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The vertex Folkman number F (r,n,m), n < m, is the smallest
integer t such that there exists a Km-free graph of order t
with the property that every r-coloring of its vertices yields
a monochromatic copy of Kn . The problem of bounding the
Folkman numbers has been studied by several authors. However,
in the most restrictive case, when m = n + 1, no polynomial bound
has been known for such numbers. In this paper we show that
the vertex Folkman numbers F (r,n,n + 1) are bounded from above
by O (n2 log4 n). Furthermore, for any fixed r and any small ε > 0
we derive the linear upper bound when the cliques bigger than
(2 + ε)n are forbidden.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

For a given number of colors r and integers n,m, n < m, the vertex Folkman number F (r,n,m)

is the smallest integer t such that there exists a Km-free graph of order t with the property that
every r-coloring of its vertices yields a monochromatic copy of Kn . J. Folkman [11] proved that for
any r,n,m, n < m, the vertex Folkman number F (r,n,m) is well-defined. Determining the precise
value of F (r,n,m) is not an easy problem in general. Only a few of these numbers are known and
mostly they were found with the aid of computers (see, e.g., [5]). Some special cases were consid-
ered for example in [14,17,18]. Obviously, since F (r,n,m) � F (r,n,n + 1) for any n < m, the most
restrictive and challenging case is to determine (or more realistically to estimate) the exact value of
F (r,n,n + 1). The upper bound on F (r,n,n + 1), based on Folkman’s proof [11], is an iterated power
function (see also Theorem 2 in [19]). Nenov [18] improved this bound and showed that for instance
for 2 colors F (2,n,n + 1) = O (n!). This result was also proved independently by Łuczak, Ruciński and
Urbański [17]. In this paper we show the following theorem.
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Theorem 1. For a given natural number r there exists a constant C = C(r) such that for every n the vertex
Folkman number satisfies

F (r,n,n + 1) � Cn2 log4 n.

Perhaps Theorem 1 can still be considerably improved. We show that this is the case when cliques
of size bigger than (2 + o(1))n are forbidden.

Theorem 2. For a given natural number r and an arbitrarily small ε > 0 there exists a constant C = C(r, ε)

such that for every n the vertex Folkman number satisfies

F
(
r,n,

⌈
(2 + ε)n

⌉)
� Cn.

Theorem 2 complements the results of Łuczak, Ruciński and Urbański [17] and Kolev and
Nenov [14] who proved that F (r,n, r(n − 1)) is bounded from above by r(n − 1) + n2 + 1 and
r(n − 1) + 3n + 1, respectively,

In this paper we also investigate a more general problem. We write H → (G)v
r if for every r-

coloring of the vertices of H , there exists a monochromatic copy of G . If it is required that such a
monochromatic copy should be also induced, then we write H −→

ind
(G)v

r . Let ω(G) be the clique number

of G , i.e., the order of a maximal clique in G . J. Folkman [11] also proved that for every graph G there
exists a graph H such that H → (G)v

r and ω(H) = ω(G). Clearly, ω(H) � ω(G) for any graph with
H → (G)v

r , and thus, Folkman’s theorem is in this sense the best possible. However, Folkman’s proof
gives no good bound on the order of graph H . We give an alternative proof of a stronger version of
Folkman’s theorem (replacing H → (G)v

r by H −→
ind

(G)v
r ) with the relatively small order of H . A related

result (without controlling the clique number) was obtained by J. Brown and the second author [4].
They proved that for every natural number r there are constants c and C such that

cn2 � max
G

{
min

H

{∣∣V (H)
∣∣ : H −→

ind
(G)v

r

}}
� Cn2 log2 n, (1)

where the maximum is taken over all graphs G of order n. With the added requirement that
ω(H) = ω(G) we were able to show the cubic upper bound only.

Theorem 3. For a given natural number r there exists a constant C = C(r) such that for every graph G of
order n the following inequality holds

min
{∣∣V (H)

∣∣ : H −→
ind

(G)v
r and ω(H) = ω(G)

}
� Cn3 log3 n.

The base of all logarithms in this paper is e.

2. Incidence structures

In this short section we describe some basic properties of projective planes and generalized quad-
rangles (for more information see [13,16,22]), which we use to prove Theorems 1 and 3.

A projective plane PG(2,q) is an incidence structure of a set P of points and a set L of lines such
that:

(P1) any two points lie in a unique line,
(P2) any two lines meet in a unique point,
(P3) every line contains q + 1 points, and every point lies on q + 1 lines.

