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Sacks Forcing Does Not Always Produce a Minimal Upper Bound 

FRED G. ABRAMSON* 

University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 

THEOREM. There is a countable admissible set, LX, with ordinal wFK such 

that if S is Sacks generic over fl then qs > uFK and S is a nonminimal upper 
bound for the hyperdegrees in QL. (The same holds over a for any upper bound 
produced by any forcing which can be construed so that the forcing relation for 

Z, formulas is Z, .) A notion of forcing, the “delayed collapse” of WE”, is defined. 
The construction hinges upon the symmetries inherent in how this forcing 

interacts with C, formulas. It also uses Steel trees to make a certain part of the 

generic object C, over the final inner model, 01, and, indeed, over many generic 
extensions of LX 

INTRODUCTION 

One of the very first uses of forcing was to produce a standard (atomless) 

model of set theory which violates the Axiom of Choice (Cohen [3]). Since then 
forcing has been a major technique in choiceless set theory. It has been used 
to compare the strengths of various weakened forms of AC, to measure just 

how much choice is needed for certain classical results of mathematics, and to 
provide relative consistency proofs for some of the consequences of axioms 
which contradict AC, particularly the Axiom of Determinacy. (The publications 
in this area are too numerous to attempt listing them here.) 

The main theorem of this paper can be regarded as a result in the area of 
“choiceless admissibility theory.” Given the wide use of admissible sets in 
many branches of logic, it is not surprising that there are naturally arising 

questions, such as the minimal upper bound problem for sets of hyperdegrees, 
which lead to work in this area. Proofs in this area, some of which are referred 

to below, tend not to be simply a matter of pushing through the set theoretical 
arguments in a weaker context. Instead, they require arguments particularly 
designed for their interaction with ,&-admissibility. 

Sacks [7] shows that if 0L is any countable admissible set satisfying C,-depen- 
dent choice, then the set of hyperdegrees contained in QL has a minimal upper 
bound. This result partially lifts the earlier result of Sacks [6] that any countable 
set of Turing degrees has a minimal upper bound. Hyperdegrees differ from 
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SACKS FORCING 111 

Turing degrees largely because of one fact: The upper bound on the length of 
Turing computations from a real x is independent of X, i.e., is always W, while 
the corresponding upper bound for hyperarithmetical computations from x is 
WIX, which does depend on X. A major obstacle in lifting theorems to hyper- 
degrees is to find a way to control w1 G. Sacks’ construction of a minimal upper 
bound for certain sets of hyperdegrees appears to make a crucial use of &-DC 
in surmounting this obstacle. The main result of this paper is that %-DC 
actually is crucial to Sacks’ argument. Moreover, we rule out as a technique 
for producing a minimal upper bound any type of forcing which possesses 
what seems to be an essential property for success in forcing over an admissible 
set. 

Friedman [4] has previously constructed an admissible set violating &-DC 
by using “proof theoretic” techniques. Here we have a forcing extension of 
Lq which violates X,-DC. (It can be shown that Lwp is a Cl-elementary 
substructure of our model, so the parameter is required in the violation.) 

The very way in which Sacks uses X,-DC suggests the approach which 
produces the model 0L mentioned in the abstract. Note that if x is an upper 
bound for G!?‘s hyperdegrees then x imposes a wellordering on 6Y’s reals, i.e., the 
canonical wellordering of L,;(X). Now, as we see in Section 1, to ensure that a 
real which is Sacks-generic over GZ is a nonminimal upper bound, it really 
suffices, in this context, to violate the main goal of Sacks’ construction, namely, 
the preservation of the admissibility of w1 CK. So the obvious approach is to make 
02 have a failure of X,-DC such that any imposition of a wellordering on GZ 
results in collapsing 0~:~ to w. Of course, a certain delicate balance must be 
achieved in order to do this without collapsing wFK within 12 itself. 

Now, this program cannot succeed exactly as stated. If fl is any admissible 
set with ordinal wfK then a Barwise-compactness with type-omitting argument 
as in Section 3 of Sacks [S] always produces an upper bound, S, on 6Y’s hyper- 
degrees with wlS = mFK Nonetheless, this program can be carried out for . 
certain generically produced upper bounds, S, in particular for S Sacks generic 
over a. The next paragraph outlines how this is accomplished. But first note in 
passing that there seems to be little point in trying to have the ordinal of fl be 
other than @, for by [8, Corollary 3.181, Sacks forcing could only fail to 
produce a minimal upper bound if the ordinal of 02 is wrz for some x E GE 

Here is how the construction goes: Start with Lu:~. Generically add for 
each n < w a Steel tree T, (as in Steel [lo]) an a single distinguished path I’,, d 
through T, . For the moment, view M = L,fK[Wl as the ground model, 
where W is (a real coding) the generic object above. Now do a certain forcing, 
the “delayed collapse” of wFK, over M to produce a tree T such that T is a 
subtree of (w~~K><~ (i.e., T’s nodes are finite sequences of recursive ordinals, 
ordered by extension), such that any path through Thas ordinals unbounded in 
wfK. Now pass to an inner model, Gl?, obtained by adding to LwfK a real coding 
all the Steel trees, and adding (very carefully) P, for exactly those n such that 
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112 FRED G. ABRAMSON 

n = r(u) for some node o E T (where T is a fixed @-recursive map: 
(wyy~ +r-l w.) (Note that M g CY.) What we first prove is that Sacks forcing 
over a produces no paths through any T, except those P, purposely put into cpd. 
Thus T is C, over &,;K(s), and now it is easy to see that wis > UP, which, 
as is shown in Section 1, is enough, provided that UZ itself is admissible. Showing 
this fact is, indeed, the main difficulty and relies entirely upon the properties 
of the delayed collapse. Note one thing-the counterexample to Sacks’ technique 
hinges on exactly the same point as the technique itself! One must preserve the 
admissibility of the ordinal one starts with. 

Organization of This Paper 

In Section 1 we define the forcings to be used, construct the model 02, and 
use a Steel-type symmetry argument to show that Sacks forcing adds no paths 
other than those purposely put into Q?. The Main Lemma, i.e., that a is 
admissible, and a Little Lemma are stated, and the results given in the abstract 
are proved assuming these lemmas. (In this section, the phrase “can be con- 
strued so that . ..” is made precise.) 

In Section 2, the main technical work takes place. Here the properties of the 
delayed collapse are developed to prove the lemmas required in Section 1. 

Section 3 concludes with some remarks and open questions. 

