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Assuming that the neutrino mass matrix is diagonalized by the tribimaximal mixing matrix, we explore
the textures for the charged lepton mass matrix that render a UPMNS lepton mixing matrix consistent
with data. In particular we are interested in finding the textures with the maximum number of zeros. We
explore the cases of real matrices with three and four zeros and find that only ten matrices with three
zeros provide solutions in agreement with data. We present the successful Yukawa textures including the
relative sizes of their non-zero entries as well as some new and interesting relations among the entries of
these textures in terms of the charged lepton masses. We also show that these relations can be obtained
directly from a parametrization of the charged lepton mixing matrix Ul .

© 2012 Elsevier B.V.

1. Introduction

In the framework of discrete flavor symmetries one of the most used ansatz for the lepton mixing matrix UPMNS is the tribimaximal
mixing (TBM) matrix [1], which despite the non-zero value for θ13 recently confirmed by the T2K Collaboration [2], Double Chooz [3],
Daya Bay [4] and RENO [5] experiments, can still be used as a good approximation. Contributions from the charged lepton sector and/or
from renormalization effects, can generate a non-zero value for θ13 in agreement with the experimental data. For a classification of models
predicting TBM mixing see [6,7] and the references therein, and for an overview of flavor symmetry models for neutrino mixing, based on
non-Abelian discrete symmetries that give the TBM pattern, see Ref. [8].

Other ansatzs for the neutrino mass matrix have been explored. One such case consists on the so-called n-zero textures where, for
example, taking the case of Majorana neutrinos, it has been found that only two independent zero entries are allowed by current data
[9,10]. For Dirac mass matrices the situation is different (since the mass matrices are not symmetric) as shown in [11], where a study of
the minimal mass matrices with as many zeros as possible determined that up to five zero entries are allowed. In both of these cases
the neutrino mass matrices were expressed in the charged lepton diagonal basis. Fritzsch-like [12] textures have also been considered
for both the charged lepton and neutrino mass matrices in [13], where Dirac neutrinos are considered, and in [14], where all possible
Hermitian six-zero1 Fritzsch-like as well as non-Fritzsch-like textures for lepton mass matrices have been investigated, for both Majorana
and Dirac matrices. For a recent overview of all possible cases of Fritzsch-like as well as non-Fritzsch-like matrices as possible textures of
the fermion mass matrices see [15].

In this Letter we take the following approach: assuming that the neutrino mass matrix is diagonalized by the TBM matrix, we determine
the textures for the charged lepton mass matrix that leads to a lepton mixing matrix in agreement with the experimental data. We find
both the number and location of zeros in the charged lepton mass matrix as well as the relative sizes of the non-zero entries in the
corresponding Yukawa matrix. The results obtained can be of use to model builders interested in obtaining flavor models with TBM
mixing in the neutrino sector.

In Section 2 we present the general idea and setup of our analysis. The n-zero textures for n = 3 are obtained in Section 3. Sec-
tion 4 contains a description of the numerical analysis performed, as well as our results and discussion. Finally, Section 5 contains our
conclusions.
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2. The setup

The lepton mixing matrix UPMNS is given by

UPMNS = U †
l Uν, (1)

where Ul relates left-handed leptons in the weak basis el to the mass basis leptons e′
l : e′

l = Ulel; and Uν corresponds to the same basis
transformation for left-handed neutrinos ν ′

l = Uννl .
The UPMNS matrix can be parametrized as follows [16]:

UPMNS =
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠ (2)

where si j = sin θi j , ci j = cos θi j and δ is the Dirac CP-violating phase.
Since the U matrices in (1) are unitary, we can express Ul as

Ul = UνU †
PMNS. (3)

In our approach, we demand that Uν be the TBM matrix, namely

Uν = UTBM =

⎛
⎜⎜⎝

√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎟⎠ , (4)

and so, if Uν = UTBM is the matrix that diagonalizes the neutrino mass matrix Mν and Ul the one that diagonalizes the squared charged
lepton mass matrix M2

l ≡ Ml M
†
l , we want to determine the form of Ml such that UPMNS = U †

l UTBM has values in the allowed experimental
range.

