Note

Independence and coloring properties of direct products of some vertex-transitive graphs

Mario Valencia-Pabona, Juan Verab

aDepartamento de Matemáticas, Universidad de los Andes, Cra. 1 No. 18A-70, Bogotá, Colombia
bDepartment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213-3890, USA

Received 5 December 2005; received in revised form 10 April 2006; accepted 21 April 2006

Available online 3 July 2006

Abstract

Let $\alpha(G)$ and $\chi(G)$ denote the independence number and chromatic number of a graph G, respectively. Let $G \times H$ be the direct product graph of graphs G and H. We show that if G and H are circular graphs, Kneser graphs, or powers of cycles, then $\alpha(G \times H) = \max\{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}$ and $\chi(G \times H) = \min\{\chi(G), \chi(H)\}$.

© 2006 Elsevier B.V. All rights reserved.

MSC: 05C15; 05C69

Keywords: Independence number; Chromatic number; Direct product; Vertex-transitive graphs

1. Introduction

In this paper, we study the independence and chromatic numbers of finite direct products graphs of circular graphs, Kneser graphs and powers of cycles. In the case of circular and Kneser graphs, this is done via classical homomorphisms. For the direct product graph of powers of cycles, we first analyze its independence number and then we use such a result to compute its chromatic number.

The direct product $G \times H$ of two graphs G and H is defined by $V(G \times H) = V(G) \times V(H)$, and where two vertices $(u_1, u_2), (v_1, v_2)$ are joined by an edge in $E(G \times H)$ if $\{u_1, v_1\} \in E(G)$ and $\{u_2, v_2\} \in E(H)$. This product is commutative and associative in a natural way (see Ref. [10] for a detailed description on product graphs). A coloring of $G \times H$ can be easily derived from a coloring of any of its factors, hence $\chi(G \times H) \leq \min\{\chi(G), \chi(H)\}$. One of the outstanding problems in graph theory is a formula concerning the chromatic number of the direct product of any two graphs G and H, called the Hedetniemi conjecture [8] (see also [6,7] and references therein), which states $\chi(G \times H) = \min\{\chi(G), \chi(H)\}$. The inherent difficulty of Hedetniemi’s conjecture lies in finding lower bounds for $\chi(G \times H)$. In this paper, we prove the Hedetniemi’s conjecture to be true in some classes of vertex-transitive graphs.

On the other hand, if I is an independent set of one factor, the pre-image of I under the projection is an independent set of the product. Then, $\alpha(G \times H) \geq \max\{\alpha(G)|H|, \alpha(H)|G|\}$. In this case it is known that the equality does not hold in general. In fact, Jha and Klavžar show in [11] that for any graph G with at least one edge and for any

* This work was supported by the Facultad de Ciencias de la Universidad de los Andes and by the French–Colombian (CNRS-COLCIENCIAS) ECOS-Nord project under Grant C05M02.

E-mail addresses: mvalenci@uniandes.edu.co (M. Valencia-Pabon), jvera@andrew.cmu.edu (J. Vera).

0012-365X/S - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2006.04.013
Let \(j \in \mathbb{N} \) there is a graph \(H \) such that \(\chi(G \times H) > \max\{\chi(G), |V(H)|, \chi(H), |V(G)|\} + j \). In [16], Tardif asks whether \(\chi_k(G \times H) = \max\{\chi_k(G)|H|, \chi_k(H)|G|\} \) always holds for vertex-transitive graphs, where \(\chi_k(G) \) is the maximal size of an induced \(k \)-colorable subgraph of \(G \). In this paper, we analyze this problem for some vertex-transitive graphs when \(k = 1 \).

In other related work, Larose and Tardif investigate in [12] the relationship between projectivity and the structure of maximal independent sets of finite direct products of several copies of the same graph, a Kneser graph or a truncated simplices.

