in Japan, and 19-nor-1,25-dihydrox-
yvitamin D2 (paricalcitol) and 1a-hydroxyvitamin D2

(doxercalciferol) in the USA. Interestingly, in a series of repeat
bone biopsies, OCT did not decrease bone formation rates.62

Renal injury

Pathogenesis of the adynamic bone disorder in CKD
Loss of skeletal Secondary

hyperparathyroidismanabolism

↓ Osteoclast # ↑ Osteoclast #

↑ Osteoclast↓ Near-normal osteoclast
↓ Bone formation rate ↑ Bone formation

activity activity

Clinical therapy

Active Vit D analogs/
Ca-based PO4 binders

↑
Figure 1 | In CKD, renal injury produces loss of skeletal anabolism
possibly through decreases in bone morphogenetic protein
influence. The reduction in the bone mineralization front represents
a decrease in the exchangeable phosphorus pool contributing to
stimulation of PTH secretion and secondary hyperparathyroidism.
Thus, the latter, especially early in CKD, is an adaptation to loss of
skeletal anabolism. When the adaptation is removed by correction of
secondary hyperparathyroidism using active vitamin D analogs and
Ca-based PO4 binders, the effect of kidney disease on the skeleton is
uncovered – the ABD.
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Studies with 19-nor-1,25-dihydroxyvitamin D2 demonstrate
fewer episodes of hypercalcemia and a lower calcium-
phosphorus product with equal suppression of PTH during
8 weeks of the study.63,64 The long-term effects of these
therapeutic approaches have yet to be determined on vascular
calcification and mortality. However, in a large dialysis
cohort analyzed retrospectively, greater survival rates were
described in patients treated with paricalcitol compared to
patients treated with calcitriol.65

In translational studies using our murine models of the
ABD described above,42,43 we have examined the ability of
therapy with calcitriol or 19-nor-1,25-dihydroxyvitamin D2

to rescue the ABD.66 Treatment with 10 and 20 ng/kg of
calcitriol or 50 and 100 ng/kg of paricalcitol for 12 weeks
following the induction of CKD and institution of a reduced
phosphorus diet produced an increase in the trabecular bone
volume, a reduction in osteoid surface, and an increase in
mineralizing surfaces in the paricalcitol-treated animals
compared to the calcitriol-treated animals. Calcitriol, but
not paricalcitol, increased osteoclast surfaces, suggesting,
perhaps, differential modulation of the VDR function in the
bone cell transcriptional machinery. These results were
recapitulated in the LDLR�/� mice with CKD fed high-fat
diets,67 and, while further studies are required to clarify these
preliminary results, the possibility of differential modulation
of skeletal VDRs needs to be further investigated. The actions
of the skeletal VDR in our translational studies in CKD are
therefore in keeping with genetic studies of 1a(OH)ase
deficiency and VDR deficiency, to not inhibit but rather to
stimulate osteoblastic function. These results require further
analysis in the context of the ABD in dialysis patients and the
need to stimulate skeletal anabolism. Since we have
demonstrated that renal osteodystrophy contributes to
hyperphosphatemia in CKD, and that hyperphosphatemia
is a direct stimulus to osteogenic differentiation within the
vascular tunica media, stimulation of bone formation and
skeletal mineral deposition may have a lasting benefit in
avoiding the vascular calcification that otherwise complicates
CKD and ESKD. Overall therefore, newer vitamin D analogs
with more favorable properties based on novel scientific
insights may substantially improve mineral and skeletal
homeostasis in CKD.
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