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1. I N T R O D U C T I O N  

Let f : R -~ [0, co) be a dens~tyfunctwn; this means that f :s mtegrable on R and f _ ~  f ( t )  dt = 1, 
and define by 

F(x) .= f ( t )  dt, x e R, (1.1) 
O 0  

its cumulatwe functwn. We also denote the expectation of f by E( f ) ,  where 

// E(f) :=  xf(x) dx (1.2) 

provided that the integral exists and is fimte 
The mean difference 

/ /?  1 ~ [ x -  y ldF(x)  dF(y) (1.3) 

was proposed by Gini in 1912 [1], after whom it is usually named, but was d:scussed by Helmert 
and other German writers in the 1870s (cf. [2], see also [3, p 48]). It has a certain theoretical 
attraction, being dependent on the spread of the variate-values among themselves and not on the 
deviations from some central value [3, p. 48]. Further, its defining integral (1.3) may converge 
when that of the vamance a2(f),  

/? a2(f)  .= (x - E ( f ) )  ~ dF(x),  (1.4) 
O 0  
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does not converge. It is, however, more difficult to compute than the standard deviation. Another 
useful concept that will be utilised in the following is the mean deviatwn MD(f), defined by [3, 
p. 4s] 

? MD(I) := I x -  E(f)[ dF(x). (1.5) 

As Giorgi noted in [4], some of the many reasons for the success and the relevance of the Cini 
mean difference or Gzn~ index Ia(f) ,  

RG(f) (1.6) 
I t ( f ) -  E ( f ) '  

are their simplicity, certain interesting properties and useful decomposition possibilities, and 
these have been analysed in an earlier work by Giorgi [5]. For a bibliographic portrait of the Gini 
index, see [4] where numerous references are given. 

The main aim of this paper is to establish various general bounds for Re( f )  on utilising specific 
results and tools from the theory of inequalities. The novel approach at times recaptures either 
known results; however, further results are obtained which do not seem to exist in the literature. 

2. S O M E  I D E N T I T I E S  

We state here some identities that are of interest throughout the paper. For the sake of 
completeness, we give short proofs, even for identities that have been stated before (see, for 
instance, the book [3, Exercise 2.9, p. 94]). 

The following lemma holds. 

LEMMA 1. We have the identity 

F Rc( f )  = 2 xf(x)F(x) dx - E(f) .  
o o  

(2.1) 

PROOF. Using the definition of Gini mean difference (1.3) and the integration by parts formulae, 
we have successively 

/ / [  (.F /: )] = f(x) x f(y) d y -  yf(y) dg dx 
o o  o o  o o  

(L ? + yf(y) dy x) + xF(x)f(x) dx 
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+ i 2  xf(x)F(x)dx-  f°°xdF(x)  + i ~  xF(x)dF(x) 

= 4 i ~  xF(x)dF(x) - 2 L xf(x)dx 

= 4 j ~  xF(x)f(x) dx - 2E( f ) ,  

giving the desired identity (2.1). l 

The  following identity holds. 

LEMMA 2. We have the ldentlty 

i ?oo(1  - F(y))F(y)dy = i_~ xf(x)F(x) 2 dx E(f). (2.2) 

PROOF. Denote R(y) = 1 - F(y) = f~¢ f(t) dt, y C ]I(. Then we have, on integrating by parts, 
tha t  /? /? R ( y ) p ( y )  dy oo [n(y)F(y)]  (2.3) = yn(y )F(y ) l_oo  - y d  

OO OO 

Since limy--,oo yR(y) = 0 and limy__,_~ yF(y) = 0, hence yR(y)F(y)[~_oo = O. 
Also, we have 

= .i?,.~ y If(y) - 2f(y)F(y)] dy 

-2 S_°° yf(y)F(y)fy + E(f). 

Using identity (2.3), we deduce (2.2). | 

Define the functions e : R ~ R, e(x) = x and F : R ~ R+, F(x) = f~oo f(t) dt. We recall that  
the covariance of e and F is given by 

Coy(e, F )  := E [(e - E(f)) (F - E ( F ) ) ] .  