Independence and chromatic properties of circular graphs and Kneser graphs are analyzed using graph homomorphism. An edge-preserving map from \(\phi : V(G) \rightarrow V(H) \) is called a homomorphism from \(G \) to \(H \) and it is denoted by \(\phi : G \rightarrow H \). We say that \(G \) and \(H \) are homomorphically equivalent if there exist \(\phi : G \rightarrow H \) and \(\psi : H \rightarrow G \). Notice that if there is \(\phi : G \rightarrow H \) then \(\chi(G) \leq \chi(H) \). In particular, if \(G \) and \(H \) are homomorphically equivalent then \(\chi(G) = \chi(H) \). The following result is direct.

Lemma 1. Let \(G \) be a graph and let \(H \) be an induced subgraph of \(G \). Then, \(G \times H \) and \(H \) are homomorphically equivalent and therefore, \(\chi(G \times H) = \chi(H) \).

In the context of vertex transitive graphs The “No-Homomorphism” lemma of Albertson and Collins is useful to get bounds on the size of independent sets.

Lemma 2 (Albertson and Collins [2]). Let \(G, H \) be graphs such that \(H \) is vertex-transitive and there is a homomorphism \(\phi : G \rightarrow H \). Then,

\[
\frac{\chi(G)}{|V(G)|} \geq \frac{\chi(H)}{|V(H)|}.
\]

The chromatic number of a graph \(G \) and its independence number are closely related via the inequality

\[
\chi(G) \geq |V(G)|/\alpha(G) |
\]

Let \(K_n \) denotes the complete graph on \(n \) vertices. By using this relation, Lemma 2, and Lemma 1, we can deduce the following well known result.

Corollary 1. Let \(k \geq 2 \) be an integer and let \(n_1, n_2, \ldots, n_k \) be positive integers. Then,

\[
\chi\left(\prod_i K_{n_i} \right) = \max_i \left\{ \left(\prod_j n_j \right) / n_i \right\} \quad \text{and} \quad \chi\left(\prod_i K_{n_i} \right) = \min_i \{n_i\},
\]

where \(1 \leq i, j \leq k \).

2. Circular graphs

Let \(m, n \) be integers such that \(m \geq 2n > 0 \). The circular graph \(C^m_n \) is the Cayley graph for the cyclic group \(\mathbb{Z}_m \) with connector set \(\{n, n + 1, n + 2, \ldots, m - n\} \). These graphs play an important role in the definition of the star chromatic number defined by Vince in [17]. The following result can be easily deduced.

Lemma 3. Let \(m, n \) be integers with \(m \geq 2n > 0 \). Then, \(\chi(C^m_n) = n \) and \(\chi(C^m_n) = \lceil m/n \rceil \).

Concerning homomorphisms between circular graphs, Bondy and Hell show in [3] the following result.

Lemma 4 (Bondy and Hell [3]). Let \(m, n, k \) be positive integers such that \(m \geq 2n \). Then, \(C^m_n \) and \(C^{km}_{kn} \) are homomorphically equivalent.

Lemma 5. Let \(r, m \) be positive integers and let \(n_1, n_2, \ldots, n_r \) be positive integers such that \(n_1 \leq n_2 \leq \cdots \leq n_r \) and \(m \geq 2n_i \), for each \(i \in [r] \). Then, \(C^m_{n_i} \) is a subgraph of the graph \(C^m_{n_1} \times C^m_{n_2} \times \cdots \times C^m_{n_r} \).
Theorem 1. Let \(r \) be a positive integer. Then

\[
\text{Lemma 6. Let } W. \text{ w.l.o.g. we can assume that }\]

\[
\text{Proof. Let } m_1, m_2, \ldots, m_r \text{ be positive integers, with } r \geq 1. \text{ We denote by } [m_1, m_2, \ldots, m_r] \text{ the least common multiple of } m_1, m_2, \ldots, m_r. \]

Theorem 1. Let \(r \) be a positive integer, and let \(m_1, m_2, \ldots, m_r, n_1, n_2, \ldots, n_r \) be positive integers such that \(m_i \geq 2n_i \), for each \(i \in [r] \). Then,

\[
\chi \left(\prod_i C_r^{m_i} \right) = \min_i \left\{ \chi(C_r^{m_i}) \right\} = \min_i \left\{ \left\lceil \frac{m_i}{n_i} \right\rceil \right\} = \min_i \left\{ \chi(C_r^{m_i}) \right\}. \quad \square
\]

