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1. INTRODUCTION

Let f : R — [0, 00) be a densuty function; this means that f 1sintegrable on R and ffooo ft)ydt =1,
and define by

F(z) .= / f)de, z € R, (1.1)
its cumulatwe function. We also denote the ezpectation of f by E(f), where
o0
E(f) :=/ zf(z)dzx (1.2)

provided that the integral exists and is finite
The mean difference

Ro(i=3 [ [ lo-sldr@arw 13)

was proposed by Gini in 1912 [1], after whom it is usually named, but was discussed by Helmert
and other German writers in the 1870s (cf. [2], see also [3, p 48]). It has a certain theoretical
attraction, being dependent on the spread of the variate-values among themselves and not on the
deviations from some central value [3, p. 48]. Further, its defining integral (1.3) may converge
when that of the varance o2(f),

o0
2
)= [ @=B() dFG) (14
—00
0898-1221/05/8 - see front matter © 2005 Elsevier Ltd All nghts reserved. Typeset by AAS-TEX

doi:10.1016/j camwa 2004.11.020



600 P CERONE AND S S DRAGOMIR

does not converge. It is, however, more difficult to compute than the standard deviation. Another
useful concept that will be utilised in the following is the mean deviation M, p(f), defined by [3,
p. 48]
o0
Mo(f)i= [ Jo - E(f)] dF(@). (15)
—0C
As Giorgi noted in [4], some of the many reasons for the success and the relevance of the Gini
mean difference or Gins wndex Ig(f),

Ra(f)
E(f)’

are their simplicity, certain interesting properties and useful decomposition possibilities, and
these have been analysed in an earlier work by Giorgi [5]. For a bibliographic portrait of the Gini
index, see [4] where numerous references are given.

The main aim of this paper is to establish various general bounds for Rg(f) on utilising specific
results and tools from the theory of inequalities. The novel approach at times recaptures either
known results; however, further results are obtained which do not seem to exist in the literature.

Is(f) = (1.6)

2. SOME IDENTITIES

We state here some identities that are of interest throughout the paper. For the sake of
completeness, we give short proofs, even for identities that have been stated before (see, for
instance, the book [3, Exercise 2.9, p. 94]).

The following lemma holds.

LEMMA 1. We have the identity

Ro(f) =2 [ of(e)F(e)da - B(7). (2.)

-0

ProoF. Using the definition of Gini mean difference (1.3) and the integration by parts formulae,
we have successively

2o = [ ([_e-vswar)s@i+ [~ ([Tw-aswa) e
Tl e 0w o)
[l ([Turwar-o [~ stav)| as
- /_ Z <F(z) dP(z) — /_ Z ( /_ ; vf(y) dy) dF(z)
[ ([ wtwan) i@ - ["o0 - Fa) ar
- /_ _eF(@)dF(@) - [ dy) F() io - / ” eF(@)f(2) dx:‘

+</$ yf(y)dy> () ~

- /z " wdP(z) + /_ _oF(z)dF ()
= /00 z2F(z)dF(z) — (/00 zf(z)dx —/00 zf{z)F(x) dz)

—00 —00 —o0

+ /00 zF(z)f(z)dz

—00
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+ / f(z)F(z) dz - / 2 dF(z) + / F(z) dF (z)

- 4/_0; +F(z)dF(z) - 2/_0; 2f(z) dz

—4 /_ " oF (@) () do - 2B(f),

giving the desired identity (2.1). ]
The following identity holds.
LEMMA 2. We have the 1dentity

o2}

| a-reprwdi=2 [ sf@r@ -2, (2.2
PRrROOF. Denote R(y) =1— F(y) = f;o f()dt, y € R. Then we have, on integrating by parts,
that

[e.¢]

/ " RWFG) v = ROFG) - [ vd ROPW). (2.3)

Since limy—oo yR(y) = 0 and limy—, o yF(y) = 0, hence yR(y)F(y)|=,, = 0.
Also, we have

o0

/_ " YR )F@) + R)F ()] dy = / y-FW)F )+ (1 - F@) ()] dy

— 00

= /_Do y[f(y) — 2f(y)F(y)] dy
=2 /_m yf () Fy) fy + E(f).