Conventions 

When forcing over L$K we use the ramified language of Cohen [3]. However, 
we always use ‘p 1 +g,a F” for p in the partial ordering B and 99 any structure 
to mean the standard weak forcing, i.e., that B holds in any extension of 99 
made by a a-generic subset of B containing p. Of course, by the usual syntactic 
analysis, one can prove, even in the context of Lw,” rather than a model of ZF, 
that for a generic G, L,?[([c=I k 9 iff 3 p E G (p [ ~-9). Partial orderings used 
in this context are often proper classes over the ground model, but in the case 
of one actually an element of Lw;K , it is routine to check that L,~K[G] is ad- 
missible. For W a real, we use the obvious relativized notions over Lwyif[W]. 
(Forcing over sufficiently strange models, such as the Cl? constructed here, 
requires more care. This issue is discussed further at the end of Section 1 
in the definition of X,-honesty.) “Sacks forcing over OZ” means forcing with 
hyperarithmetically-pointed perfect sets coded in Gsl We assume familiarity 
with some of the results in Sections 1-3 of Sacks [S]. 

1. THE MODEL 6Z 

GY will be an inner model of &;K[w x G], where W x G is a generic subset 
of 9’ x 9. 9’ is the direct limit of w-many copies of the Steel forcing which 
produces a subtree of w<* with one distinguished path. 9 is the “delayed 
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collapse.” We will use the usual fact about product forcing, namely, that W x G 
is L,,,FK-generic on Y x 5@ iff  W is L,fK-generic on Y and G is L,fK[ v-generic 
on 9. It will often be convenient to work over M = Lwy[Wj, which will be an 
admissible set. 

The Partial Ordering Y and the Model M 

We first define one-path Steel forcing, (Q, Go). (Notational convention: 
We drop subscripts on ‘I<” when the context makes the meaning clear.) 
Let <R be a recursive linear ordering on w with wellfounded initial part of 

order type w1 . cx We take <R to have a largest element, b, and adjoin a new 

symbol ‘x), with the convention cc >R co >R b. For 01 < wFxI, i(a) denotes the 
integer whose ordertype in <R is 01. A typical condition (u, v) of Q is a nonempty 
finite subtree, U, of wcw, together with a tagging v: u + w u {co} such that 

(i) (3 5 7 E 24 -+ v(0) >R v(7), 

(ii) Z(F) = 00, and each level of u has at most one (T with v(u) = CO. 

(u’, v’) Go (u, v) i f f  u’ 1 u and v’ 2 v. 

Note that Q has a greatest element, which we denote by II o , with u = { %} 
and v( e ) = cc. Any generic subset H of Q builds a subtree of wcw with a 
distinguished path given by {u j 3 (u, v) E H (u E u and V(D) = co)}. (This 
subtree, of course, has many paths in the real world other than the distinguished 
one.) 

9’ is just {f: w -+Q /f(n) = II o for all but finitely many n} and g <sf 

ifi V 4&> < 0 f(41. 
Fix W an L,;K-generic subset of 9’. 
We take WEL CK . For each n, W, = {f(n) / f E W} is L,y-generic on Q. 

Let T, denote th: tci: built by W, , and P, its distinguished path. Let W = 
{(n, U) / 0 E T,}. We identify W with a real coding W in some standard way. 
As (Y, GY) is an element of LO,p, M = L,$( W) is an admissible set, and 
clearly W and ((n, P,) 1 n < W} are E M. 

The Partial Ordering 9 

Notation. For Xany ordered set, [X]cw = {f: n-+X 1 n <w and f is strictly 

increasing). This set forms a subtree of X CU. For any finite sequence cr of length 
>0, C. denotes the last element of (r. For any finite sequence (T and any x, 
0 * x denotes the extension of 0 of length one greater than that of 0 such that 
(u h x). = x. 

A typical condition of 9 is a quadruple, (c, t, u, d), where 

(i) c 6 [wfK n Lim]cw, 

(ii) t is a finite nonempty subtree of [w:~]+, 
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(iii) u: t -+ 2 such that U( %a> = 1 and whenever 0 E t and U(U) = 0 

then for no 7 2 (T is 7 E t. 

(iv) d: U- {%}-+@ in such a way that if a # % and U(U) = U(O  ̂6) = 1 
then 

either d(u h 8) < d(a) 

or 3j~ dam(c) [u. < c(i) < 61. 

(c’, t’, u’, d’) <B (c, t, u, d) just in case c’ 2 c, t’ 1 t, u’ 3 U, and d’ 3_ d. 
c is thought of as a condition in a Cohen collapse of afK to W. Clearly, if G 

is M-generic on 3, the c’s from the conditions in G give rise to an w-sequence 
unbounded in wfK. This sequence is called C, (or just C when G is clear from 
context). The t’s and U’S are thought of as putting together a subtree of [@]<w, 
namely, Tc = {u 1 3 (c, t, u, d) E G [U E t A u(u) = I]}. d(o) is thought of as the 
delay attached to the node u of TL . Do is the map put together by the d’s in G. 
(Note that dom(D,) includes certain nodes $ Tc , a point we return to in the 
proof of Sublemma 2.9.) 

Here is the main idea behind the delays. Any infinite path through TG must 
infinitely often jump to a higher ordinal mentioned in the range of C, . Any 
given node can specify an ordinal delay before which the next jump occurs, 
and in going from node to node the path may avoid the next jump, but only at 
the expense of decreasing the delay; thus it eventually must jump again, at 
which time it is free to specify a new delay. 

The above discussion easily gives a proof of 

PROPOSITION 1.1. If G is M-generic on 9 then for P any (infinite) path 
through To the map n H (the unique u E P of length n + 1). is an unbounded 
map: w -+ wfK. 

For the remainder of Section 1, jix G M-generic on 9. We take G E L$K+~~ . 
The presence of C, clearly makes M[Gj nonadmissible (if G is available as a 
predicate). a is a carefully built inner model of M[(=l over which T = To 
is Z, , but over which no map resembling C = C, is Z, . 

Notation. Let r be a fixed &-over LU;~ map: [w~~]+ -+--l W. T(a) E 
To(a)={u~T~u= % or (VTCD, Q-#%) (T.<o~ and DG(7)<a)}. So 

T = Ua<w;K W). Pn., denotes P,, if r-l(n) E T(cY) and denotes % otherwise.1 
For any structure g, FODO(g) EE all subsets of the domain of 33 first-order 
definable over 33 with parameters from B. 

DEFINITION OF (2’. Q = Ll(uf), w h ere a(O) = 0, 0Q) = (JacA GZ(LY) for 
h E Lim, and ~Z(OL + 1) = FODO (a(a), E, #‘, Pn,n)n<w . a is clearly a transitive 

1 We write “Yr’(n) E T(a)” to mean “r-‘(n) is defined and is in T(a).” 
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set, C, over M[C;I (allowing W and G to appear in the defining formula, of 
course). 

Notation. For Han arbitrary generic subset of 9’ x 53 we use 02, to denote 
the CZ built above from H. 

We now use arguments like those in Steel [9] to show that if S is Sacks-generic 
over OZ then L$K(S) n (P 1 3 n (P is a path through Y’,)} = {P, j r-l(n) E T}. 