Slightly changing the first two conditions one can define a generalized quadrangle Q (4,q) as an inci-
dence structure of a set P of points and a set L of lines such that:
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(Q1) any two points lie in at most one line,
(Q2) if u is a point not on a line �, then there is a unique point w ∈ � collinear with u, and hence,

no three lines form a triangle,
(Q3) every line contains q + 1 points, and every point lies on q + 1 lines.

It is known that for every prime power q such incidence structures PG(2,q) and Q (4,q) exist
with |P | = |L| equals q2 + q + 1 and q3 + q2 + q + 1, respectively.

3. Proof of Theorem 1

Fix a natural number r. Let α be a real number satisfying 0 < α < 1. We will show that for a given
n there exists a graph H of order Cn2 log4 n, C = C(α), such that ω(H) = n and any subgraph of H
induced by a set of cardinality �α|V (H)|� contains a copy of Kn . Clearly, setting α = 1

r will imply the
statement of Theorem 1.

By Bertrand’s postulate (see, e.g., [10]) there is a prime number q such that

n log2 n � q + 1 � 2n log2 n. (2)

Let PG(2,q) be a projective plane with a set P of points and a set L of lines. We construct a “random
graph” H with the vertex set P . Clearly, |V (H)| = q2 + q + 1 = Θ(n2 log4 n). First, we partition every
line � ∈ L into n + 1 sets, where n of them have size

x =
⌊

2

α
logn

⌋
.

More precisely, for each line � we choose one ordered partition �0, �1, . . . , �n , |�0| = q + 1 − nx, |�1| =
· · · = |�n| = x, randomly and uniformly from the set of all such partitions (note that since |�0| =
Θ(n log2 n), �0 is much bigger than the other parts of the partitions). Second, we join every u ∈ �i
and w ∈ � j , 1 � i < j � n, by an edge obtaining a complete n-partite graph of order nx. Note that
since every two points from P lie in a unique line the graph H is well-defined. We show that a
graph H randomly chosen from the space H(n,q) of all such graphs has almost surely the following
properties:

(i) ω(H) = n, and
(ii) every set U ⊆ V (H), |U | = �α|P |�, induces in H a subgraph with a copy of Kn .

First we prove (i).

3.1. Almost all graphs H ∈ H(n,q) have the clique number n

First we provide an auxiliary result. For a given set S ⊆ P let L(S) = {�: |S ∩ �| � 2}. Moreover, for
a given set T ⊆ P let B(T ) be the event that the subgraph of H induced on T is a clique of size |T |,
i.e., H[T ] = K |T | .

Fact 4. Let S ⊆ P . Then,

Pr
(

B(S)
)
�

(
2

α log n

)∑
�∈L(S) |S∩�|

.

Proof. Fix a line � ∈ L(S). Note that if B(S) happens, then we have also B(S ∩ �) for every � ∈ L(S).
Also if B(S ∩ �) happens, then H[S ∩ �] = K |S∩�| . That means that all elements of S ∩ � must belong
to different �i , 1 � i � n, where � = ⋃n

i=0 �i is a partition of �. Consequently, Pr(B(S ∩ �)) can be
counted by fixing a partition �0, �1, . . . , �n , and randomly selecting a subset of size t = |S ∩ �| such
that |S ∩ �0| = 0 and |S ∩ �i | � 1, 1 � i � n. Thus,
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Pr
(

B(S ∩ �)
) =

(n
t

)
(q+1

t

) xt = n − t + 1

(q + 1) − t + 1
· · · n

q + 1
xt �

(
n

q + 1

)t

xt,

and consequently by (2),

Pr
(

B(S ∩ �)
)
�

(
x

log2 n

)|S∩�|
�

(
2

α log n

)|S∩�|
.

Clearly, B(S) = ⋂
�∈L(S) B(S ∩ �) and since all events B(S ∩ �) are independent (for different �) the

last inequality implies

Pr
(

B(S)
) =

∏
�∈L(S)

Pr
(

B(S ∩ �)
)
�

(
2

α logn

)∑
�∈L(S) |S∩�|

. �

Let γ = 2 logn
log logn . Denote by A> and A� the events that the randomly chosen graph H ∈ H(n,q)

contains a clique [S]2 = Kn+1 with the property
∑

�∈L(S) |S ∩ �| > γ (n + 1) and
∑

�∈L(S) |S ∩ �| �
γ (n + 1), respectively. Clearly, the probability of containing a copy of Kn+1 in H is bounded from
above by Pr(A>) + Pr(A�). If A> holds, then Fact 4 will directly imply that Pr(A>) = o(1). But we
also need to prove that Pr(A�) = o(1). If A� occurs, then we will observe that there is a “large” line �,
i.e., a line satisfying |S ∩ �| � n

γ . Consequently, the edges of Kn+1 belong to some large line and at
least one point from a different line (which, as we will prove, is also unlikely since such a point is not
typically connected to many vertices from the same line). This will imply that Pr(A>)+Pr(A�) = o(1),
and consequently, that almost surely ω(H) = n holds.