As described above the matrix Ul diagonalizes M2
l and thus satisfies

M2
l = Ul M

2
lD U †

l (5)

where MlD = diag(me,mμ,mτ ) and M2
lD ≡ MlD M†

lD .
At this point Ml is an arbitrary mass matrix with unknown values and we parametrize it as

Ml =
⎛
⎝ a b c

d e f

g h i

⎞
⎠ . (6)

In general the mass matrix Ml has complex entries, however, in this first approach we consider the particular case of a real mass matrix
and thus assume all parameters in Ml to be real. In this particular case, Eq. (5) becomes a set of equations for the entries of M2

l :

⎛
⎝ a2 + b2 + c2 ad + be + cf ag + bh + ci

ad + be + cf d2 + e2 + f 2 dg + eh + f i

ag + bh + ci dg + eh + f i g2 + h2 + i2

⎞
⎠ . (7)

There are nine variables and only six equations encoded in Eq. (5). Thus we have an incomplete set of equations. To proceed we can
start by making some assumptions on the form of the lepton mass matrix. Just as an example take Ml to be a lower triangular matrix (by
making b = c = f = 0). This gives

Ml M
†
l =

⎛
⎝ a2 ad ag

ad d2 + e2 dg + eh

ag dg + eh g2 + h2 + i2

⎞
⎠ . (8)

The number of variables has now been reduced to six variables, and with the six independent equations (as we show later in the Letter)
it is easy to find solutions for the parameters in Eq. (8) in agreement with the experimental data.

We are interested in determining the textures with the maximum number of zeros. The main motivation for this is that having such
textures can be useful to model builders interested in obtaining them using an underlying flavor symmetry. With this in mind, we explore
the textures with the maximum number of zeros such that Eq. (5) has real solutions in the allowed experimental range for the mixing
angles. Note that our assumption of real mass matrices implies that in our case the CP-violating phase satisfies δ = 0 or π . We also assume
that the Majorana CP-violating phases are zero but note however, that since they can be factorized from UPMNS as a diagonal matrix, their
inclusion would not affect the magnitudes of the UPMNS entries.
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3. Finding the textures

We are concerned with the possible textures for the non-diagonal mass matrix for charged leptons (as we said before, assuming that
the neutrino mass matrix is diagonalized by the TBM matrix). We assume that the entries are real and so Ml M

†
l = Ml MT

l . Zeros in the
entries of our matrices may be due to some underlying symmetry(ies) and because of that we will look for the textures with the highest
possible number of zeros.

As discussed above, we have a system of six coupled, quadratic equations and (in general) nine variables. Thus there is a need for some
extra constraints on the variables. For matrices with no zeros at all we need three of this extra constraints, for matrices with one zero we
need only two. We begin our analysis with three-zero mass matrices requiring no extra constraints.

A combinatorial analysis shows that, for the three-zero matrices, we have
(9

3

) = 84 ways to place the three zeros and thus 84 different
matrix forms. Nevertheless, it is well known that in forming the real product Ml MT

l , any permutation of the columns of the matrix
involved does not change the resulting product matrix. Thus, this reduces the number of matrices to 20. From these textures we discard
those with a row or column made of zeros because they are singular. There are 4 cases of this and we are left with only 16 different
textures. Another condition that has to be satisfied, in view of the non-zero values for the charged lepton masses, is Tr(Ml MT

l ) �= 0.
Denoting the possible mass matrices by Mnk , where indexes stand for the kth texture of the non-diagonalized charged lepton matrix

with n-zeros, for n = 3 we obtain:

M301 =
( 0 0 c

d e 0
g h i

)
; M302 =

( 0 0 c
d e f
g h 0

)
; M303 =

( 0 b c
d 0 0
g h i

)
; M304 =

( 0 b c
d 0 f
g h 0

)
;