Lemma 6. Let \(r, m \) be positive integers and let \(n_1, n_2, \ldots, n_r \) be positive integers such that \(m \geq 2n_i \), for each \(i \in [r] \). Then,

\[
\chi \left(\prod_i C_r^{m_i} \right) = \min_i \left\{ \chi(C_r^{m_i}) \right\} = \min_i \left\{ \left\lceil \frac{m_i}{n_i} \right\rceil \right\} = \min_i \left\{ \chi(C_r^{m_i}) \right\}. \quad \square
\]

Theorem 1. Let \(r \) be a positive integer, and let \(m_1, m_2, \ldots, m_r, n_1, n_2, \ldots, n_r \) be positive integers such that \(m_i \geq 2n_i \), for each \(i \in [r] \). Then,

\[
\chi \left(\prod_i C_r^{m_i} \right) = \min_i \left\{ \chi(C_r^{m_i}) \right\} = \min_i \left\{ \left\lceil \frac{m_i}{n_i} \right\rceil \right\} = \min_i \left\{ \chi(C_r^{m_i}) \right\}. \quad \square
\]

3. Kneser graphs

Let \(m, n \) be positive integers such that \(m \geq 2n \). The Kneser graph \(K_n^m \) is the graph whose vertices are the \(n \)-subsets of \(\{0, 1, \ldots, m-1\} \), where two vertices are adjacent if they are disjoint. In a celebrated paper, Lovász shows the following result.

Theorem 3 (Lovász [13]). The chromatic number of \(K_n^m \) is \(m - 2n + 2 \).

The independence number of Kneser graphs is related to the following classical inequality.

Theorem 4 (Erdös et al. [5]). Let \(m, n \) be positive integers such that \(n < m/2 \), and \(F \) a family of pairwise intersecting \(n \)-subsets of \([m]\). Then \(|F| \leq \binom{m-1}{n-1}\).
Theorem 6. Let r be a positive integer.

Theorem 7. Let r be a positive integer.

Theorem 5 (Stahl [15]). Let m, n be integers such that $n > 1$ and $m \geq 2n$. Then, there is a homomorphism from K_n^m to K_{n-1}^{m-2}.

Lemma 7. Let n, r be positive integers and let $m_1 \leq m_2 \leq \cdots \leq m_r$ be positive integers such that $m_i \geq 2n$, for $i \in [r]$. Then, $K_n^{m_1}$ is a subgraph of the graph $K_n^{m_1} \times K_n^{m_2} \times \cdots \times K_n^{m_r}$.

Proof. Let $\Phi : K_n^{m_1} \to \prod_i K_n^{m_i}$ be the map defined by $\Phi(A) = (A, A, \ldots, A)$ for all $A \in V(K_n^{m_1})$. It is clear that this map is an injective homomorphism. \qed

By Lemmas 7, 1 and Theorem 3 we can deduce the following result.

Corollary 3. Let n, r be positive integers and let m_1, m_2, \ldots, m_r be positive integers such that $m_i \geq 2n$, for $i \in [r]$. Then, $\chi(\prod_i K_n^{m_i}) = \min_i(\chi(K_n^{m_i})) = \min_i(m_i) - 2n + 2$.

Lemma 8. Let r be a positive integer, and let m_1, m_2, \ldots, m_r, n_1, n_2, n_r be positive integers such that $m_i \geq 2n_i$, for $i \in [r]$, and assume that $n_1 \leq n_2 \leq \cdots \leq n_r$, with $n_r > 1$. Then, there is a graph homomorphism $\Phi : \prod_i K_n^{m_i+2(n_r-n_i)} \to \prod_i K_n^{m_i}$.