Using identity (2.3}, we deduce (2.2). ]

Define the functions e : R — R, e(z) =z and F: R — Ry, F(z) = [ __ f(t) dt. We recall that
the covariance of e and F' is given by

Cov(e, F) = E|(e — E(f)) (F — E(F))].
The following result in terms of covariance also holds

LEMMA 3. With the above notations, we have
Cov(e, F) = / zF(z)f(z)dx — %E(f) (2.4)

Proor. Using the definitions involved, we have

Cov(e, F) = /m( ( /f ) z) dx
f fl [mF )+ B(f / F(5)F(y) dy
([ rrwa)e- (f)F(m)] o

=/ zF(z)f(z) dz + E( f)/ fW)F(y)dy
- B(f /f Fly)dy - E(f)/ f(@)F(z)dz
= [ s eF(@)f(w) de ~ E(f) /_ f@F@)ds,
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and since
/ fz)F(z)dz = / F(z)dF(z) = %mm) Z%,

we deduce the desired identity (2.4). [ |

Using the above lemmas, we may state the following known result (see for instance [3, p. 54}).

THEOREM 1. With the above assumptions, we have the identities

Re(f) =20ov(e, ) = [ (1= F)F(y)dy
- oo (25)
- 2/ of(2)F(z) dz — E(f).

—0o0

Before we point out another identity for the Gini mean difference, we recall the following
identity due to Sonin (see for instance [6, p. 246] for the case of univariate real functions):

/ﬂ 0(5)9()h(s) du(s) — /Q o(s)9(s) du(s) - /Q p(s)h(s) du(s)

= /Qp(s) (g(s) - /Q g9(r)p(7) dp(f)) (h(s) — ) du(s) (2.6)

for any v € R, where p: @ — R is a g-measurable function with [, p(s) du(s) = 1, (2, Z,p) is a
measure space, and p ' ¥ — [0, 00) is a positive measure on .

The proof for (2.6) may be obtained by direct calculation starting with the right-hand side and
we omit the details.

Utilising Sonin’s identity (2 6), we may state the following.

THEOREM 2. With the above assumptions for f and F, we have the identity

Re()=2 [ (@~ BU) (F@) - f(a)do
~o0 @.7)

2 [ @0 (F) - 5) f@) s

-0

for any v,6 € R.

ProOF. The first identity follows by Sonin’s identity for Q@ = R, du(s) = dz, p(s) = f(s),
g(s) = s, and h(s) = F(s). The second identity follows in a similar manner. 1

3. SOME GENERAL BOUNDS

The following result comparing the Gini mean difference with the mean absolute deviation may
be stated.

THEOREM 3. With the above assumptions, we have the bounds

“Mp(f) < Ro(f) < 25up |F(z) 7| Mp(f)
< Mp(f),

(3.1)

for any v € |0,1), where F(-) is the cumulative distribution of f and Mp(f) is the mean deviation
defined by (1.5).
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Proor. By the definition of Rg(f) and the properties of the integral, we have

//!r—ylf F(y) dedy
:5/_00(/_ &~ ylf(z)d )<y)dy

>3 |- is@as ray
=3 [ B0 - e
= %Mu(f),

and the first inequality in (3.1) is obtained.
For the second inequality, we use (2.7) to get

Re(f) <2 / e~ B (@)~ 7| f() da

<2sup|F ’y|/ |z — E(f)| f(z)dz
—2sup|F(x) ¥ Mp(f),

for any v € [0,1].
Finally, since, for v =1/2

lF(m)-%‘gé, z €R,
then the last part of (3.1) holds true. ]
REMARK 1. The inequality

Mo () < Ro(f) < Mo(f) (52)

18 known, see for instance the lecture notes online by Wichura located at http://galton.
uchicago.edu/ wichura/Stat304/Handouts/L09.means3.pdf

If X is a random variable with the density function f and X is nondegenerate, there is equality
on the left in (3.2) if and only if the random variable X takes only two values (with probability
one). There is no degenerate X for which equality holds on the right; however, given any € > 0,
there exists a nondegenerate X, such that Re(fe) > (1 — e)Mp(f), which shows that the

multiplicative constant 1 in front of Mp(f) in (3.2) cannot be replaced by a smaller quantity.