M305 =
( 0 b c

d e f
g 0 0

)
; M306 =

( a b c
0 0 f
g h 0

)
; M307 =

( a b c
0 e f
g 0 0

)
; M308 =

( 0 b c
0 e f
g 0 i

)
;

M309 =
( 0 b c

0 0 f
g h i

)
; M310 =

( a 0 0
d e 0
g h i

)
; M311 =

(0 b c
d e f
0 0 i

)
; M312 =

(0 b c
d 0 f
0 h i

)
;

M313 =
(0 0 c

d e f
0 h i

)
; M314 =

( a b c
0 e f
0 0 i

)
; M315 =

( a b c
0 0 f
0 h i

)
; M316 =

( a 0 c
0 e f
0 h i

)
. (9)

As none of the matrices shown above is obtained from another by means of permuting columns, these are all the possible three-zero
textures to be analyzed.

4. Analysis

We are interested in identifying the textures which provide solutions to Eq. (5). In order to find which textures provide solutions we
performed (for each texture) a scan over the whole allowed experimental range for the mixing angles taking the values δ = 0 and δ = π
for the CP-violating phase.

To carry out the numerical analysis we used the experimental data at 3σ from the global neutrino data analysis [17]

Best fit value 3σ range
sin2 θ12 0.312 0.27–0.36
sin2 θ23 0.52 0.39–0.64
δ −0.61π 0–2π

(−0.41π)

(10)

with normal (inverted) hierarchy, and the recently Daya Bay results [5] (confirmed at 5σ )

sin2 2θ13 = 0.092 ± 0.017, (11)

which can be rewritten as sin2 θ13 = 0.0235 ± 0.0045.
For the charged leptons masses we use the values given in [16]

me = 0.510998910 ± 0.000000013 MeV, mμ = 105.658367 ± 0.000004 MeV, mτ = 1776.82 ± 0.16 MeV. (12)

For instance by taking the central values of the mixing angles and those of the charged lepton masses (setting δ = 0) we obtain

UPMNS =
( 0.819631 0.551952 0.153476

−0.478787 0.512846 0.712567
0.314593 −0.657524 0.684612

)
, (13)

and from Eq. (3) we get for Ul

Ul =
( 0.987895 −0.0948358 −0.122758

−0.124467 −0.0123053 −0.992147
0.0925805 0.995417 −0.0239603

)
. (14)
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If we use these values for the example of the lower triangular matrix presented in Section 2, equating Eq. (8) to the explicit value of
the right-hand side of Eq. (5), and using Eq. (14) and M2

lD evaluated at the central value for the lepton masses, we find:

|Ml| =
( 218.35 0 0

1761.06 79.71 0
37.70 106.87 5.51

)
, |Yl| =

( 8.8 × 10−4 0 0
7.2 × 10−3 3.2 × 10−4 0
1.5 × 10−4 4.3 × 10−4 2.0 × 10−5

)
; (15)

where |Ml| is in MeV and the Yukawa matrix Yl shown above is obtained from:

Yl = 1

〈H〉 Ml, (16)

being 〈H〉 ≈ 246 GeV the vacuum expectation value (VEV) of the Higgs field [16] (here we are assuming only one Higgs doublet contributes
to the mass matrix. In general in this Letter we assume either that, or if there are more SU(2) doublets involved, that they all acquire
VEV’s of O (102) GeV).

To perform the complete scan we used a grid of dimensions 30 × 30 × 30 in the experimental range of the three mixing angles. For
each combination of the mixing angles that provides solutions to Eq. (5), we select only the real solutions. Once those are determined, we
then also determine the order of magnitude of the Yukawa mass entries by finding their minimum and maximum values.

4.1. Results for three-zero textures

From all the possible three-zero textures (shown in Eq. (9)) only the following provide (real) solutions: M304, M308, M309, M310, M311,
M312, M313, M314, M315, and M316.