Proposition 5. Pr(A>) = o(1).

Proof. Let S ⊆ P be a set of size n + 1. In view of Fact 4 the probability that H[S] = Kn+1 satisfying∑
�∈L(S) |S ∩ �| > γ (n + 1) is less than ( 2

α logn )γ (n+1) . Hence,

Pr(A>) <

( |P|
n + 1

)(
2

α log n

)γ (n+1)

�
(

e|P|
n + 1

)n+1( 2

α log n

)γ (n+1)

.

Recall that γ = 2 logn
log logn . Moreover, since |P | = q2 + q + 1 < (q + 1)2 � 4n2 log4 n (cf. (2)) we get

Pr(A>) �
(

4en log4 n

(
2

α
log−1 n

)γ )n+1

= exp
(
(n + 1)

(
log n − γ log log n + o(logn)

))
= exp

(
(n + 1)

(− log n + o(log n)
))

,

which tends to zero as n tends to infinity. �
Proposition 6. Pr(A�) = o(1).

Proof. Let S ⊆ P be a set of size n + 1 such that H[S] = Kn+1 and
∑

�∈L(S) |S ∩ �| � γ (n + 1).
Since

∑
�∈L(S) |S ∩ �| = ∑

u∈S deg(u), where deg(u) = |{�: � ∈ L(S) and u ∈ �}|, there exists u ∈ S
with deg(u) � γ . Consequently, since every pair of points of S belongs to some � ∈ L(S), there is
� ∈ L(S) with u ∈ � such that |S ∩ �| � n

γ . Moreover, since � may induce only a clique of size n, there
is a point w ∈ S which does not lie in �.

Set m = � n
γ 	 � n log logn

2 logn . Let Am+1 be the event that there is a set T of size m + 1 inducing a clique
Km+1 in which precisely m points lie in some line �. Clearly, Pr(A�) � Pr(Am+1). In order to prove
Proposition 6, it is enough to show that Pr(Am+1) = o(1). Since every such set T is associated with a
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line �, |T ∩�| = m, and one point w ∈ P , w /∈ �, there are at most |L|(q+1
m

)|P | choices for T . Moreover,
since |T ∩�| = 2 for precisely m lines in L(T ) and there is one line � ∈ L(T ) with |T ∩�| = m we infer∑

�∈L(T ) |T ∩ �| = 3m. Hence, Fact 4 implies Pr(B(T )) � ( 2
α logn )3m . Recalling (2), q + 1 � 2n log2 n, and

consequently, |P | = |L| � 4n2 log4 n, we obtain,

Pr(Am+1) � |L|
(

q + 1

m

)
|P|Pr

(
B(T )

)

� 16n4 log8 n

(
e(q + 1)

m

)m(
2

α log n

)3m

= 16n4 log8 n

(
16en

α3m log n

)m

� 16n4 log8 n

(
32e

α3 log logn

) n log log n
2 log n

,

which tends to zero as n tends to infinity. �
Now we prove property (ii).

3.2. For almost all graphs H ∈ H(n,q) every large set induces Kn

The proof of this statement goes along the lines of the proof of Theorem 2.2 from [4].
For U ⊆ V (H) with cardinality |U | = � 1

r |P |� = �α|P |� let C(U ) be the event that Kn is not a
subgraph of H[U ]. Clearly, C(U ) implies C(� ∩ U ) for each � ∈ L. Consequently,

C(U ) ⊆
⋂
�∈L

C(� ∩ U ),

and since all events C(� ∩ U ) are independent,

Pr
(
C(U )

)
�

∏
�∈L

Pr
(
C(� ∩ U )

)
. (3)

For a fixed line � ∈ L we bound from above the probability that C(�∩ U ) occurs. Note that if C(�∩ U )

occurs, then for some i = i(�), 1 � i � n, in partition � = ⋃n
j=0 � j , �i ∩ U = ∅, i.e., �i and U are disjoint.