Now, consider the absolute moment of order 1 about § € R,
Ms() :=/ lz — 8| f(z) dz.

We may state the following upper bound for the Gini difference mean in terms of Ms(f) as
follows.

THEOREM 4. With the above assumptions and if m € R i1s a median for f, that is, F(m) =
[ f(z) =1/2, then we have

Re(f) < Mu(f) < Mp(f), (3.3)
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where M, (f) = [ |z — m|f(z)dz.
PrOOF. If we use the second equality in (2.7), then for any § € R, we get

Re(ns2 [ -4

—0o0

Flo) - 3| @) do

S/oo |z — 8] f(z)dz

= Ms(f),

since |F(z) —1/2| < 1/2 for each z € R. Taking the infimum over ¢ € R and taking into account
(see for instance Theorem 2 of http://galton.uchicago.edu/  wichura/Stat304/Handouts/
L08.means2.pdf) that

inf Ms(f) = Mn(f),

we deduce the first inequality in (3.3).
The second part is obvious. ]
Now, consider the absolute moment of order p about E(f), namely,

o]

Mg o(f) = / o~ B fg)de <c0, p>1. (3.4)

—oa
With this definition, we may state the following result.

THEOREM 5. Assume that p > 1, 1/p+1/q = 1, and f : R —[0,00) 18 a distribution with
Mg p(f) < co. Then we have the inequality

2

1/p
Re(f) < CESNL Mg (HIF. (3.5)
PrOOF. Using the first identity in (2.7) for v = 0 and the weighted Hélder inequality, we have
Ra(f)<2 [ lo=B()IF@)S@)da
0o 1/p oo 1/q
<2([ m-B@rs@a) ([ Pof@e)
Since -~ )
q -
/—OOF @) de = —.
hence inequality (3.5) is obtained. [

REMARK 2. For p =g = 2, we have
Mea( =)= [ (@=E) fa)de,

and from (3.5), we may state the inequality

2v3
Ro(f) < Z5-a(f). (3.6)
Inequality (3.6) is known, see for instance, http://galton.uchicago.edu/ wichura/Stat304
/Handouts/L09.means3.pdf.
The case of equality holds 1n (3.6) if f is uniformly distributed on [0, 1}.

If we denote now by

oo

Mso(f) = / |z — 8| f(z) dx, p>1

-0

the absolute moment of order p about § of f, then we may state the following result.
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THEOREM 6 Let 6 € R,p > 1, 1/p+ 1/g9 = 1 and assume that Mj,(f) < oco. If there exists a
unique median m for f, then we have the inequality

1 1/p
Ra(f) < i (Msp (N7 3.7
Proor. We use the second identity in (2.7) and Holder’s weighted integral inequality to get
e 1
Ro(f) <2 [ o=01|Fe) - 3| fte)do
00 1/p oo 117 1/q (38)
<2 (/ |z—5|pf(m)d:c> </ ‘F(I)—E f(m)dz) .
Now, for m a median,
oo 1 q m 1 q e ] 1 q
/ ’F(:L‘)—§ f(x)dmz/ (i—F($)> f(a:)dm-l»/ (F(x)——2-> f(z)dz
_ap-Feyt " Fe@ -yt
g+1 ~ g+1
IS S S
S 20%l(g+1)  20tl(g+1)  29(g+ 1)
Utilising (3.8), we deduce the desired result (3.7). |
REMARK 3. If in the above we choose p = ¢ = 2, then we have
3
Ra(f) < —‘3C [Ms2()?, (3.9)
for any 0 € R. In particular, if we choose ¢ = E(f), then from (3.9) we deduce
3
Re(f) < La(), (3.10)

a better result than (3 6), which was available earlier in the literature. Note that this result holds
true for distributions for which there exists a unique m € R, such that F(m) =1/2.