For the textures M301, M302, M303, M305, M306, and M307 we did not find any solution. The reason is that all these textures lead to
an extra constriction because the matrix product Ml MT

l has a zero entry. Those entries are (M301MT
301)12, (M302MT

302)13, (M303MT
303)12,

(M305MT
305)13, (M306MT

306)23, and (M307MT
307)23.

As mentioned above, once we have performed all calculations (including the normalization of the mass matrix by the VEV of the Higgs
field) we find the maximum and minimum orders of magnitude of the entries for each texture of the Yukawa matrix. They are shown
here (up to O (1) coefficients):

Y δ = 0 δ = π

|Y304| ∼
( 0 10−7–10−5 10−3

10−6–10−3 0 10−2

10−6–10−4 10−7–10−4 0

)
;

( 0 10−6–10−4 10−4–10−3

10−5–10−3 0 10−2

10−5–10−4 10−6–10−3 0

)
;

|Y308| ∼
( 0 10−4–10−3 10−9–10−3

0 10−3–10−2 10−7–10−2

10−5 0 10−4–10−3

)
;

( 0 10−4–10−3 10−9–10−3

0 10−3–10−2 10−7–10−2

10−5 0 10−4–10−3

)
;

|Y309| ∼
( 0 10−5–10−4 10−4–10−3

0 0 10−2

10−5 10−4 10−9–10−3

)
;

( 0 10−5–10−4 10−4–10−3

0 0 10−2

10−5 10−4 10−8–10−3

)
;

|Y310| ∼
( 10−4–10−3 0 0

10−2 10−4–10−3 0
10−9–10−3 10−4–10−3 10−5

)
;

(10−4–10−3 0 0
10−2 10−4–10−3 0

10−9–10−3 10−4–10−3 10−5

)
;

|Y311| ∼
( 0 10−4–10−3 10−9–10−3

10−5 10−3–10−2 10−7–10−2

0 0 10−4–10−3

)
;

( 0 10−4–10−3 10−9–10−3

10−5 10−3–10−2 10−7–10−2

0 0 10−4–10−3

)
;

|Y312| ∼
( 0 10−5–10−4 10−4–10−3

10−5 0 10−2

0 10−4 10−9–10−3

)
;

( 0 10−5–10−4 10−4–10−3

10−5 0 10−2

0 10−4 10−8–10−3

)
;

|Y313| ∼
( 0 0 10−4–10−3

10−5 10−4–10−3 10−2

0 10−4–10−3 10−9–10−3

)
;

( 0 0 10−4–10−3

10−5 10−4–10−3 10−2

0 10−4–10−3 10−9–10−3

)
;

|Y314| ∼
( 10−6 10−4–10−3 10−9–10−3

0 10−3–10−2 10−7–10−2

0 0 10−4–10−3

)
;

(10−6 10−4–10−3 10−9–10−3

0 10−3–10−2 10−7–10−2

0 0 10−4–10−3

)
;

|Y315| ∼
( 10−6 10−5–10−4 10−4–10−3

0 0 10−2

0 10−4 10−9–10−3

)
;

(10−6 10−5–10−4 10−4–10−3

0 0 10−2

0 10−4 10−8–10−3

)
;

|Y316| ∼
( 10−6 0 10−4–10−3

0 10−4–10−3 10−2

0 10−4–10−3 10−9–10−3

)
;

(10−6 0 10−4–10−3

0 10−4–10−3 10−2

0 10−4–10−3 10−9–10−3

)
.



J.A. Acosta et al. / Physics Letters B 718 (2013) 1413–1420 1417
Fig. 1. Solution volume of M304 for δ = π , found with a grid of 40 × 40 × 40. Similar results are obtained for δ = 0.

4.2. Solution volume

As part of the analysis we performed, we searched for the solution volume of each three-zero texture, that is, the set of points given
by the three mixing angles that make possible to find real solutions to the entries of the Ml matrix.

In the case of textures M308–M316 the solution volume fills the complete space given by the experimental intervals of the three mixing
angles (the experimentally allowed parameter space). This happens for both δ = 0 and δ = π .