Let |U ∩ �| = u� . The probability that for a fixed i, 1 � i � n, U ∩ �i = ∅ equals to the probability that
for a fixed partition � = ⋃n

i=0 �i randomly chosen subset T with |T | = u� satisfies T ∩ �i = ∅. Hence,

Pr
(
C(� ∩ U )

)
� n

(q+1−x
u�

)
(q+1

u�

) � n exp

(
− xu�

q + 1

)
,

since for any natural numbers a,b, c satisfying a − b � c the following is true(a−b
c

)
(a

c

) = (a − b) − (c − 1)

a − (c − 1)
· · · a − b

a
�

(
a − b

a

)c

� exp

(
−bc

a

)
.

Consequently, (3) yields,

Pr
(
C(U )

)
� n|L| exp

(
− x

q + 1

∑
�∈L

u�

)
.

Moreover, since every point in U belongs to exactly q + 1 lines∑
u� =

∑
|U ∩ �| = |U |(q + 1).
�∈L �∈L
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Hence,

Pr
(
C(U )

)
� n|L| exp

(−x|U |) = n|P| exp
(−x|U |).

This implies that

Pr

(⋃
U

C(U )

)
�

( |P|
�α|P|�

)
n|P| exp

(−x|U |) �
(

e

α

)α|P|
n|P| exp

(−x|U |),
where the union is taken over all subsets U ⊆ V (H) with cardinality �α|P |�. Finally, since x|U | =
� 2

α log n��α|P |� � 3
2 |P | logn, we get

Pr

(⋃
U

C(U )

)
� exp

(
|P|

(
−1

2
logn + o(log n)

))
,

which tends to zero as n tends to infinity.
This completes the proof of Theorem 1.

4. Proof of Theorem 2

Let r and ε > 0 be given. Set α = 1
r . In order to prove Theorem 2, we show that with a positive

probability a binomial random graph G(m,1−p), p = c
m and c = c(r, ε), does not contain a clique of

size bigger or equal than 2 log c
c m and every set of size �αm	 induces a clique of size at least 2 log c

(2+ε)c m.
This will imply that for m sufficiently large

F

(
r,

⌈
2 log c

(2 + ε)c
m

⌉
,

⌈
2 log c

c
m

⌉)
� m,

and consequently, setting n = � 2 log c
(2+ε)c m	 yields that

F
(
r,n,

⌈
(2 + ε)n

⌉)
� (2 + ε)c

2 log c
n

holds for sufficiently large n. Indeed, since

n =
⌈

2 log c

(2 + ε)c
m

⌉
� 2 log c

(2 + ε)c
m,

we get

(2 + ε)c

2 log c
n � m,

and

(2 + ε)n � 2 log c

c
m, and hence,

⌈
(2 + ε)n

⌉
�

⌈
2 log c

c
m

⌉
.

Thus,

F
(
r,n,

⌈
(2 + ε)n

⌉)
� F

(
r,n,

⌈
2 log c

c
m

⌉)
� m � (2 + ε)c

2 log c
n.

First, we are going to observe that with a positive probability a random graph G = G(m, c
m ), where

c is a sufficiently large constant, satisfies the following three properties:

(i) for every subset U ⊆ V (G), |U | = �αm	, the number of edges induced by U is bounded by
||E(G[U ])| − p

(|U |
2

)| � εα
3 p

(|U |
2

)
,
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(ii) the independence number of G is less than 2 log c
c m,

(iii) G is a triangle-free graph.

The first two properties hold with the probability tending to one. Part (i) follows from the standard
application of Chernoff’s inequality (see, e.g., Section II.3 in [2]).

Part (ii) is a special case of a result of Frieze [12] about the asymptotic concentration of the
independence number in a random graph.

Lemma 7. (See [12].) For every ε > 0 there is a constant cε such that for c = pm if cε � c = o(m) then
∣∣∣∣α(

G(m, p)
) − 2m

c
(log c − log log c − log 2 + 1)

∣∣∣∣ � εm

c

asymptotically almost surely.

Finally, note that the property (iii) holds with the probability exp(−c3/6) as m tends to infinity.

To see it, recall that the number of triangles in G has a Poisson distribution with mean c3

6 (see, e.g.,
Section 10.1 in [1]). Hence, there exists a graph G of order m which satisfies simultaneously (i)–(iii).
To complete the proof of Theorem 2, it remains to show that every set of size �αm	 induces in G a
graph with the independence number at least 2 log c

(2+ε)c m.
Now we are going to show that for any subset U ⊆ V (G), |U | = �αm	, the graph G[U ] contains a

(large) independent set of size 2 log c
(2+ε)c m.

Property (i) yields that the average degree of G[U ], say d, satisfies
(
α − εα

3

)
c � d �

(
α + εα

3

)
c.

Moreover, property (iii) implies that G , and hence also G[U ], is triangle-free. Now we apply the
following Shearer’s result for triangle-free graphs.