The following result may be stated as well

THEOREM 7. With the above notations, we have
2l flloo® (), if f € Lo(R),

3.11
N loMpasrlF), i f € Ly(®), p>1, (3.11)

RG(f)S{ N

i
o=

provided the moments Mg 111,4(f) defined by (3.4) exists.
Proor. If we use identity (2.7) with v = F(E(f)), then we get

Ro(r) <2 [ " e - B()||F(@) - F (B())| f(z) da

E(f)
/ F(t)dt

Utilising Holder’s integral inequality, we may state that
le = E(H) Iflloe, i f € Loo(R);
E(f) .
[ s dt} <= BOMsl,, it f e L) (5.13)

(3.12)

=2 j-B() f@)da

1 1
4=
P q

p>1, =1



606 P CerONE AND S S DRAGOMIR

where

1 flloo = esssup|f(2)]
teR

= ([ 1s00) T el

Making use of (3.12) and (3.13), we may state that

and

oo / T @B fe)de,  if f € Loo(R);
R < Idly [ o= B foyda, it 1 € Ly(R),
p>1, - -l—l =1,

and inequality (3.11) is obtained. [ |

Finally, we can state the following result involving the median, m.

THEOREM 8. Let m € R be a median for f. Then we have the mnequality

2(| f{loo Mrm,2(f), if f € Loo(R);
c(f) < . 11 (3.14)
2\ fllpMm,141/¢(f), iff € Lp(R), p>1, - + E =1,
provided the moments involved exist. Note that
0
My, s(f) :z/ |z —m|® f(x) dz, s>0.
Proor. By the definition of median, we have
1 €T
- - 10
|z = m[[[flleo,  if f € Loo(R);
1 1
B Iz_‘mll/q”f“m iffELP(R)a p>1, ;‘1'5:1-
Utilising the second identity in (2.7) for § = m, we have
o 1
Ro(f)s2 [ fo-ml|F@) - 3| (o) o
oo -
£l [ o= mf* (o) do
<2 o
1l [l ml /0 5(@) do
giving the desired inequality (3.14). 1

4. BOUNDS FOR n-TIME DIFFERENTIABLE FUNCTIONS

The following result may be stated.
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THEOREM 9. Assume that the density function f : R — [0,00) is (n — 1)-time differentiable
(n > 1) and the derivative fn=1) s Jocally absolutely continuous on R. Then we have the
representation

&) (E
Ro(f) = 2| £ (BUf +zf e Mnsa)| + . LEG),  (4)

and the remainder S, (f, E(f)) satisfies the bounds

(n+1 F™| o Memaa(6), if f™ € Loo(R);

2

1S, (F, E(f))| < nl(ng +1)1/9 £ “pMEm+1+1/q(f), if ™ € Ly(R),

(4.2)

2
=) Me s (£),
where ME p(f) = f_ (t— E(f))Pf(t)dt, p € N and Mg, (f) 1s given by (3.4).

PROOF. We use the Taylor’s representation formula with integral remainder for F' about a point
to € R to state that

F(t) = F (to) + (¢ — to) P (tg) + -+ L=10) _nf")nw (to)
._/ nF(n+1)(S
= F (o) + (t —to) f (to) + -+ +

1 / 8" £ (s)

Now, if we use identity (2.7), for v = F(E(f)), then we have the representation

Eto)” o )

o0

Ra(f) =2 / (t - E(f)) (F(t) - F (B(f))) f(¢) dt
o0 2
—2 [ -5 [(t—E(f))f(E(f)) L E=BOY oy g

1l
4ot @__%@X_f(nﬂ) (E(f)) += Et(f)(t — 5" f™)(s) ds] f(tydt
o (1) o0
_9 [__f(b;(f))/_ (t—E(f))2f(t)dt+f——(§ﬂ/_ (t — B()° £(2) dt

n!

o S E) IR f(t)dt] + 5, (F, B(F)),

where

S5 B = o [ 6= B ( [, ¢=orse ds) f(e)de

This provides representation (4.1).
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To bound the remainder S, (f, E(f)), observe, first, that by Holder’s integral inequality

t
Jo't
B(f)

15 (£, E(f))] <

and inequality (4.3) is proved.