The most interesting case is the texture M304, which has the zeros on the major diagonal (and its permutations). The relevance of
this case is that the angle θ23 is now very restricted. Thus, we took a closer look within a smaller interval for θ23 using a finer grid of
40 × 40 × 40, and analyzing a θ23 interval of [0.7745,0.7950], we find that the solution volume of M304, for both δ = 0 and δ = π , is a
thin curved surface (presented in Fig. 1 for δ = π ); the only difference between these two cases is a displacement of the interval allowed
for θ23, which is [0.7763,0.7876] for δ = 0, and [0.7750,0.7873] for δ = π . These intervals are near but exclude the central value of θ23.

4.3. A parametrization for Ul

The Yukawa matrices in (16) can explicitly be written as

Yl =
( ya yb yc

yd ye y f
yg yh yi

)
. (17)

Then, the diagonal entries (YlY T
l )ii are just the sum of the square of the elements of the ith row of Yl:(

YlY
T
l

)
11 = y2

a + y2
b + y2

c ,
(
YlY

T
l

)
22 = y2

d + y2
e + y2

f ,
(
YlY

T
l

)
33 = y2

g + y2
h + y2

i . (18)

The textures obtained in Subsection 4.1 present some interesting features: first note that in all textures the largest upper bound
(10−2) always appears in the second row. Thus, from Eq. (18), (YlY T

l )22 ∼ O (10−4). This is a little higher than O (m2
τ /〈H〉2 ∼ 5 × 10−5).

Note also that (except for the Y304) the third row has always an upper bound of 10−3 and then, from Eq. (18), we can deduce that
(YlY T

l )33 ∼ O (10−6). This is quite close to the value of the ratio m2
μ/〈H〉2 ∼ 10−7. More precisely and using the explicit values of the

Yukawa matrix of Eq. (15) we find

y2
a + y2

b + y2
c = 7.7 × 10−7, y2

d + y2
e + y2

f = 5.2 × 10−5, y2
g + y2

h + y2
i = 2.1 × 10−7. (19)

We thus find that there are extra conditions on the entries of Yl in terms of the charged leptons masses. Because of Eq. (5), we can
expect that these conditions may be due to an internal structure of the mixing matrix Ul for the charged leptons. In what follows we
show that there is indeed a parametrization for this matrix that leads to specific relations between the entries in the Yukawa matrices
and the charged lepton masses that reproduce the above results, including the small deviations in the orders of magnitude.

Motivated by the fact that the charged leptons are analogous to the down type quarks in terms of representations of the Standard
Model gauge group, we consider a CKM-like parametrization for the Ul mixing matrix in terms of the three angles θ l

12, θ l
13 and θ l

23, taking
values between 0 and π/2, and all phases set to zero in order to use real values for the Ul matrix, as we have done in the whole analysis.
Then, we can write:

Ul =
⎛
⎝1 0 0

0 cos θ l
23 sin θ l

23

0 − sin θ l
23 cos θ l

23

⎞
⎠

⎛
⎝ cos θ l

13 0 sin θ l
13

0 1 0

− sin θ l
13 0 cos θ l

13

⎞
⎠

⎛
⎝ cos θ l

12 sin θ l
12 0

− sin θ l
12 cos θ l

12 0

0 0 1

⎞
⎠ . (20)

Using U ′ instead of UPMNS (to avoid agglomeration of indexes) one can easily find that:

sin2 θ13 = 1 − (
U ′

11

)2 − (
U ′

12

)2
, (21)

sin2 θ23 = (U ′
23)

2

(U ′
11)

2 + (U ′
12)

2
, (22)

sin2 θ12 = (U ′
12)

2

(U ′ )2 + (U ′ )2
. (23)
11 12
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Fig. 2. Sets of values for the angles of the charged lepton mixing matrix that match the experimental results (see description in text). The yellow (light) band in the upper
part of the plot is the region consistent with all experimental results. (For interpretation of the references to color, the reader is referred to the web version of this Letter.)