Lemma 8. (See [20].) Let G = (V , E) be a triangle-free graph with the average degree d. Moreover, let

f (d) = d log d − d + 1

(d − 1)2
,

where f (0) = 1 and f (1) = 1
2 . Then

α(G) � f (d)
∣∣V (G)

∣∣.
Lemma 8 implies that the independence number of G[U ] is at least

d log d − d + 1

(d − 1)2
αm � log d − 1

d − 1
αm. (4)

Note that for c large enough

log d − 1

d − 1
α �

log((α − εα
3 )c) − 1

(α + εα
3 )c − 1

α � 2 log c

(2 + ε)c
. (5)

Hence, by Lemma 8, (4) and (5) there exists an independent set in G[U ] of size at least

d log d − d + 1

(d − 1)2
αm � 2 log c

(2 + ε)c
m.

This completes the proof of Theorem 2.
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5. Proof of Theorem 3

The proof of Theorem 3 was already given by the authors in an extended abstract [6]. Here for
completeness we sketch this proof once more.

Fix a natural number r and set α = 1
r . We will show that there exists a graph H of order Cn3 log3 n,

C = C(r), such that ω(H) = ω(G) and any subgraph of H induced by a set of cardinality �α|V (H)|�
contains an induced copy of G .

Bertrand’s postulate yields the existence of a prime number q for which

3

α
n log n � q + 1 � 6

α
n log n.

Let x be an integer satisfying

q + 1 = xn + m, (6)

where 0 � m < n. Consequently,

2

α
logn � x � 6

α
log n.

Let Q (4,q) be a generalized quadrangle with a set P of points and a set L of lines. We construct
a “random graph” H with the vertex set P . Hence, |V (H)| = q3 + q2 + q + 1 = Θ(n3 log3 n). In view
of (6) one can partition each line into n sets of size x and x + 1, respectively. For each line � we
choose one ordered partition �1, . . . , �n , x � |�i| � x + 1, 1 � i � n, randomly and uniformly from
the set of all such partitions (this time there is no �0). Let V (G) = {v1, . . . , vn}. For each u ∈ �i and
w ∈ � j we join {u, w} by an edge if and only if {vi, v j} ∈ E(G). Note that H is well-defined because of
condition (Q1). Moreover, condition (Q2) yields that ω(H) = ω(G). In fact, more is true: every triangle
of H is contained entirely within some �. In other words, all edges are inside a line and there is no
triangle of lines.

The rest of the proof goes along the lines of Section 3.2 with a new setup introduced above.

6. Concluding remarks

With some additional work (see the approach taken in [8]) one can reduce the factor n2 log4 n
from Theorem 1 to n2 log2 n and similarly the factor n3 log3 n from Theorem 3 to n3 log n. However,
since we were unable to find any nontrivial lower bound on F (r,n,n + 1), we chose to include a
somewhat simpler argument presented in this paper. It would be interesting to decide if the ratio
F (r,n,n+1)

n tends to infinity together with n.
One can also ask about the value of F (r, s, s + 1) for a fixed value of s � 3 as r tends to infinity.

This question was already considered by several researchers in a different setting. For fixed integers
2 � t < u let

ft,u(n) = min
{

max
{

T : T ⊆ V (G) and T spans no Kt
}}

,

where the minimum is taken over all Ku-free graphs G of order n. Function ft,u was introduced
by Erdős and Rogers [9], and further examined by Bollobás and Hind [3], Krivelevich [15], and Su-
dakov [21]. It is known that for a fixed s we have

Ω
(
n

1
2 +o(1)

)
� f s,s+1(n) � O

(
n

s
s+2 +o(1)

)
(7)

(see, e.g., [3,15,21]). The lower bound states that every Ks+1-free graph G of order n contains an

induced subgraph with n
1
2 +o(1) vertices with no Ks . We remove the vertex set of such a Ks-free

subgraph from V (G) and apply the lower bound of (7) again. Repeating this argument we eventually

obtain a partition of V (G) into r = n
1
2 +o(1) parts (with each part inducing Ks-free subgraph). Hence,

Ω
(
r2+o(1)

)
� F (r, s, s + 1).
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The upper bound of (7) implies that there is a Ks+1-free graph G of order n such that any subset of
vertices of size O (n

s
s+2 +o(1)) contains a copy of Ks . Consequently, for any partition of G into

r = n

O (n
s

s+2 +o(1))
= O

(
n

2
s+2 +o(1)

)

parts, one of the parts contains Ks . This implies that

F (r, s, s + 1) � O
(
r

s+2
2 +o(1)

)
(8)

holds.2
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