The  following result in terms of covariance also holds 

LEMMA 3. With the above notations, we have 

Cov(e ,F)  = xF(x)f(x) dx -  E(f). (2.4) 
O 0  

PROOF. Using the definitions involved, we have 

- (/2 ,(.>,:.>,.).-,(,>,(.)] ,x 

= S_~oo xF(x)f(x)dx + E ( f ) f 2  f(y)F(y)dy 

- E(S) S 2  f(y)F(y)dy- E(f) i_~ f(x)F(x)dx 

= L x F ( x ) f ( x ) d x - E ( f ) L f ( x ) F ( x ) d x ,  
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and since 

/_. /5 - 1  f ( x ) F ( x ) d x =  F ( x ) d F ( x ) =  F2(x)  2 '  
oo o~ --oo 

we deduce the desired identity (2.4). | 

Using the above lemmas, we may state the following known result (see for instance [3, p. 54]). 

THEOREM 1. With the above assumptions~ we have the identities 

F R a ( f )  = 2 Cov(e, F )  = (1 - F(y))F(y)  dy 
o o  

/? = 2 x f ( x )F (x )  dx - E ( f ) .  

(2.5) 

Before we point out another  identity for the Gm~ mean difference, we recall the following 
identity due to Sonin (see for instance [6, p. 246] for the case of univariate real functions): 

£p(s)g(s)h(s)d.(s)- ]~ p(s)g(s)d~(~). £ p(~)h(s),~.(~) 

= £.(4 @ 4 - £  g(~),(~)d,(~))(h(s)- ~)'.(4 
(2.6) 

for any 7 E R, where p : f~ -* R is a #-measurable function with fn  p(s) d#(s) = 1, (f~, E, #) is a 
measure space, and p • E ~ [0, oo) is a positive measure on ft. 

The proof for (2.6) may  be obtained by direct calculation s tar t ing with the r ight-hand side and 
we omit  the details. 

Utilising Sonin's idennty  (2 6), we may  state the following. 

THEOREM 2. With the above assumptions for f and F, we have the identity 

F R a ( f )  = 2 (x - E( f ) )  (F(z) - 7) f ( x )  dx 
(x)  (2.7) 

for any 7, 6 E R. 

PROOF. The first identity follows by Sonin's identity for ~2 = R, d#(s) = dz, p(s) = f(s),  
g(s) = s, and h(s) = F(s). The second identity follows in a similar manner .  | 

3. S O M E  G E N E R A L  B O U N D S  

The following result comparing the Gmi mean difference with the mean absolute deviation may 

be stated.  

THEOREM 3. Wlth the above assumptions, we have the bounds 

MD(f)  <_ R a ( f )  <_ 2sup IF(x) - 7 1 M v ( f )  
x E N  

<_ MD(f) ,  

(3.1) 

for any "7 E [0, 1], where F(.)  is the cumulative distributzon of f and MD (f)  is the mean deviation 
defined by (1.5). 
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PROOF. By the definition of RG(f)  and the properties of the integral, we have 

1 
RG(f)  : -~ 

1 
2 

1 
> -  
- 2  

/ •  f ~  Ix - ylf(z)f(y) dx dy 
OO o o  

/_3 (/3 ,x -.,:./.x) :/./. 
1_: L:--.>:I->.-:I,>. 

= ~ IE( : )  - y[ f (y)  dy 
O 0  

= ~M~(:),  

and the first inequality in (3.1) is obtained. 

For the second inequality, we use (2.7) to get 

F R e ( f )  < 2 Ix - E( f ) l  IF(x) - 71 f (x )  dx 
O O  

< 2suPxe~ IF(x) - 71 f:oo Ix - E( f ) l  f ( x ) d x  

= 2sup IF(x) - ~1MD(f),  
x6N 

for any 7 ~ [0, 1]. 