Here the θi j are, as before, the parameters of UPMNS; different from θ l
i j , which parametrize Ul . We evaluated Eqs. (21)–(23) with θ l

i j ∈
[0,π/2], and took all the points that matched the experimental intervals given by (10) and (11). The points (θ l

23, θ
l
13, θ

l
12) are presented

in Fig. 2.
In Fig. 2 the blue region is made of those values of the angles that solve Eq. (21) within the experimental values, the purple points are

those that solve Eqs. (21) and (22) within the experimental ranges, and the dark yellow region is the set of points that satisfies the three
equations (21), (22) and (23) within all the experimental values. We then obtain a small region given by two small angles and a large
one:

θ l
12 = [0.06–0.15], θ l

13 = [0.07–0.16], θ l
23 = [

1.43–1.57 ≈ (π/2)
]
. (24)

Now we use the parametrization of the Ul matrix given by Eq. (20) and the values of its angles to make an analysis of the entries in
a general charged lepton mass matrix, of the form given by (6). Let us remember that Ul appears in (5). Using the values given in (24),
one can built a simpler form for Ul . Indeed, according to Eq. (20) and using the fact that θ l

12 and θ l
13 are small, we can use a first-order

approximation for their respective rotation matrices. The size of the angle θ l
23 allows us to use a first-order approximation too, but around

θ l
23 = π/2. Then, sin(θ l

23) ≈ 1 and cos(θ l
23) ≈ π

2 − θ l
23 ≡ ε . Thus, we end up with:

Ul ≈
( 1 0 0

0 ε 1
0 −1 ε

)( 1 0 θ l
13

0 1 0
−θ l

13 0 1

)⎛
⎝ 1 θ l

12 0
−θ l

12 1 0
0 0 1

⎞
⎠ . (25)

Using (25) in (5), we obtain the matrix M2
l in terms of θ l

12, θ l
13 and ε . Comparing the result with (7), we can see that the variables from

the first row of the mass matrix must satisfy:

a2 + b2 + c2 ≈ m2
e + m2

μθ l2
12 + m2

τ θ l2
13 (26)

the variables of the second row of (6) satisfy:

d2 + e2 + f 2 ≈ m2
τ + m2

e

(−εθ l
12 − θ l

13

)2 + m2
μ

(
ε − θ l

12θ
l
13

)2 ∼ m2
τ (27)

and the third row of (6) must have a contribution of the form

g2 + h2 + i2 ≈ m2
τ ε

2 + m2
e

(
θ l

12 − εθ l
13

)2 + m2
μ

(−1 − εθ l
12θ

l
13

)2 ∼ m2
μ. (28)

These expressions explain the observations considered at the beginning of the present subsection, including the corrections to the
order of magnitude estimates, and represent the main result of this analysis.

Taking our specific example above, dividing Eqs. (26)–(28) by 〈H〉2 as in (16), and using the values θ l
12 = 0.09, θ l

13 = 0.1215, θ l
23 = 1.55

as well as the central values for the charged lepton masses we have:

1

〈H〉2

(
m2

e + m2
μθ l2

12 + m2
τ θ l2

13

) = 7.7 × 10−7,

1

〈H〉2

(
m2

τ + m2
e

(−εθ l
12 − θ l

13

)2 + m2
μ

(
ε − θ l

12θ
l
13

)2) = 5.2 × 10−5,

1
2

(
m2

τ ε
2 + m2

e

(
θ l

12 − εθ l
13

)2 + m2
μ

(−1 − εθ l
12θ

l
13

)2) = 2.1 × 10−7. (29)
〈H〉
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These are the values from (19), which are relations that exhibit the dependence of the entries of Yl on the masses and the mixing angles
of Ul . It is easily observed that for the first row, although the leading term (zeroth order on the angles) is m2

e , the other contributions
play a more important role than this one, because the masses of the μ and τ leptons are much greater than that of the electron and even
overcome the small size of their coefficients (which are powers of the angles). Finally, we note that these expressions are independent of
the texture chosen for the Yukawa matrix and also independent of the two values of the Dirac phase used in the PMNS matrix.