Proof. By Theorem 5, for each $i \in [r]$, there is a graph homomorphism $\phi_i : K_n^{m_i+2(n_r-n_i)} \to K_n^{m_i}$. Therefore, there is a graph homomorphism $\Phi : \prod_i K_n^{m_i+2(n_r-n_i)} \to \prod_i K_n^{m_i}$. \qed

Theorem 6. Let r be a positive integer, and let m_1, m_2, \ldots, m_r, n_1, n_2, \ldots, n_r be positive integers such that $m_i \geq 2n_i$, for $i \in [r]$. Then, $\chi(\prod_i K_n^{m_i}) = \min_i(\chi(K_n^{m_i}))$.

Proof. W.l.o.g. we can assume that $n_1 \leq n_2 \leq \cdots \leq n_r$, and assume that $n_r > 1$. Then, by Lemma 8, there is a graph homomorphism $\Phi : \prod_i K_n^{m_i+2(n_r-n_i)} \to \prod_i K_n^{m_i}$, which implies that $\chi(\prod_i K_n^{m_i}) \geq \chi(\prod_i K_n^{m_i+2(n_r-n_i)})$. By Corollary 3 we have $\chi(\prod_i K_n^{m_i+2(n_r-n_i)}) = \min_i(m_i + 2(n_r - n_i) - 2n_r + 2) = \min_i(m_i - 2n_i + 2) = \min_i(\chi(K_n^{m_i}))$. \qed

Let m, n be positive integers such that $m \geq 2n$. The circular graph C_n^m is a subgraph of the Kneser graph K_n^m. More precisely the map $\phi : C_n^m \to K_n^m$ defined by $\phi(u) = [u, u+1, \ldots, u+n-1]$ (arithmetic operations are taken modulo m) is an injective graph homomorphism. Notice that the Erdös–Ko–Rado inequality (Theorem 4) can be easily deduced by using the fact that C_n^m is a subgraph of K_n^m and then, using the No-Homomorphism-Lemma (Lemma 2). In the same way, we can deduce the independence number of the direct product of Kneser graphs, which is a particular case of a more general result of Ahlswede et al. [1] in extremal set theory.

Theorem 7. Let r be a positive integer, and let m_1, m_2, \ldots, m_r, n_1, n_2, \ldots, n_r be positive integers such that $m_i \geq 2n_i$, for $i \in [r]$. Let $N = \prod_i \left(\frac{m_i}{n_i}\right)$. Then,

$$ \kappa(\prod_i K_n^{m_i}) = \max_i \left\{ \kappa(K_n^{m_i})N / \left(\frac{m_i}{n_i}\right) \right\}. $$

Proof. We know that for each $i \in [r]$, we have that $C_n^{m_i}$ is a subgraph of $K_n^{m_i}$. Therefore, there is a homomorphism from $\prod_i C_n^{m_i}$ to $\prod_i K_n^{m_i}$. Let $M = \prod_i m_i$. By Lemma 2, we have $\kappa(\prod_i C_n^{m_i}) / M \geq \kappa(\prod_i K_n^{m_i}) / N$. Moreover, by Theorem 2, $\kappa(\prod_i C_n^{m_i}) = \max_i \{n_i/M/m_i\}$. Thus, $\kappa(\prod_i K_n^{m_i}) \leq N \max_i \{n_i/m_i\} = \max_i \left\{4^{m_i-1}N/m_i\right\} = \max_i \{\kappa(K_n^{m_i})N/m_i\}$, which proves this theorem. \qed
4. Powers of cycles

For positive integers \(n \) and \(a \) such that \(n \geq 2a \), we denote by \(C(n, a) \) the graph with vertex set \(\{0, 1, \ldots, n-1\} \) and edge set \(\{ij : i-j \equiv \pm k \mod n, 1 \leq k \leq a\} \); the graph \(C(n, a) \) is the \(a \)th power of the \(n \)-cycle \(C(n, 1) \). Notice that graph \(C(n, a) \) is the complement graph of the circular graph \(C_n^{a+1} \). Prowse and Woodall analyze in [14] a restricted coloring problem (the list-coloring problem) on powers of cycles. In particular, they show the following result.