DEFINITION. For q = (a, V) and q* = (u*, v*) EQ, and LX < COP, 

q* is an war-absolute retagging of q iff u = u* and V u E u[(v(u) <R i(wa) + 

v*(a) = w(u)) A (v(u) aR i(wa) + v*(u) tR i(W@))]. 

q* is a distinguished-path-preserving wet+absolute retagging of q if, in 
addition, 

vu E u[v(u) = cc e-b zJ*(u) = 001. 

Note that these properties are symmetric in q and q*. 
Given N a finite subset of w, and f, g E 9, then f is an N-good wcL-absolute 

retagging of g iff 

and 

V n[ f (n) is an wiu-absolute retagging of g(n)] 

V n[n $ N -+ f (n) is a distinguished-path-preserving wa-absolute 
retagging of g(n)]. 

The following lemma is a routine generalization of a lemma of Steel. 

LEMMA 1.2. Let N be a finite subset of W. Suppose f is an N-good war-absolute 

retagging of g and /3 < 01. Then 

(i) Vf’ <f 3 g’<g [g’ is an N-good w/Sabsolute retagging off'], 

(ii) Vg’ <g Elf' G-f [f’ is an N-good w/3-absolute retagging of g']. 

Terminology. For p = (f, e) E Y x 9 and p’ = (g, e) E Y x 9, we say 
that p’ is an N-good wcu-absolute retagging of p iff that property holds for f 

and g. 

Until fzcrthev notice, 1 +- denotes j +yx9,L,x. 9 denotes the ramified 
language appropriate to this forcing. We now need a specialized analysis for 
the forcing of Zr facts over GY. More specifically, let L? be the ramified language 
appropriate to the construction of 6Y. In particular, 8 has terms for I&’ and for 

each P,,, , and the appropriate abstraction terms of rank < wfK based on these. 
Now, of course, for 9 E 9 there is a natural way of embedding statements of 
the form “a /= 9” into 9, so we already know what ‘p 1 t- 02 l== 9” means. 
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However, the symmetry arguments we need are facilitated by giving a direct 
syntactic description of whenp 1 t- C!! l= 9, where 9 is a ranked sentence of 2,. 
First note that, letting 119 denote A@.], i.e., the weakest condition of Y, it is 
easy to see that for (f, e) E 9 x 3 and u E [@]* cw, and any 01 < wFK, 

t-- u E T(a) 

+ u $ T(a). 
and 

DEFINITION OF 1 +‘. (i) (f, e) I t-’ LZ? + p E P,,, iff (II, e) It- r-i(n) E 7’(a) 

and f(n) I+o.L,~ CK p EJ’ (where J’ is the term for the distinguished path built 

by forcing over Q). 

(ii) (f, e) j+’ G? + (n, p) E I&’ iff f(n) II--~,~,x p E g (where _V is the term 
for the tree built by forcing over Q). 

(iii) pl~‘~~=Niffnoq~phasqI~‘Csl~~. 

(iv) pI~‘~~~AAiffpI~‘CPI~=aandpII-‘~~~. 

(v) p It-’ 02 /= 3 “x~(x) iff there is a term r of rank <CX [p II--’ Gsl + 

ma. 
(vi) p It-’ 02 + T E Y iff when u is the abstraction term for 9 we have 

[rank (T) < rank (u) A p II-’ 0! /= F(T)] or [rank (T) >, rank (v) A (3 term T’ 
of rank < rank (u)) (p /+’ 02 + 7 = T’ A S(T’))]. 

(vii) p It-’ a k r = v iff for 6 = rank (T) U rank (Y), p It-’ N 3 6x 

[XET++XEY]. 

It is routine to check, by induction on the rank of 9 (suitably defined), that 
whenever H isL,,,fK-generic on Y x 9, then & + S iff 3 p E H[p It-’ 6? + F]. 
(The rank of a formula 9 is an ordinal depending both on the ordinals mentioned 
in 9 and on the syntactic complexity of F. For a term, 7, we say rank of r = OL 
to mean that 7 is a definition of a set over a(a).) 

LEMMA 1.3. Assume 

(0) a > 0. 

(i) F is a sentence of 8 of rank < a. 

(ii) N is a finite subset of w, and (II, e) [I- u # T whenew~ r(u) E N. 

(iii) p = (f, e), and p’ G (f’, e) is an N-good w-absolute retagging of p. 

ThenpI~-‘~~=~ffp’I~‘~~~. 

Proof. Fix N, and restrict attention to W E {q E 9’ x 9 1 q < (Q, e)}. One 
uses clauses (i)-(vii) to check the assertion by simultaneous transfinite induction 
on a and the rank of 9. The only interesting cases are clauses (i), (ii), and (iii). 
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Clause (ii) goes through as any war-absolute retagging ,of a condition in Q does 
not change forcing of statements of form p E _V. 

If there is a u E [wfK]<” and Y(U) = n $ N, then (i) goes through becausef’(n) 
is a distinguished-path-preserving retagging of f(n). If r(a) = n E N, or r-‘(n) 

is undefined, then (i) goes through as every condition in 9 II- @ /= p $ P,,a. 
Clause (iii) is immediate from Lemma 1.2. 1 

COROLLARY 1.4. Let S be Sacks-generic over GE Then (P E L,8(S) 1 3 n [P 

a path through Tn]) = {P, ( r-‘(n) E T). 

Proof. We need only show that whenever P E L,;=(S) and P is a path through 
T,, then P = P,, and r-l(n) E T. Suppose P counterexamples this. So there is a 
Sacks condition, X, in 0Z such that S satisfies X, and a 6 < wFK with X [t--sacks,a 
{S>s is a path through T, . Of course, by /t--Sscks,a we mean the canonical 
weak forcing over @ given rise to by the set of Sacks conditions in 6% However, 
Sacks’ argument shows that there is a Z; formula 9 such that V Y(Gl + ‘S(Y) + 

t--sacks ,a (8Js is a path through T,), and (Y 1 (Z + 9(Y)) is dense above X. 
2’ hf’ is t e ormula saying that eaery path S’ through Y makes {S}s’ a path through 
T, .) So S satisfies such a YE 02. As 9? is Zi , there is an ordinal 01 < wfK and 
a sentence 9 of 9 of rank OL which says that 6l? k S(y). (y is a name for Y.) So 
if p E Y x 9 and p \I--- F then for any generic H satisfying p and any Sacks 
generic s’ over G& , with S’ satisfying the denotation of Y in 6&, we have 
that {6}s’ is a path through (T& . So, in particular, such a path exists in (TJ,, . 

Case I. y-l(n) is undefined or r-r(n) 6 T. Letp E G be such thatp It-’ GZ + 9, 
and if Y(U) = n, alsop [+--I (r 6 T. Let N = in>. We assume that we have arranged 
the X, Y, 9,9 above so that for some particular p E wcw, p # @, Y ]t-sacks,a {S}s 
is a path through p in T, . Now, just let p’ = ( f  ‘, e) be an N-good wol-absolute 
retagging of p such that (f’(n))(p) = i(6) for some S < wcK. By Lemma 1.3, 
p’ /I--’ CPG + F-, so, in particular, there is a path through p in (T,& whenever His 
generic andp’ E H, which is absurd as (T& is wellfounded below p for any 
such H. 