Finally, since, for 7 = 1/2 

F(z)-~ < ~, x ~ ,  

then the last part  of (3.1) holds true. | 

REMARK 1. The inequality 

MD(f)  <_ R e ( f )  <_ MD(f )  (3.2) 

is known, see for instance the lecture notes online by Wichura located at h t t p : / / g a l t o n .  
uchxcago, edu/ -wichura/S ta t304/Handouts /L09,  means3, pdf 

If X is a random variable with the density function f and X is nondegenerate, there is equality 
on the left in (3.2) if and only if the random variable X takes only two values (with probability 
one). There is no degenerate X for which equality holds on the right; however, given any s > 0, 

there exists a nondegenerate X~, such that  Rc(f¢)  > (1 - ¢)MD(f) ,  which shows that  the 
multiplicative constant 1 in front of M D ( f )  in (3.2) cannot be replaced by a smaller quantity. 

Now, consider the absolute moment of order 1 about 5 E •, 

F M~(f) := Ix - 5If(x) dx. 
O 0  

We may state the following upper bound for the Gini difference mean in terms of M~(f) as 
follows. 

THEOREM 4. With the above assumptions and if m E ~ is a median for f ,  that is, F(m)  = 
f:~oo f (x )  = 1/2, then we have 

R a ( f )  <_ Mr~(f) <_ MD(f ) ,  (3.3) 
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where Mm(f)  = f~_~ Ix - ml f (x)  dz. 

PROOF. If we use the second equality in (2.7), then for any 5 E R, we get 

/ ?  F(x) l l f ( x ) d x  RG(f) <_ 2 Ix -- 5[ -- -~ 
O 0  

/? <_ Ix - 5] f (x)  dx 
O 0  

= M~(f), 

since IF(x) - 1/21 _< 1/2 for each x e R. Taking the infimum over 5 E R and taking into account 
(see for instance Theorem 2 of h t t p : / / g a l t o n . u c M c a g o ,  e d u / - w i c h u r a / S t a t 3 0 4 / H a n d o u t s /  
L08.means2.  pdf)  tha t  

inf M~(f) = Mm(f) ,  hEN 
we deduce the first inequality in (3.3). 

The second par t  is obvious. | 

Now, consider the absolute moment of order p about E( f ) ,  namely, 

F ME,p(f) := I x - E ( f D I P f ( x )  dx<oo ,  p >  1. (3.4) 

With  this definition, we may  state  the following result. 

THEOREM 5. Assume that p > 1, l ip  ÷ 1/q = 1, and f : IR - @ ,  c~) is a distribution with 
ME.p(f) < ~ .  Then we have the inequality 

2 
R e ( f )  <_ (q + 1)1/q [ME,p(f)] 1/p • (3.5) 

PROOF. Using the first identity in (2.7) for 7 = 0 and the weighted Hhlder inequality, we have 

/? Ra( f )  <_ 2 I x - E ( f ) ] F ( x ) f ( x ) d x  
O 0  

~ 2 ( / 2  'x-E(f)lP f(x)dgg) lip (/2Fq(x)f(z)dx) l/q 

Since 

f_ ~ Fq(x)f(x)  dx 1 
q + l '  

hence inequality (3.5) is obtained. | 

REMARK 2. For p = q = 2, we have 

ME,2(f) = o'2(f) = f _ :  (x -- E( f ) )  2 f (x)  dx, 

and from (3.5), we may  state the inequality 

RG(f) <_ 2-~33~(f). (3.6) 

Inequali ty (3.6) is known, see for instance, h t t p  : / / g a l t o n .  u c h i c a g o ,  e d u / - w l c h u r a / S t a t 3 0 4  

/Handout  s /L09,  means 3. pdf .  
The case of equahty holds m (3.6) if f is uniformly distr ibuted on [0, 1]. 