Theorem 8 (Prowse and Woodall [14]). Let \(n, a \) be positive integers such that \(a \leq n/2 \) and \(n = q(a + 1) + r \), where \(q \geq 1 \) and \(0 \leq r \leq a \). Then, \(\chi(C(n, a)) = [n/(a + 1)] = q \) and \(\chi(C(n, a)) = [n/\chi(C(n, a))] = a + 1 + \lceil r/q \rceil \). Let \(V_1, V_2, \ldots, V_j \) be a vertex decomposition (i.e. a partition of the vertex set \(V \)) of the graph \(G \). Then, it is easy to deduce that \(\chi(G) \leq \sum_i \chi(G[V_i]) \), where, for \(1 \leq i \leq j \), \(G[V_i] \) denotes the subgraph of \(G \) induced by \(V_i \).

Lemma 9. Let \(m, n, a \) be positive integers such that \(a \leq n/2 \), and let \(\chi = \chi(C(n, a)) \). Then,

\[
\chi(K_m \times C(n, a)) = \max\{n, m\a\}.
\]

Proof. Let \(n = q(a + 1) + r \), with \(q \geq 1 \) and \(0 \leq r \leq a \). By Theorem 8 we have that \(\chi = q \), and thus we need to prove that \(\chi(K_m \times C(n, a)) \leq \max\{n, mq\} \). Let \(I \) be a maximal independent set of \(K_m \times C(n, a) \). We can assume that \(|I| > n \). Otherwise, the lemma trivially holds. Thus, there exists \(j \in \{0, \ldots, n-1\} \) such that there are at least two vertices in \(I \) with the second coordinate equal to \(j \). As \(C(n, a) \) is vertex transitive, we can assume that \(j = 0 \). As \(I \) is an independent set, there is no vertex in \(I \) having as second coordinate an integer \(i \), such that \(0 < i \leq a \) or such that \(n - a \leq i \leq n - 1 \). Thus, as \(0 \leq r \leq a \), we can assume that the remaining vertices of \(I \) form an independent set in the induced subgraph \(K_m \times C(n, a)[\{a + 1, a + 2, \ldots, n - r - 1\}] \). This induced subgraph admits a vertex decomposition into \(q - 1 \) subgraphs all of them isomorphic to \(K_m \times C_{a+1} \). Therefore, by using Corollary 1, we have that \(|I| \leq m + (q - 1)\chi(K_m \times C_{a+1}) = m + (q - 1)\max\{m, a\} \). If \(m \geq a + 1 \) then \(|I| \leq mq \). Otherwise, \(|I| \leq (a + 1)q - n \).

Theorem 9. For \(i = 1, 2 \), let \(n_i, a_i \) be positive integers such that \(n_i \geq 2a_i \), and let \(\chi_i = \chi(C(n_i, a_i)) \). Then,

\[
\chi(C(n_1, a_1) \times C(n_2, a_2)) = \max\{\chi_1n_2, \chi_2n_1\}.
\]

Proof. For \(i = 1, 2 \), arithmetic operations on the vertex set of \(C(n_i, a_i) \) will be taken modulo \(n_i \). Let \(n_i = q_i(a_i + 1) + r_i \), with \(q_i \geq 1 \) and \(0 \leq r_i \leq a_i \). By Theorem 8, \(\chi_i = q_i \), for \(i = 1, 2 \). Let \(I \) be a maximal independence set in the graph \(C(n_1, a_1) \times C(n_2, a_2) \). We should prove that \(|I| \leq \max\{q_1n_2, q_2n_1\} \). We define \(I_1 = \{x \in I : (x_1 - 1, x_2) \in I \} \) and \(I_2 = I \setminus I_1 \). For \(x \in I \) we define \(S_x = \{(x_1, x_2 + i) : i = 0, \ldots, a_2\} \) if \(x \in I_1 \) and \(S_x = \{(x_1 + i, x_2) : i = 0, \ldots, a_1\} \) if \(x \in I_2 \).

Claim 1. Let \(x, y \in I \). If \(x \neq y \) then \(S_x \cap S_y = \emptyset \).