Case II. r’(n) E T. Then there is some p $ P, with (6)s a path through p 
in T,. Letp = (f, e)EG such that p I+ Gsl + F where, once again, we have 
made the arrangements as in Case I for this particular p. As p$ P, , (f(n))(p) # co. 
So apply Lemma 1.3 with N = o to p’ = (f ‘, e) chosen so that ( f’(n))(p) = 
i(S) for some S < wr . cK The same contradiction ensues as in Case I. 1 

Note that it is immediate from Corollary 1.4 that {P E 02 1 3 n [P a path 
through TJ} = {Pn 1 r-‘(n) E T}. 

COROLLARY 1.5. I f  S is Sacks generic over ccl then wls > wfK. 

Proof. By Corollary 1.4, T is C, over L,:“(S), so as L,;(S) is admissible 
and satisfies x,-DC, there is a path through T in L,;(S). So by Proposition 1 .l, 

CK WIS > q . 1 
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For the sake of expositing the main result, the proofs of the next two lemmas 
are deferred to Section 2. 

LEMMA 1.6 (Little Lemma). cpd has no largest hyperdegree. 

LEMMA 1.7 (Main Lemma). 02 is admissible. 

Given the above, we can now prove 

COROLLARY 1.8. ?f S is any real such that wls > UJ~~ then S is a nonminimal 
upper bound for the hyperdegrees in Ol. 

. . Proof. As W, G EL:;K+~~, W, GEL,;(S), so as CYCLw~~ [W x G], 
Q!EL,;(S). So S is certamly an upper bound. Now, the Barwise-compactness 
with type-omitting construction of [8, Theorem 3.191 can be carried out in 
L,;(S) to produce reals T, U <a S, with (T, lJ) an exact pairs for the hyper- 
degrees in 02. By Lemma 1.6 we must have T <,, S and U <h S, and each of T 
and U is an upper bound on the hyperdegrees in 02. 1 

Putting Corollaries 1.5 and 1.8 together immediately yields the main result 
of this paper. 

THEOREM 1.9. Ol is a countable admissible set with ordinal UJ~~ such that if S 
is Sachs generic over 02 then wls > wfK and S is a nonminimal upper bound for 

the hyperdegrees in OZ. 

Directly from Lemma 1.7 we get an example of how strange an admissible 
set 02 is. 

COROLLARY 1.10. (i) a + X,-DC. 

(ii) There is no function f: CO?” -+ GY, A, over Ol, such that Gl = U (f (a)1 
a < cap}.” 

Proof. (i) If a + X,-DC then it would have a path through T, so 171 could 
not be admissible. 

(ii) If such an f  existed one would also have a path through T in cpl 
defined by 

P(n + 1) = P(n) h a, where OL is the least ordinal OL which has a path through 
T,++)+) in f  (/3), where /3 is the least ordinal /3 such that there is such an 01 in 

f(P)* I 

By some further analysis, one sees that the same results hold over ad for a 

p That is, V reals X[(X Qh T A X <a U) C, XE a. 
8 In the terminology of Barwise [Z], this says that a is nonresolvable. 
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certain general class of forcings. Now, because of Corollary 1 .lO(ii) and because 

GZ w Power Set, there are some difficulties in giving a general theory of forcing 
over G’, mainly in providing parameters for all of a’s elements. The difficulties 

can be surmounted by virtue of a= ur,a&,~~[Xj, so that a satisfactory 
general formulation can be made even for nondefinable classes over a, and this 
formulation will reduce to the usual ones in more civilized situations. (Of course, 
many of these forcings do drastic damage to 02.) For the present purposes it 
suffices to say that a forcing over G7, is based on some poset C a, a notion of 

genericity, and an appropriate language for building GPG[H], such that for generic 
H we always have a[H] t= 9 i f f  3 p E H (p /+ F). 

DEFINITION. Suppose x is a name for a real in the language appropriate 
for forcing over QZ with a partial ordering pp. We say that B is Z,-honest for x 

i f f  for each &-formula s(n, x) (with terms from the ramified language as 
parameters in 9) and each Y ~9 there is a C,-formula s(n, X) with parameters 
in a such that for each n < w 

is a dense subset of 

PROPOSITION 1.11. Suppose B is any forcing over GPI which is X,-honest for 8. 
Then if H is Cl-generic on 8, and x C w is the denotation qf 2~ in Ol[H] then 
{P ELLS / 3 n (P a path through T,)} C {P, j r’(n) E T}. 

Proof. Suppose P = {01}” is a path in T, . Take any p E P. Let YE H, 
Y l+fl,n (a>” is a path through p in T, . By Z,-honesty and the admissibility 
of 02, there is in .G! a subtree V of T, such that each level of V is nonempty and 

for all p’ E 17, p’ 1 p and there is some X < Y with X lag,@ p’ E {a}“. Using 
Lemma 1.3 one can show that any subtree of T, in Q! with more than one node 
on infinitely many levels has some node tagged with some i(/3). So all but finitely 
many levels of I’ have exactly one point. So there is a path in a through p in T, . 
Thus r-*(n) E T, and p E P, . As p was arbitrary in P, P = P, . 1 

This immediately yields 

THEOREM 1.12. Let x be as in Proposition 1 .I 1. Then x is not a mrnimal 
upper bound fey GF?‘s hyperdegrees. 

Proof. I f  wrx = @ then by Proposition 1 .I 1, (p E L,;K(x) ] 3 n (P a path 
through T,)) s {P, ( r-l(n) E T}, so x is not an upper bound. If  wrz > wfK 
then by Corollary 1.8, x is a nonminimal upper bound. 1 

Finally, note that one property of a forcing which would usually be needed 

607/31/1-9 
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to show that it preserves UP is Xi-honesty. But to produce a minimal upper 
bound for ms hyperdegrees, a forcing would have to preserve wfK without 
having this property. 

2. THE ADMISSIBILITY OF 6$? 

This section investigates the interaction of the delayed collapse with the 
forcing of Z, formulas. Main Lemma 1.7 is proved. Little Lemma 1.6 falls 
out along the way. To prove 1.7 three main sublemmas are required: Factoring 
(2.2), Positivization (2.8), and Delay (2.9). 