8" F™(s) ds

g e,

( |t ~ E(f)["+! .
(n) L 2 S (n) .
”f Hoo n+1 1 1ff ELOO(R)a
1/q
Hf<n>p |t — 5| ds if f™ e L(R),
p>1 l+£=1;
P q

[l 1= BHP

F™ 1t =BT, if £ € Loo(R);

n+1
___..___1 k(3 . n
(nq+1)1/q “f(n)”plt_E(f)I +1/q’ if f( )E LP(R)s
p>1, 1+l=1,
p q

e — B |7, -

Utilising (4.3), we may state that

o[ -BOr 0, i1 € Lo(R);

E(RHMY 58y dt, if £ € Ly(R),

2 g n
|21l [ - B o

Finally, the following result involving a median may be stated.

THEOREM 10. Assume that the density f : R — [0,00) 1s (n — 1)-time differentiable (n > 1) and
the derivative f(*~1) js locally absolutely continuous on R. If m € R is a median for f, then we

have the representation

Ra(f) =2

where the remainder T, (f,

Tn(f,m)| <

where

2[%@—mVﬂ@®, peEN,

~ (k)
Mm2(f) + Z {k +(T), Mo p42(F) | + Tu(f,m), (4.4)
m) satisfies the bounds
(n + 1! “f(n “ Mo ny2(f), if £ e Lo (R);
2
[ n . (n)
ni(ng + 1)¥/2 ”f “pMm’"HH/q(f)’ if f™ € Ly(R), (3
>1 l + l =
p © Py
\ -',—LT Hf(n) “1 Mm»"+1(f)7
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and

o
Mol = [ o=@ ds, 1 >0
—o0
ProoF. We use the Taylor’s representation formula with integral remainder to get

F(z) =F(m)+(z—m)f(m)+“-+($_n—m)nf("_l)(m)+%/z(m—s)”f(”)(s)ds, zeR.

!
: m

Now, if we use identity (2.7) for 6 = m, then we get

Ro(f)=2 [ (o =m) (@~ m)fm) +

- + I m)

TN s ds] f(x)dz

n! S
:2[@/_00(.% m)? (m)dm+ f(m ~ (x —m)3f(z) d
(n-1) oo
| +...+———f n‘(m)/ (z — n+1f d$]+Tn

where, obviously, | i
T}t(f, m) = '7%/_00 (x —m) (/z(t — "™ (s) ds) flz)dx.

Since, by Holder’s integral inequality, we have

n+1 ”f(n)” n+1 if f(n) e Loo(R),
1
z N— O] —_ mlntl/ i 2(n)

V (t— )" F™(s)ds| < § (ng+ D)V £, b = mie2/2, i £ € Ly(R),

" 1,1

P> 17 -+ -= 17
P q
\ |z —m|"* Hf(")nl ,

hence

G bl [ e =i st

2 Hf(")ll /oo [ m|n+1+1/q 1 1 n 1 1
— T - — 4 -=1
nl(ng + 1)1/e PJco  PT D ’

2 o0
21l [ o= do
" -0
and the theorem is proved. |

REMARK 4. Results (4.1),(4.2) and (4.4),(4.5) enable an approximation of Rg(f) in terms of
arguably simpler terms with explicit bounds.

ITa(f,m)] <

REMARK 5. Further results based on Korkine and other recent identities connected with the
Gruss inequality are under preparation.
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