Let \(x, y \in I \) be such that \(x \neq y \). First we show \(y \notin S_x \) and \(x \notin S_y \). W.l.o.g. assume \(y \in S_x \). If \(x \in I_1 \), then \(x_1 = y_1 \) and \(0 < y_2 - x_2 \leq a_2 \). By the maximality of \(I \), \(\{(x_1, x_2 + i) : i = 1, \ldots, y_2 - x_2 \} \subseteq I \), contradicting \(x \in I_1 \). By a similar argument \(x \notin I_2 \). Now, assume \(S_x \cap S_y = \emptyset \). Note that if \(x, y \in I_1 \) or \(x, y \in I_2 \), then \(x \in S_y \) or \(y \in S_x \). Therefore, \(x \in I_1 \) if and only if \(y \in I_2 \). W.l.o.g. assume \(x \in I_1 \) and \(y \in I_2 \). Let \(z \in S_x \cap S_y \). Then \(z_1 = x_1 \) and \(z_2 = y_2 \). Thus, \(0 \leq y_2 - x_2 \leq a_2 \) and \(0 \leq x_1 - y_1 \leq a_1 \), contradicting \(x \in I_1 \), proving this Claim.

Now, w.l.o.g. assume that \(a_1 \leq a_2 \) and \(|I| > n_2q_1 \); and let \(A = \bigcup_{x \in I} S_x \). By Claim 1, we have \(|A| = |I_1|(a_2 + 1) + |I_2|(a_1 + 1) \geq |I|(a_1 + 1) + \min\{a_1, a_2\} \geq |A_1| + \min\{a_1, a_2\} \geq 0 \). Then there is \(0 \leq j \leq n_2 \) such that \(A_j = \{(x_1, x_2) : (x_1, x_2) \in A \} \) has size larger than \(q_1(a_1 + 1) \). Given \(x \in A_j \) let \(\tilde{x} \) be defined as the only point in \(I \) such that \((x, j) \in S_x \). Also, for \(i = 1, 2 \), let \(B_i = \{x \in A_j : \tilde{x} \in I_i \} \) and let \(B'_i = \{x \in A_j : (x, j) = \tilde{x} \in I_i \} \). By Claim 1, we have \(B'_i \) is an independence set in \(C(n_1, a_1) \) and \(|A_j| = (a_1 + 1) + \min\{a_1, a_2\} \geq |B_1| + |B_2| \geq (a_1 + 1)q_1 + q_2n_1 \). Then \(x \notin S_x \) for all \(x \in A_j \) such that \(|A_j| > q_1(a_1 + 1) \), then \(x^{i+1} \neq x^i \) for all \(i \) and \(x^0 = 0 \). Now we want to prove \(B_2 \) is empty. For this assume \(B'_2 \neq \emptyset \) and let \(k = \min\{x^i \in B'_2 : x^i \in B_2 \} \). Then \(x^{k-1} \in B_1 \). Now, \(x^{k-1} \in I \).
\[
x^k_2 - x^k_2 = j - x^k_2 \leq a_2. \text{ Then } x^{k-1}_2 = j \text{ and by maximality of } I \text{ we get } x^k = x^{k-1} + 1, \text{ but this contradicts } x^k \in I_2.\]

Therefore, \(B_2\) is empty.

Finally, by a similar argument to the one above, for every \(1 \leq i \leq |A_j|\) we have \(x^i_j = x_j^{i+1}\) and \(x^i+1_j = x^i + 1\). Therefore, there is \(0 \leq j' < n_2\) such that \([0, n_1 - 1] \times \{j'\} \subseteq I\). W.l.o.g assume \(j' = 0\). The vertices in \(I_j[0, n_1 - 1] \times \{0\}\) belong to the induced subgraph \(C(n_1, a_1) \times C(n_2, a_2)([a_2 + 1, a_2 + 2, \ldots, n_2 - r_2 - 1])\), which admits a vertex decomposition into \(q_2 - 1\) subgraphs all of them isomorphic to \(C(n_1, a_1) \times K_{a_2+1}\). Therefore, by Lemma 9, we have that \(|I| \leq n + 1, a(C(n_1, a_1) \times K_{a_2+1}) (q_2 - 1) = n_1 + (q_2 - 1) \max\{n_1, (a_1 + 1)q_1\} \leq \max\{qa_2n_1, q_1n_2\}\). □