The factoring sublemma deals with breaking an M-generic object G on $3 
into pieces. For OL < wfK, let C3 r 01 = {(c, t, u, d) E 9 1 range (c) C CC, t is a 
subtree of [oI]<“, and range (d) C a!}. Let G p LY = G n (9 r a). For most (Y, 
G r 01 is not generic on 9 r LY. (Since, for example, there is a k < w such that 
length (c) < R for any c from G r a.) Nonetheless, we would like to view G r (Y 
as an M-generic object. To do this, we introduce partial orderings aa with 
conditions which are able to say, for a given u E [wF~‘K]<~, that the delay attached 
to u is > a but that further decisions about u (and all extensions of u) are to be 
deferred; these decisions will then be made by a condition in some ~3~ for 
/3 > 01. G r a will be (intertranslatable with) a generic object on ga . In essence, 
what we are doing here is giving a concrete description of the complete subalgebra 
generated by &@ r 01 in the Boolean algebra corresponding to ~3. 

The Partial Orderings 9a and BB/H 

gW$ 3 9. Now, let * be a new symbol. Fix 01 < wfK. (c, t, u, d) E 9a iff 

(i)’ c E [a n Lim]<w or c = c”’ * and c’ E [CX n Lim]<w. 

(ii)’ t is a finite nonempty subtree of [a]+. 

(iii)’ dam(u) = {u E t 1 d(u) # *}, u: dam(u) -+ 2, u( 0) = 1, and when- 
ever u E t and u(u) == 0 then for no 7 2 a is 7 E t. 

(iv)’ d: t - {@a) --f (Y u {*} and whenever d(u) = * then for no T 3 u 
is T E t, and if u # a, d(u) # *, d(&) # *, and U(U) = u(&) = 1 then 

either d(A) < d(u), 

or 3j E dam(c) [c(j) # * A u’ < c(j) < 61. 

(c’, t’, u’, d’) < (c, t, u, d) iff c’ > c, t’ I t, u’ 3 u, and d’ 2 d. 
Note that 9 r OL C ga . 

Notation. Ifp = (c, t, u, d) and q = (c’, t’, u’, d’) are compatible in some ~3~ , 
01 ,( wB, then (c u cl, t u t’, u u u’, d u d’) is obviously the weakest condition 
extending them both. It is denoted p inf q. 
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DEFINITION OFFS . fa : Usau LSO + .5Sa byf,(c, t, u, d) = (c’, t’, u’, d’), where 

(a) c’ = c if range (c) C (Y, 

= (c ri)^ *, where j is least j [c(j) 6 a] if range (c) g a. 

(So range (c’) C 01 U {*}.) 

(b) t’ is the largest subtree of t such that V o E t’ (u = ia or [u. < (Y and 
V 7 s U(T = 0 or d(7) E a)]). 

(c) For (T E t’, 

u'(a) = U(U) if u = ~3 or d(o) E a, 

= undefined if d(o) $01. 

(d) For u E t’ - {a}, 

d’(u) = d(u) if d(o) E 01, 

=* otherwise. 

Note that by (c) and (d), U’ does not comment on whether or not u (or any 
extension of u) E T if d’(u) = *. 

It is not hard to see that fug = identity, and for 01 < /3 < uzK, fa = fu o fs . 
The map fa : 9s + 9a is surjective. Also, if p < 4 in 9s then f,(p) <f&) 
in gU. 

DEFINITION OF H, . If CL < p < wyK and H c Bs, then H, z f,“H (i.e., 

{f&P) I P E HI). 
Note that if (Y < /3 < y < wfK and H C .9,, then H, = (H& . 
For G M-generic on .9 and (Y < wr , cK G, is almost the same object as G 1 or; 

the latter is obtained from the former by discarding the final * at the end of 
Co, and dropping all nodes from the t’s of G, with d(u) = *; the former is 
obtained from the latter as follows: First, add a * to the longest c in G r 01. 
Then whenever o E [0;1<” and 6 < ol and u appears in some (c, t, u, d) E G r a 
with u(u) = 1, but 03 $ t’ for any (c’, t’, u’, d’) E G p 01, then add a condition 
to G, with 03 in its tree, and delay * attached to a’%. 

DEFINITION OF gB/H. For LY < /3 < WB and H M-generic on 9E , 9&H 3 
(P E % I f-(P) E HI. 

Remark. There will bep, q E go/H such that p # q but p ]I-~#,~,~[~I q E C 
and vice versa. One could, of course, mod out by this equivalence relation, though 
we will not bother with this, here. 

Now, we are almost in position to prove the Factoring Sublemma. First we 
need 
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PROPOSITION 2.1. Let 01 < /3 < ufK, q E SSB . Let p =: fa(q). Then 

(i) yp < p in aU then there is a q’ < q in .9e with fa(q’) = p’. 

(ii) I f  p’ > p in 9Ju then there is a q’ > q in gfl with fa(q’) = p’. 

(iii) fa preserves (fkite) infs. 

Proof. We give an intuitive description, omitting details, for (i). q may 

attach delays between (Y and p to nodes in [a]<“. By inserting *‘s, fa prevents 
p’ from making any comment on these nodes, so anything about u’s E [a]+ 
added to p by p’ is still compatible with q. (There is no danger from extending 

the Cohen part of p, as doing so only makes it easier to extend q.) 
The proofs of (ii) and (iii) are routine. 1 

SUBLEMMA 2.2 (Factoring). Let a: <p < uCK. Then G is M-generic on 
5S0 M G, is M-generic on SBa and G is M[G,]-generic on BB/Ga . 

Proof. The statement is trivial if (Y = /3. So assume ol < /3. 

(3): First note that the trivial requirements for genericity are direct from 

Proposition 2.l(ii) and (iii). So let E be any dense open subset of Ba definable 
over M. Suppose q lt-ss,M & n E _-- O. Let p = fJq). Let p’ < p in 9a , 
p’ E E. By 2.1(i), take q’ < q such that f=(q’) = p’. Then q’ l~--~~,~p’ E & n E, 
a contradiction. 

To show G M[G,]-generic on 9JB/Ga, suppose E is dense open in 9,JGol , E 
definable over M[G,] and G n E = 0. Take WE G, such that w II---~,,~E is a dense 
open subset of 9a/a, ( w h ere H is a symbol for the generic object over ga). 
Take u E G such that w = f&v). Take x < ZI, z E G, z II----~~,~ G n & = @. 

So y  = f%(z) It-a,,,,, E is a dense open subset of go/H. So there is a y’ < y  
in 9a and a q < z such that y’ I+-9,,M q E B. Let p = fJq). As y’ (t-g,,,., & C 

%/E-i, Y’ ki”,.M P E go/H, so y’ is certainly compatible with p. Let p’ = y’ 
infp. By Proposition 2.1(i), take q’ < q such that fo(q’) = p’. So p’ /t--a,,,, 
q’ E &, but q’ 1+-98,M g n G = D. So q’ /w~~,~ p’ + Ga , an absurdity. 1 

(-=z): Let E be a dense open subset of 9a definable over M. It suffices to 
show that for every zc E a*, x !+a,,M E n 9,JlJ is dense in 9JH. Suppose 
not. Then there is a y  E 9, and a q E ga such that y  I+9,,M (q E z~~/H and q has 
no extension in E n gB/H). p =e fa(q) is compatible with y. So let p’ = p inf y. 
By Proposition 2.1(i), take q’ < q such that fJq’) = p’. Now find w < q’, w E E. 
So f=(w) <p. Therefore, fm(w) j~~,,~~ (q has no extension in En 9JZJ). So 

f%(W) /h3,,,zr w $9*/H, an absurdity. 1 

COROLLARY 2.3, If  G is M-generic on 9 and 01 < wfK then M[G,] is 
admissible and G&(a) E M[G,.J. 