All the Yukawa textures found exhibit the relations given by Eqs. (26)–(28), so an important feature that we want to point out is that
the matrices we have found show a very large mixing (nearly π/2) between the second and third generations of the charged leptons.

4.4. Four-zero textures

We have already explored the textures with three zeros and found that it is possible to have solutions in the allowed ranges for many
of them. Now we are interested in checking if this is also possible for textures with four zeros. To start, we list the possible textures with
four zeros and their equivalent (column) permutations, discarding those with a row or column completely filled with zeros (thus avoiding
singular matrices):

M401 =
( 0 0 c

0 e 0
g h i

)
; M402 =

( 0 0 c
0 e f
g h 0

)
; M403 =

( 0 b c
0 0 f
g h 0

)
; M404 =

( 0 b c
0 e f
g 0 0

)
;

M405 =
(0 0 c

d e 0
0 h i

)
; M406 =

( 0 0 c
d e f
0 h 0

)
; M407 =

( 0 0 c
d e 0
g h 0

)
; M408 =

(0 b c
d 0 0
0 h i

)
;

M409 =
(0 b c

d 0 f
0 h 0

)
; M410 =

( a b c
0 0 f
0 h 0

)
; M411 =

( 0 0 c
0 e f
g 0 i

)
; M412 =

(0 b 0
d e f
0 h 0

)
;

M413 =
( a 0 c

0 e 0
0 h i

)
; M414 =

( a 0 c
0 e f
0 h 0

)
; M415 =

( 0 b c
0 0 f
g 0 i

)
; M416 =

( a b c
0 0 f
0 0 i

)
;

M417 =
( a 0 c

0 e f
0 0 i

)
; M418 =

( 0 0 c
0 0 f
g h i

)
. (30)

We have also calculated the product Ml MT
l for each texture and we can observe that most of them render one or two zero entries.

As in the previous case, this increases the difficulty in finding solutions to the system of equations in Eq. (5). Moreover, since we are
assuming only real values in the mass matrix entries, for the four-zero textures we are left with 6 equations and only 5 variables to
satisfy them and the system is over-constrained.

The zero entries in the product Ml MT
l for each texture are the following:(

M401MT
401

)
12 = 0,

(
M402MT

402

)
13 = 0,

(
M403MT

403

)
23 = 0,

(
M404MT

404

)
13,23 = 0,(

M405MT
405

)
12 = 0,

(
M406MT

406

)
13 = 0,

(
M407MT

407

)
12,13 = 0,

(
M408MT

408

)
12 = 0,(

M409MT
409

)
23 = 0,

(
M410MT

410

)
23 = 0,

(
M413MT

413

)
12 = 0,

(
M414MT

414

)
13 = 0.

The only textures which give non-zero entries in Ml MT
l are M411, M415, M416, and M417. Those would be the more interesting cases

to study if we allow complex parameters (this would imply also to allow the δ CP-violating phase to take all its possible values). M412,
M416 and M418 also render non-zero entries in Ml M

†
l but they are singular.

We performed a scan over all the allowed experimental range for the mixing angles trying to solve the system of equations for each
particular texture, in the case of real parameters, without success. The only possibility is to consider cases where one of the zero entries
in the four-zero texture gets slightly turned on. This case could correspond then to one of the three-zero texture above where one of
the entries is much smaller than all others. Analyzing the three-zero textures and the relative size of their entries (presented above), we
observe that except for M304, all of them contain entries in the range (10−4–10−3)–102 MeV, and that the smallest one is at least two
orders of magnitude smaller than the next one. It is then possible, from a model building perspective, to consider a four-zero texture
where one of the zeros is lifted (perhaps due to radiative corrections, or higher order operator mixings) such that at the end one ends up
with one of the successful three-zero textures above. Here we show which four-zero texture could be used in such a scenario

M308(c ∼ 0) → M402; M309(i ∼ 0) → M403; M310(g ∼ 0) → M402;
M311(c ∼ 0) → M406; M312(i ∼ 0) → M409; M313(i ∼ 0) → M406;
M314(c ∼ 0) → M414; M315(i ∼ 0) → M410; M316(i ∼ 0) → M414.