If  we denote now by 

/? M6,p(f) := Ix - 51 p f (x)  dx, p > 1 
O 0  

the absolute moment of order p about 5 of f ,  then we may  state  the following result. 
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THEOREM 6 Let  5 E N, p > 1, 1/p + 1/q = 1 and assume that Ms,p(f) < c~. / / t h e r e  exists a 
unique median m for f ,  then we have the inequality 

1 
RG(f)  <_ (q + 1)1/q [Ma,p(f)] 1/p • (3.7) 

PROOF. We use the second identi ty in (2.7) and HSlder's weighted integral inequality to get 

Re(Y)  < 2 Ix - 51 - f ( x )  dx 
O 0  

,2 Q/?oo JJJ - SJP f(x)dx)I/P (/2 F(x) - ~ q f(x)dx) I/q . (3.8) 

Now, for m a medlan, 

oo I q m q oo 

= - ? ~ - ~  + q ; i  

1 1 1 
: "2q+l(q + 1) + 2 q + l ( q  + 1) - -  2q(q + 1 ) '  

Utilising (3.8), we deduce the desired result (3.7). | 

REMARK 3. If  in the above we choose p = q = 2, then we have 

v~ 
RG(f)  <_ ~ [M~,2(f)] 1/2 , (3.9) 

for any 5 C R. In particular,  if we choose 5 = E( f ) ,  then from (3.9) we deduce 

Ra(f) <_ -~-,~(f), (3.10) 

a bet ter  result than  (3 6), whmh was available earlier in the literature. Note tha t  this result holds 
t rue  for distributions for whmh there exists a unique m E R, such tha t  F(m)  = 1/2. 

The  following result may  be stated as well 

T H E O R E M  7. With the above notations, we have 

{ 2 l l f l l ~ r 2 ( / ) '  _ _ (3.11) 
l / c f  E L ~ ( R ) ,  

Ra(f) <_ 211fllpME,l÷l/q(f), i f f  C Lp(R), p > 1, 1 + 1 = 1, 
P q 

provided the moments ME,I+I/q(f) defined by (3.4) exists. 

PROOF. If we use identi ty (2.7) with 7 = F(E( f ) ) ,  then we get 

// R o ( f )  <_ 2 Ix - E ( f ) l  IF(x)  - F ( E ( f ) )  I f ( x )  dx 
OO 

(3.12) 

f ?  f~ E(y) dt = 2 Ix - E( f ) j  : ( t )  : (x )  dx 
O 0  

Utilismg HSlder's integral inequality, we may  state tha t  

{ l ~ -  E(f)t  llfll~, 

r E(:) dt Ix E(f)[ 1/q ]l/lip f ( t )  <_ 

if f E L ~ ( N ) ;  

if f c Lp(~), 
1 1 

p > l ,  - + - = 1 ;  
p q 

(3.13) 
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where 

and 

[Iftl~ := esssup If(t)l 
tE~ 

p\  1/p 

Making use of (3.12) and (3.13), we may state that 

p>_l. 

F / Ilfll~jf oo (x i E( f ) )  2 f(x) dx, 
OO 

R o ( f )  _< [[f[lp o0 [x -- E(f)[ l+l/q f(x) dx, 

if f E Lo~(N); 

if f E Lp(R), 

1 1 
p > l ,  - + - = 1 ,  

P q 

and inequality (3.11) is obtained. 

Finally, we can state the following result involving the median, m. 

THEOREM 8. Let m E ]R be a median for f. Then we have the inequality 

{ 2Hfii~Mm,2(f), 

Re( f )  <_ 211 f l f pM.%l+i /q ( f )  ' 

ff f e L~(R);  

if f E Lp (R), p > l ,  
1 1 
- + - = 1 ,  
P q 

(3.14) 

provlded the moments involved exist. Note that 

F Mm,~(f) := I x -  mlSf(x)dx, 
O 0  

s>O.  

PROOF. By the definition of me&an, we have 

Ix- mlllfll~, 
-< ix _ mi1/qllfiip ' 

if f E L~(]R); 
1 1 

i f fELp(R) ,  p > l ,  - + - = 1 .  
P q 

Utilising the second identity in (2.7) for 5 = m, we have 

f /  F(x) ½ Re(f)  <_ 2 Ix - m[ - f(x) dx 
o O  

// { I]fH~ I x -  ml2f(x) dx; 
< 2  ~ 

J _ [  Ix - -~l l+l /q/ (x)  dx, TIflIp 

giving the desired inequality (3.14). 