Proof. gU E M (in fact, E L,;K), so as G, is M-generic on gU , M[G,] is 
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admissible. It is obvious from the construction of G&(a) that &(a) E M[G r 011, 

and G r 01 is easy to get from G, . 1 

COROLLARY 2.4 (Little Lemma 1.6). I f  G is M-generic on 9 then G& has 

no largest hyperdegree. 

Proof. Suppose x were the largest hyperdegree of 0& . Then x E M[G,] 

for some 0: < uFK. But it is easy to see that as G is M[G,]-generic on 9/G,, 
y  = (n / (ff  + n) E T,(a. + w)> is Cohen generic over M[G,], and y  E f&,. . So 
y  $ M[G,]. L,;(X) = L,;K(x) C M[G,]. So y  6, X, a contradiction. i 

Terminology. For 01 < uFK and H M-generic on 9, one can talk about 
Q&(a) within M[H,] simply by constructing 0&(a) within M[H,]. In fact, even 

if H is only M-generic on 9s , for p > 01, this same construction makes sense for 
H, . For 9 E 8 (the ramified language from Section 1 for building Q!), with 
the terms in 9 of rank < a:, we say M[H] + 02(e) /= 9 to mean that when this 

construction is carried out from H, one gets a model of 9. (Note that 0!(a) + 9 
is A, over M[G,].) We also use T&a), in this context, to mean the part of T 
constructed in this way from H, . 

The following is immediate from Sublemma 2.2. 

COROLLARY 2.5. Suppose p E SB , 01 < j3 < C&T, .9- a Z, formula with terms 

of rank < 01 in 8. Then p I+-sa,+, OZ(ar) + g #fa(p) 1+-a,,,,, GY(ol) + 9. 

COROLLARY 2.6. For p E 9, 9 a C, formula of L? with terms of rank < OL < 

wfK”, the predicate 

is C, over .M. 

Proof. Immediate from Corollary 2.5 as “Gpl(lt) l= g” is A, over M[H,] 
and 9, E M, so the forcing relation for gE over M for C, formulas is Z, over M. 

Notation. For a any ordinal, & is the least primitive recursively closed 
ordinal > (11 u w. (Actually, primitive recursive closure is far more than what 
we will need.) 

PROPOSITION 2.7. Let a < wFK and H be M-generic on 9. Then 

l(S, TX9 I 8 < 4 E @cd3 

Proof. By construction of G& , TH(ol + W) E O&(OI + w + 1). It suffices to 
compute DH(u) (for u E TH(cx + w)) within Lz(T,(or + w)). Now, by genericity 
of H, for o E T,(, + CO), of ~,wehaveD,(o)=Oiff(pIa~</3<~~+w 
and CQ E TH(~ + w)} = ia. (This is the only place we use the fact that range 
(C,) C Lim.) &Jo) = 1 i f f  {/3 1 (T. < ,G < U‘ + w, u /̂3 E TH(ol + w), and 
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&(o”p) # 0} = 0. By a similar analysis one computes &(cT) for all u E 
T,(cy + W) in an iteration of length CC + W. 1 

The Positivization Sublemma (2.8) says, in effect, that the negative parts of 
conditions (i.e., those that directly say CJ f T) do not help to force C, statements. 
This follows the intuition that a Z, statement can say “look for some (T E T” 
but cannot say “check that 0 $ T.” However, the negative parts are not totally 
ineffectual-they can prevent a C, thing from happening, which will be crucial 
later on. 

DEFINITION OF p+. For p = (c, t, u, d) E u {gm 1 OL < wfK}, p+ G (c’, t’, 
u’, d’) where 

(4 c’ = c, 

(b) t’ = t - {u E t 1 u(u) = 0}, 

(c) u’ = u I‘ t’, 

(d) d’ = d r t’ - {a}. 

Notice that t’ is a subtree oft since (T is a terminal node of t whenever u(u) = 0. 
IfpEa=, soisp+. 

Next we define a map that, in effect, puts back what is lost in going from p 
to p+. 

DEFINITION OF ND . Let p, q~U{%l~<@% p=(c, t, u, d), 4~ 

(ci , t, , u1 , 4). Then N,(q) = (ci , t; , u; , d;), where 

(4 c; = Cl . 

(b) t; is the largest subtree of t, such that V u E t; , V 7 g a [if U(T) is 
defined then U(T) # 01. 

(c) For u E ti , 

U;(u) = 0 if U(U) is defined, and u(u) = 0, 

= %(4 otherwise. 

(d) ForuEt;--{(ia}, 

4(u) = 44 if U(U) is defined, and u(u) = 0, 

= 4(u) otherwise. 

Note that ifp, q E 9, then N,(q) E 9a . Also, when all the conditions mentioned 
are in u (~3~ 1 01< c@} we have 

(i) q < p+ + N,(q) is compatible with p. 

(ii) q’ < q 2 N&z’) < N,(q). 
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(iii) N, preserves (finite) infs. 

(iv) p’ 2 N,(q) = 3 4’ 2 4 [P’ = ~,(q’)l. 
The crucial point in the following proof is that one can translate a generic 

object containingpi- to one containingp in a way which only results in thinning T. 

SUBLEMMA 2.8 (Positivization). Let 01 < j3 < wfK and let 9 be a &,formula 

of 9 with terms of rank < (2. Let H be M-generic on .?Ba , p E Be/H, and suppose 
p j+ras,e,ltr[iil O@(8) /= 3 x2+). Then for any M[H]-generic J on .9$/H with 
p+ E JO we have M[J] /== lZ?; k 3 v@(x). 

Proof. It is routine to check the following 

CLAIM. (9 (v q E J%/W l-%(q) E %/HI- 
(ii) (V q < p+ in .QO/H) (VP’ <p inf N,(q) in gB/H) (3 q’ < q in SB/H) 

V&‘) = P’l. 
From the claim and the properties of iV, listed above, it is routine to prove 

that if 1 is M[H]-generic on go/H and p+ E I, then Nil is M[H]-generic on 
gB/H. By property (i), p E Ni1. Now, let J be as stated. By 2.7, {(S, T,(6)) 1 

6 < P> E QX% N ow it is easy to obtain ((6, TNzJ&S)) 1 6 < /I) from the above 
sequence. As TN//J (6) Z TJ (a), all the Pn,G)s necessary to construct O&;J&/3) 
are in OZ@). So &@) has !n it 02 ,,,;,&/I). But as p E NiJe and NiJe is M[H]- 
generic on go/H, G&;,s(/?) + 3 xF(x). As each term in s has rank <or, these 
terms have the same meaning in 0, as in GZN;,a . So, by the upward persistence 
of C, statements, M[J] + O@(B) + 3 x9((x). 1 

Remark. We will only use Sublemma 2.8 for p E (9/H) n (9 r 8). In this 
case, the conclusion can be simply restated as pf II---~;,~,~[~I GZ($) + 3 x9(x). 