As a final remark we comment that even though at this point we considered only real matrices for the charged lepton mass matrices, it
is possible to extend some of our results to the case of complex matrices with factorizable phases, i.e. mass matrices that can be written
as Ml = P∗M̂l P , where M̂l are matrices with real entries and P a diagonal phase matrix, P = diag(eıφ1, eıφ2, eıφ3). Then, if Ol is the
orthogonal matrix which diagonalizes M̂l M̂T

l we can write, under our assumption Uν = UTBM , Ol = P∗UTBMU T
PMNS . Nevertheless, from the

property of orthogonality and detOl = ±1 we can infer that the only possible values for the factorizable phases are integer multiples of π .
We checked exactly the same three-zero textures as before, but allowing complex entries and a CP-violating phase δ = π/2 and found
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solutions for the same textures as in the real case. The difference with our previous results is that in these cases solutions are found in
all the allowed volume of angles, even for Y304, and the order of magnitude of the entries are generally larger. In the four-zero texture
we again find no solutions and due to the fact that the entries in the three-zero textures are larger in this case, it is not possible to easily
start from a four-zero texture and lift one zero (here we are thinking of a naturally small correction to the zero entry in question).

5. Conclusions

We analyze several textures for the charged lepton mass matrix under the assumption that the neutrino mass matrix is diagonalized by
the TBM matrix, and with the intention of maximizing the number of zeros in them. Requiring the UPMNS mixing matrix to be consistent
with the allowed experimental range for mixing angles (fixing the CP-violating phase), and with (the central values of) the charged lepton
masses, we explore the maximum number of zeros possible in a texture under the assumption of real charged lepton mass matrix entries.
We find that there are ten three-zero textures which provide UPMNS values in agreement with and also determine the size range for their
entries. Among the successful textures, the one with zeros in the diagonal shows an interesting behavior in the sense that in order to
work, it requires the mixing angle θ23 to lie in a very restricted range which, albeit consistent with the experimental range, it excludes
the central experimental values.

A general analysis of the successful textures showed that there are relations between their entries and the charged lepton masses.
Through a CKM-like parametrization of the Ul mixing matrix we are able to obtain the texture-independent specific relations in terms of
the three rotation angles in Ul .

We find no solutions for four-zero textures but observe that it is possible to consider cases where one the zeros is lifted in such a
way that the remaining mass matrix corresponds to some of the successful three-zero textures. Finally, we explore a possible extension
to consider the cases with complex factorizable textures. We find similar results, i.e. solutions available for the three-zero textures and no
solutions for the four-zero texture, with the difference that the typical entry size of the charged lepton mass matrix is generally larger in
this case.

While preparing this Letter, a new preprint appeared in the arxiv [18], where an analysis of the charged lepton mixing matrix was
performed using the TBM matrix form as well as the Bimaximal Mixing matrix (BM) for the neutrino mixing matrix. They consider the
charged lepton mixing matrix to be nearly the identity but deviated from it by one and two parameters for the BM and the TBM case
respectively. The parameters are the Cabbibo angles λ = sin θ12 and sin θ l

23 for the TBM case, assuming that the Ul has its own CKM-like
parametrization.

In our case the assumption of Ul as a matrix near the identity is not used. Instead, we determine this matrix by allowing the three
rotation angles to vary over the whole experimental range and find that in fact, since θ l

23 ∼ π/2, the matrix is not close to the identity.
Also, in our context, the goal included to find the textures that are diagonalized with Eq. (3). This is not explored in [18] and we feel

it is a useful result that can be used by model builders interested in flavor symmetries.
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