4.  B O U N D S  F O R  n - T I M E  D I F F E R E N T I A B L E  F U N C T I O N S  

The following result may be stated. 



Bounds for the Gmi Mean Difference 607 

THEOREM 9. Assume that the density function f : IR --~ [0, oo) is (n - 1)-time differentiable 
(n _> 1) and the derivative f(n-1) is 1ocally absolutely continuous on R. Then we have the 

representation 

[ ~ - I  f(k)~_~)V.))l~E,k+2(f) ] RG(:) = 2 f ( E ( f ) ) a 2 ( f )  + ~ (k + S~ ( f , E ( f ) ) ,  
k=l  

(4.1) 

and the remainder Sn(f,  E( f ) )  satlsfies the bounds 

2 ilf(~)[I M~,n+~(f) ' (~ + i)t 

2 IIf(,~)IIpME,~+I+V~(f) ' 
I&(S,E(f)) I  <- ~! (nq+l )~ /~  

~. 

i / f  (n) E Lo~(R); 

i f f  ('~) 6 Lp(R), 

1 1 
p > l ,  - + - = 1 ;  

P q 

(4.2) 

where ME,p(f) = f~_~(t -- E( f ) )Pf( t )  dt, p C N and ME, (f) ~s given by (3.4). 

PROOF. We use the Taylor's representation formula with integral remainder for F about a point 

to E N to state that 

F(t) = F (to) + (t - to) F (i) (to) + . . + - -  

+ -~. (t - s)~F("+l)(s) ds 

(t - t o :  
= F(to) + ( t - t o )  f (to) + ' "  + - -  

+ -~. (t -- s)~f  ('~) (s) ds. 

(t - t o :  F(~) (to) 
n! 

n! f (~- l )  (to) 

Now, if we use identity (2.7), for 7 = F(E( f ) ) ,  then we have the representation 

R e ( f )  = 2 (t - E( f ) )  (F(t) - F (E(f)))  f ( t )  dt 
o o  

: [ = 2 (t - E(f) )  (t - E(f) )  f (E(f))  (t - E( f ) )  2 f 0 )  (E(f))  
oo 1! + 2! 

/J ] + . . . +  ( t - E ( f ) )  n 1 ( t - s ) n f ( n ) ( s ) d s  f ( t )d t  n! i(n-1) (E(/)) + ~ (:) 

fO) (E(f))  (t - E( f ) )  a f( t)  dt = 2 f ( f ) )  (t - E( f ) )  2 f ( t )  dt + 2] 
O0 O0 

/: ] + . . .  + f(~-l)  (E(f))  (t - E( f ) )  n+l f ( t )  dt + S~ (f, E( f ) )  
n !  o o  

where 

S ~ ( f , E ( f ) )  := ( t - E ( f ) )  ( t - s ) n f ( n ) ( s ) d s  f ( t )  dt. 
O0 ( f )  

This provides representation (4.1). 
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To bound the remainder So (f, E(f ) ) ,  observe, first, that by Holder's integral inequality 

iif(n)lloo It -  E(f)I ~+1 
n + l  

f E  ds I1/q i ( t - s ) ° f (~ ) ( s )d s  < II:(~)IIp I t -s lnq ' 
(f) - (1) 

IIf('~)lll I t -  E(f) l  ° 
1 

;-4-5 IIs(~)lloo I t -  E( : ) l  "+~ , 

1 iis(o) = (nq + 1)1/q II~ It - E(f)I °+l/q , 

I t -  E(f)I n IIs(')ll~, 
Utilising (4.3), we may state that 

fj ( n +  1)! IIf(n)ll~ ~ i t -  E(f) l  ~+2 f(t) dt, 

2 ~ iis(o)ll, f_~ I~-,(s): ÷'÷'/' s(t)dr, 
I& (f ,E(f)) l  < n!(nq+ 

/$ 2 iif(n)ll ~ it_E(S)lO+lf(t)dt, 

if f(n) E L~(IR); 

if f(~) E Lp(R), 

1 1 
p > l ,  - + - : 1 ;  