Now we come to the main sublemma of Section 2, the Delay Sublemma 
(2.9). Roughly speaking, CPI is admissible because, even though Cc destroys wFK, 
there is nothing that goes on in 02 which enables one, in a C, fashion, to get his 
hands on any of Cc’s values. The Delay Sublemma is the precise formulation 
of this idea. It basically says that if p = (c, t, U, d) makes a C, thing happen, 
then by sufficiently increasing the delays in d and throwing out c, one still makes 
the C, thing happen. (Thus, the fact that the Z, thing happens gives no in- 
formation about c.) 

As in the proof of Sublemma 2.8, the technique is to show that from a generic 
object containing the altered p, a generic object can be constructed which 
contains the original p, and this can be done in a way which only thins T. We 
define maps that play roles analogous to those of p wp+ and N, in Sublemma 
2.8. Here is the first real interaction of the delays with the values of c. Also, in 
the proof of Delay Sublemma 2.9 there is a claim analogous to that in the proof 
of Sublemma 2.8. It is in the proof of this claim that the first use is made of a 
condition’s ability to comment negatively on the question, “Is (T E T?” 
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Now, some auxiliary definitions. 
Letp=(c,x,y,d),a<q , cK u E [co~]<~ - {a}, where 

c E [uJ:’ f7 Lim] CK -‘, d: {T / m + T C CT} --, w, , 

x and y are arbitrary, and assume cr E range (c). 
Let n = length (c). 
&(a, p) E least j < length (T [u(j) > a or d(u rj + 1) > CC], if any such j, 

undefined otherwise. 
~Ju, p) = “number of jumps of u after leaving 9 r OI” 

= cardinality {j 1 k,(u,p) <,j < length(u) - 1 A 3 m < n 

[u(j) < c(nz) < u(j + I)]} if Iz,(u, p) is defined, 
E n otherwise. 

So ja(u, p) is always <n. 

DEFINITION OF pa.6. Let p = (c, t, u, d) E 9 r p, 01 < /I < @, n E length c, 
and assume 01 E range (c). p.6 = (c’, t’, u’, d’), where 

(a) c’ = c I(1 + least j [c(j) = a]). (So (c’). = CY). 

(b) t’ = f. 

(4 u’ = u. 

(d) For u E t’ - (~a>, d’(o) = /3 * [n - ja(u, p)] + d(u). 

The idea of the definition is to push up the delays attached to those u E t 
which are beyond T(cY) in such a way that no evidence of the values of c above 01 
remains. This is accomplished by simulating possible increases in the delays 
corresponding to jumps by going to an increased ordinal in a lower copy of p. 
It is not hard to check that p a,o E 9 r ,8 . W. (By pushing up certain delays, nodes 
above 01 at which the delay previously increased now have a decreasing delay, 
so truncating c does not hurt. One needs here that cx E range (c).) 

DEFINITION OF R a,s,9(q). Let p, (Y, /3, n be as in the above definition, q E 
(cl , t, , u1 , 4) E 9. For 7 E t, , let %(T> = 4(T) - B . [n - .idT, (c, tl , ~1, 41 
(if the first ordinal > the second, undefined otherwise). We say 7 respects the 
coding if V j < length (T) {C&(T) is defined A [(j = &(T, (c, t, , u1 , dl)) A T(j) < 

4 - & P j + 1) > 4 A [j > 0 - [%(T r j + 1) -c %(T r j) or 
h -c n ((T r j). -=c c(m) < (7 r j + l).)]]}. Ra,B,p(q) = (ci , t; , 4 , 4, where 

(4 c; = If*. 

(b) t; = largest subtree of t, such that Vu E t; {u = ~3 or [u. < ,8 A VT $ u 
(T = @ or (T respects the coding /\ d’,(T) < /3))]). 
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(c) For o E t; , 
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u;(u) = u(u) if o respects the coding and ai < fi, 

= undefined if cr respects the coding and C&(U) > p, 

=o if (T does not respect the coding. 

(d) ForaEt;-{a), 

d;(o) = &u) if D respects the coding and a,(o) < /3, 

* if CJ respects the coding and d,(a) 3 /3, 

01 if o does not respect the coding. 

Now, one can check that if p = (c, t, u, d) is as in the definition of pa,a, 
then R,,&W) = (ch*, t, U, d). Also, if q’ < q then Ra,&q’) < RE,s,,(q) in ~3~ . 

The effect of (c) and (d) just above is to eliminate those u from T for which q 
fails to follow the coding scheme used by p wpa*B. 

SUBLEMMA 2.9 (Delay). Let (Y < ,G < wfK, p = (c, t, u, d) E 9 r /3, and 
LY. E range (c). Let H be M-generic on 9a , and assume p E BO/H. Suppose F is A0 
in 5? with terms of rank < 0: and that p It-sBIH,MIH~ O@) b 3 x%(x). Then 

PZsB Ih?2;/H,M[HI Q@> k 3 x w+ 

Proof. First of all, it is straightforward to check that fm(p”vfl) = f=(p), so 
~9s E B/H. Suppose the sublemma fails. Then, by Sublemma 2.2, there is an 

M[H]-gtneric J on B/H such that ~*a E J and OZJ(p) /=# 3 x F(X). 

Claim. (i) Vq < pcre6 in Q/H [R,,,,,(q) E 9O/H], 

(ii) (Vq <y.S in 93/H) (VP’ < R,,,,,(q) in gB/H) (lq’ < q in B/H) 

l?L3*D(d) = P’l. 