Theorem 10. For \(i = 1, 2\), let \(n_i, a_i\) be positive integers such that \(n_i \geq 2a_i\), and let \(z_i = \alpha(C(n_i, a_i))\). Then,

\[
\chi(C(n_1, a_1) \times C(n_2, a_2)) = \min\{\chi(C(n_1, a_1)), \chi(C(n_2, a_2))\} = \max\left\{\left\lfloor \frac{n_1}{z_1} \right\rfloor, \left\lfloor \frac{n_2}{z_2} \right\rfloor\right\}.
\]

Proof. For \(i = 1, 2\), let \(n_i = q_i(a_i + 1) + r_i\), with \(q_i \geq 1\) and \(0 \leq r_i \leq a_i\). By Theorem 8 we have that \(\chi(C(n_i, a_i)) = [n_i/z_i]\), where \(z_i = q_i\). Moreover, by Theorem 9, we have that \(\alpha(C(n_1, a_1) \times C(n_2, a_2)) = \max\{n_1z_2, n_2z_1\}\). So, we have that \(\chi(C(n_1, a_1) \times C(n_2, a_2)) \geq \max\{n_1z_2, n_2z_1\}\). Thus, if \(n_1z_2 \geq n_2z_1\) then \(\chi(C(n_1, a_1) \times C(n_2, a_2)) \geq [n_1z_2/n_2z_1] = [n_2/z_2] = \chi(C(n_2, a_2))\). Otherwise, \(\chi(C(n_1, a_1) \times C(n_2, a_2)) \geq [n_1z_2/n_2z_1] = [n_1/z_1] = \chi(C(n_1, a_1))\). Therefore, \(\chi(C(n_1, a_1) \times C(n_2, a_2)) \geq \min\{\chi(C(n_1, a_1)), \chi(C(n_2, a_2))\}\). □

Let \(F\) and \(G\) be graphs. The map graph \(F^G\) has the set of functions from \(V(G)\) to \(V(F)\) as its vertices; two such functions \(f\) and \(h\) are adjacent in \(F^G\) if and only if whenever \(u\) and \(v\) are adjacent in \(G\), the vertices \(f(u)\) and \(h(v)\) are adjacent in \(F\). Notice that a vertex in \(F^G\) has a loop on it if and only if the corresponding function is a graph homomorphism. In order to simplify the study of Hedetniemi’s conjecture, El-Zahar and Sauer show in [4] the following result (see also [6]).

Theorem 11 (El-Zahar and Sauer [4]). Suppose \(\chi(G) > n\). Then \(K_n^G\) is \(n\)-colorable if and only if \(\chi(G \times H) > n\) for all graphs \(H\) such that \(\chi(H) > n\).

A consequence of Theorem 11 is the following lemma, that follows by induction.

Lemma 10. Let \(\mathcal{F}\) be a nonempty family of graphs such that for any two graphs \(G, H \in \mathcal{F}\) (not necessarily different) we have that \(\chi(G \times H) = \min\{\chi(G), \chi(H)\}\). Let \(G_1, G_2, \ldots, G_k\) be a collection of graphs in \(\mathcal{F}\). Then, \(\chi(\prod G_i) = \min\{|\chi(G_i)|\}\).

We have not been able to generalize Theorem 9 for any finite product of powers of cycles graphs, and so it remains as an open problem. However, by using Lemma 10 we can generalize Theorem 10 as follows.

Theorem 12. Let \(r\) be a positive integer, and let \(n_1, n_2, \ldots, n_r, a_1, a_2, \ldots, a_r\) be positive integers such that \(n_i \geq 2a_i\), for each \(i \in [r]\). Then, \(\chi(\prod C(n_i, a_i)) = \min_i\{\chi(C(n_i, a_i))\}\).

Another interesting open problem is the structure of the independent sets of finite direct products of vertex-transitive graphs such as the ones studied in this paper.

References