P q 

if f(~) e L~(R);  

if f(~) E Lp(R), 

1 1 
p > l ,  - + - = 1 ;  

p q 

(4.3) 

if f(~) e Lot(R); 

if f(o) E Lp(]~), 

1 1 
p > l ,  - + - = 1 ;  

P q 

and inequality (4.3) is proved. | 

Finally, the following result involving a median may be stated. 

THEOREM 10. Assume that the density f : R ~ [0, ec) is (n - 1)-time differentiable (n > 1) and 
the derivative f(n-1) is 1ocally absolutely continuous on R. If m E R is a median for f ,  then we 
have the representation 

,~-1 f(k)(m)2~, ,~,] R e ( f )  = 2 217/.~,2(f)+ k=l ~ (-~i~)'w m,k+2t~j] + Tn(f ,m),  (4.4) 

where the remainder To(f, m) satisties the bounds 

2 
(n + 1)~ I{S(~)II~ M.~, .~+2(f) ,  

2 
iT~(f,m) [ <_ n!(nq + l)~/q II:(~)H, Mm,~÷~+~/~(f)' 

2 
~. IIf(~)lle Mm,o+l( f ) ,  

lf f (n) C L~(]R); 

fir(n) C Lp(R), 

1 1 
p > l ,  - + - = 1 ;  

p q 

where 

f 2~lm,p(f) = (x - rn)Pf(x) dx, 
o o  

p c N ,  

(4.5) 
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and ? M m , r ( f )  = Ix - ~ l r Z ( Z ) d ~ ,  r > O. 

P R O O F .  We use the Taylor's representatmn formula with integral remainder to get 

£ F(x )  = F ( m )  4- (x - r e ) f  (m) 4 - . . .  -4- (x -n!__..~)m n f(n--1)(m) 4- ~.1 (X -- s ) n f  (n) (S) ds, 

Now, if we use identity (2.7) for 5 = m, then we get 

R a ( f )  = 2 (x - m) (x - m) f (m)  + . . .  + (x - m n 
~ n! 

1/2 1 
1? S? = 2 I f (m)  (x - m)2f(x)  dx ÷ f ' (m)  (x - m)3f(x)  dx 

/? ] f (~- l ) (m)  ( x - m ) ~ + l f ( z ) d x  + T~(I, m), 
+ ' "  + n! ~¢ 

where, obviously, 

? ) 2 ( x - m )  ( t - s ) n f ( n ) ( s ) d s  f ( x )dx .  Tn(f, m):= ~. oo 

Since, by HSlder's integral inequality, we have 
1 / ~ i - I I s ( ~ ) l / ~  I~ - ~1 n+~ 

fi(t_s)nf(~)(s)d s <_ (nq]l)~/~lls(n)ll~ I~-mln+~/~' 

I x -  ~ln IIs(n~ll,, 
hence 

if f(n) • L~(R);  

if f(n) • Lp(R), 

1 1 
p > l ,  - + - = 1 ;  

P q 

x E R .  

2 [if<~>ll~ ix_ml~+2f(x)dx 
(n + 1)! /_~ 

2 llS (~)11 Ix -  ml n + t + l / a ,  p > 1, 1 + _ = 1; IT~(f,m) l _< 
n!(nq+ l)z/q ,,p p q 

m IIs(,~ll, ]x-mtn+lf(x) dx, 
and the theorem is proved. | 

R E M A R K  4. Results (4.1),(4.2) and (4.4),(4.5) enable an approximation of R a ( f )  in terms of 
arguably simpler terms with expiicit bounds. 

REMARK 5. Further results based on Korkine and other recent identities connected with the 
Grhss inequality are under preparation. 
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