(Proof of Claim. For (i) the only danger is from (c) and (d) of the definition 

of Rol,~,p when (J does not respect the coding. But H cannot prohibit making 
u(u) = 0 and d(u) = 01. (Note that this is the only place where we use the fact 

that Do can take arbitrary values on u when U(U) = 0.) 
For (ii), the main point is that for any node on which the delays of q violate 

the coding scheme, R=,&q) ensures that no extension of these nodes is in p’.) 
Let J’ = (q E J / q <p”*B). It is routine to show from the claim that Ri.B.3DJ 

is M[H]-generic on {.z E 9e/H 1 z < (ch*, t, u, d)}, so closing RE,e,,J’ under 
weakening of conditions gives I, an M[H]-generic object on Be/H, and p E I. 
By the nature of Ror,B,9 , it is clear that T&3) C T&3 . CO), so all the P,,, needed 
to build &(/3,(p) are in 02&3 . w), and by Proposition 2.7, ((6, T,(S)) 1 6 < ,B} E 

Q&U% So, finally, QW> E W$ As P EI, %P) k 3 x ~(4, so K(p) != 
3 x F(x), a contradiction. 1 
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Now, finally, we can prove that 0Z is admissible. Given all the above, the 
proof is constructed from the following simple intuition: Suppose one knows that 
u E T. Then some 6 < (T’ + w has 66 E T with DG(aA6) = 0. So any a’%^~ E T 
has 7 > the next value of Cc above 0.. Now, there are two ways a Z, formula 
might attempt to define a value 3 next value of C, above (2.. One would be to 
fix 6 and say “Take any 71 such that a*S”q E T.” This could fail, since, as a 
condition can put u(&) = 0, 0’3 might not be in T. So if the formula is to be 
sure of success, it cannot say the above. The other approach is to say “Find 
some 6 such that uY3 E T and DG(uA6) = 0. Then find any 77 such that ~‘3~7 E T, 
and take value 7.” But by the Delay Sublemma, a Z, formula cannot say this, for 
if a condition making DG(u”S) = 0 forces the formula to take value 7, so would 
some condition making DG(uAS) > 0. So the best the formula could do would 
be to say “Find some 6 and 7 such that u’%^~ E T, and take value 71.” But 
since it might be that DG(uAS) > 0, 3 might not be > next value of C, . 

Proof of Main Lemma 1.7 (a is admissible). We have a particular G M- 

generic on ~3. Assume a = U& + Vn < w 3xF(n, x), where 9 is a,, in 9. 
We need to show that 02(e) /== Vn < w 3xF(n, x), for some 19 < @. (This 
suffices as GY is locally countable by 2.7.) 

Let pa E (c,, , t, u, d) E G, p, It--9VM fl+ Vn < w 3xF(n, x). 
Let 01~ > rank of all parameters in 9 and large enough so that pa E 9 p a,, . 
Takep=(c,t,u,d)EGsuchthatc.=a.>ol,. 
By 2.6, the following can be done in M[G,]: 

Fix n < W. Let &O) = p. N ow, for i < w, assume q%(j) has been defined 
for all j < i, and qb( j) < p has been defined for all j ,( i. 

Let pn(i) < k(i) E g/G, , such that for some pn(i) < UJ~, qn(i) /t-a,M 

W,(i)) I= 3x9@, 4. 
Let qh(i + 1) <p in g/GE such that for each j < i and each u in the t from 

qn(j), if it is compatible with G, to have a 4 T, then &(i + 1) I+B,~ a +! T. 

Let /I 5 wfK be large enough so that each p,Ji) < p and each qn(i) E 9 r /3. 
Let 8 = 8, 

CLAIM. &t(e) + Vn < w 3xF(n, x). 

Proof of Claim. Fix n < W. It is easy to see that for any q E G, there is some i 

such that (qn(i)+p*6 ” is compatible with q. (Note that in order to arrange the 
qn(i) so that this be true, we have, once again, made use of the ability of con- 
ditions to comment negatively on “u E T ?“) So, for some i, (q,(i)+y*z E G. AS 

s&3 I+s.M @P> I= 3x F@, 4, t&J I+B~/G,,M~G,I QW) I= 33 s(n, 4, so by 

2.8, (and the remark following 24, qn(i)+ I+~;,G,,MIG,~ GZ(@) + 3xF(n, 3). 

By 2.9, (p,(i)+P*Ei I+~I~,.M[c,I @$) k 3x9@, 4. As (di)+Pg~ G, Or,(h I= 

ElxF(n, x). 1 for Claim; 1 for Main Lemma 1.7. 
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Technical Comments. The intuitive remarks used to motivate the proof just 
above yield an argument showing that if 9 did not allow U(U) = 0, the resulting 
02 would not be admissible. Also, it is possible to show that if the range of the 
d’s were constrained to be C 6, for some fixed S< wyK, UZ would not be admissible. 
However, allowing d(u) > 0 when U(U) = 0 is purely a technical device to 
control the way G is broken up into the G,‘s. By changing all these to 0 one 
still builds the same inner model 02. Using this idea one can show, as a corollary 
to the fact that the construction we have used gives an admissible 02, that a 
construction based upon a forcing which demands d(a) = 0 when u(u) = 0 
still produces an admissible cpt. 

3. REMARKS AND OPEN QUESTIONS 

Sacks’ question “Does every countable set of hyperdegrees have a minimal 
upper bound ?” remains open. The results here seem to give evidence for a 
negative answer. Perhaps the hyperdegrees in 02 provide a counterexample, 
though this is not known. A possible approach for getting some other countable 
admissible &‘, similar to 6Y, for which it would be possible to prove that LVs 
hyperdegrees have no minimal upper bound, would be to modify the present 
construction to obtain 

(*) For any upper bound S on g’s hyperdegrees, if (P &, S / P a path 
through some T, with 716 r”T} is infinite, then S is nonminimal. 

Perhaps one could get (*) by insuring that for every such S there is an upper 
bound S’ <h S with some new P C n S’. It is not possible to get (*) by arranging 
matters so that any such new P is an upper bound, (and so that any two dif- 
ferent such P are mutually generic), for then the real coding T, would itself be 
an upper bound on 9”s hyperdegrees. 

REFERENCES 

1. K. J. BARWISE, Infinitary logic and admissible sets, J. Symbolic Logic 34 (1969). 

226-252. 
2. K. J. BARWISE, “Admissible Sets and Structures,” Springer-Verlag, New York/ 

Berlin, 1975. 
3. P. J. COHEN, “Set Theory and the Continuum Hypothesis,” Benjamin, New York, 

1966. 
4. H. FRIEDMAN, “Subsystems of Set Theory and Analysis,” Ph.D. Dissertation, M.I.T., 

1967. 
5. H. J. KEISLFX, “Model Theory for Infinitary Logic,” North-Holland, Amsterdam, 

1971. 
6. G. E. SACKS, “Degrees of Unsolvability,” Princeton Univ. Press, Princeton, N. J., 

1963; 2nd ed., 1966. 



130 FRED G. ABRAMSON 

7. G. E. SACKS, Forcing with perfect closed sets, in “Proceedings, Symposia Pure 
Math. XIII,” pp. 331-35.5, Amer. Math. Sot., Providence, R.I., 1971. 

8. G. E. SACKS, Countable admissible ordinals and hyperdegrees, Advnnces in Math. 
20 (1976), 213-262. 

9. J. STEEL, Forcing with tagged trees (Abstract No. 71%El), Notices Amer. Math. Sot. 
21 No. 7 (1974), A-627-A-628. 

10. J. STEEL, “Subsystems of Analysis and the Axiom of Determinacy,” Ph.D. Disserta- 
tion, Department of Mathematics, University of California, Berkeley, 1977. 


